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Introduction. Almost contact manifolds have, as is well known, an aspect
of the odd-dimensional version of almost complex manifolds, and especially normal
contact Riemannian manifolds are looked upon as what correspond to Kahler
manifolds. The purpose of this paper is to develop a theory on a normal
contact Riemannian manifold parallel to that of Kahler manifold through the
researches of complex-valued differential forms on the former.

After introducing several operators in the beginning section, in §2 we shall
see that a trigrade structure, corresponding to the bigrade one in almost complex
manifold, is naturally induced in the algebra of complex-valued forms on a
contact Riemannian manifold. In §3 normal contact Riemannian manifolds are
discussed from our standpoint of view and §4 is devoted to the investigations
of harmonic forms on a compact normal contact Riemannian manifolds. The
main result in this section is Theorem 4.4 which asserts the evenness of the
r-th Betti numbers of the manifold for certain values of r. Some further
researches are pursued in the last section.

I wish to express my sincere gratitude to Professor S. Sasaki for his kind
guidance to this subject and his constant encouragement. My thanks also go
to Mr. S. Tarmo who gave me many valuable suggestions in preparing this work.

1. Preliminaries. Given an ra-dimensional differentiable manifold M, we
denote by V(M) the space of complex-valued vector fields on M, by A(M)
that of complex-valued forms on M and by Πr (r = 0,1, , m) the projection
of A(M) onto the subspace AT(M) of r-forms.

Let M be a contact Riemannian manifold with the structure (η, g). We
denote the associated vector field by ξ and the (1, l)-tensor field by φ as usual.
These are related in the following manner:

( g(ξ, X) = η(X), r,(ξ) = 1, φξ = 0, η(φX) = 0 ,
(1.1)

( 2g(X, φY) = dη(X, Y), <£2X=
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where X, Y £ V(M). For further properties, see [3].
The Riemannian metric g induces in each Ar(M) a scalar product g( , ):

Ar(M)xAr(M)-^A0(M), which is defined by

flfo 0) = 7Γ </"'' (ΛX-^Λ-yΓ

for r-forms # and /3. Moreover, since a contact manifold is always orientable,
through the integral over M an (Hermitian) inner product is defined in the
usual way: one of a and β having compact support,

β> = = f g(<*> β) * 1 >
Jji

where * is the star operator by means of the metric g. For a linear operator
T in A(M)y we denote by T* the adjoint of T with respect to this inner product.
T* (if it exists) is determined by <Ttf, β> = <a, T*/3>, and the correspondence

T— >T* is (i) conjugate linear: (aS+bT)* = άS*-}-bT* (a and & are complex
numbers), (ii) anti-homomorphic : (ST)*=T*S* and (iii) involutive: T** = T.

Now, we shall introduce several operators in A(M). We define

A = L*

where ^(Λ) denotes the exterior product by a form Λ : e(Λ)β = aίf\β. The
following identities are almost trivial :

IL-Ll = 0 , dL-Ld = 0 , dl + ld = 2L ,

λΛ -Aλ = 0 , δΛ-Λδ = 0 , δλ+λδ = 2A ,(1.2)

The last three follow from the fact that λ is an anti-dervation.
Let us introduce another operator Φ, which is defined by

for an r-form Λ. First, we shall show that Φ is a derivation :

(1. 3) Φ(tfΛ/3) = Φ^Λ/8 + ct/\Φβ .

Clearly it suffices to verify it for the case deg#=l. Let β be an r-form.
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Then, for X19 - , Xr+1 € V(M) we have

Φ(a^β}(Xly - - , Xr+1) = E (-lΓXXp)0(Xι, , „ , φXμ, — , Xr+1)

Σ (-1)"'1 (ΦαXXi.) £(Xι> , Xμ, , Xr+i)
μ,= l

,Xr+ι) + (

where Xy means that Xy is omitted. The proof for the case degoί^2 is achieved
by induction. We also observe that Φ is skew -Hermit ian :

(1.4) Φ*= -Φ.

For, we get easily g(aί, Φ/9) = — g(ΦQί, β) from the local expression, and then
(1. 4) follows immediately. As a consequence of (1. 3), (1. 4) and simple facts
Φr/=Φφ=Q, we obtain

PROPOSITION 1.1. Φ commutes with I, λ, L and Λ.

Denote by θ(ξ) (or briefly 0) the Lie derivation with respect to ξ. In a K-
contact Riemannian manifold (i.e. a contact Riemannian manifold such that ξ is
a Killing vector field) this 0, considered as a linear operator in A(M\ also
satisfies

(1.5) β*= -θ.

In fact, as we have θ(ξ) g = 0 in this case,

(1. 6) θ(ξ) (g(a, £)) = g(θct, ff) + g(θL, θβ}

holds for any two forms a and β of the same degree. But, for any function
/ with compact support we see

<θ(£)f, 1> - <£(/), 1> - <df, η> = </, 8τ7> - 0 ,
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since ΰη vanishes in a contact Riemannian manifold (cf. [3], 9-3). Hence, if one
of a and β is of compact support, integrating (1. 6) over M, we get the required
result: <θa, β> + <a, θβ> = 0.

Clearly θ commutes with d and λ because of a formula θ = d\ + \d and

identities d2 = \2 = Q. θ is also permutable with I and L since θη=θφ=Q are

satisfied in a contact Riemannian manifold. Moreover, if the manifold is K-
contact, θ commutes with δ, Λ and Φ. The commutativities of θ with δ and
Λ are apparent from (1. 5) and those with d and L. To see that θ commutes
with Φ, we note that Φ is defined by means of φ and θφ=0 holds in a ίC-contact
Riemannian manifold. So, The Lie derivative of Φ vanishes and this implies
our assertion. Summarizing above, we have

PROPOSITION 1.2. In α contact Riemannian manifold, the Lie derivation
θ with respect to ξ, considered as a linear operator in A(M), commutes with
d, I, λ and L. In a K-contact Riemannian manifold, θ commutes with any
of d, δ, /, λ, L, Λ and Φ.

2. The trigrade structure in A(Λf). Let M be a (2π + l)-dimeιιsional
contact Riemannian manifold with a structure (?/, g, ξ, φ). The tensor field φ,

regarded as a linear operator in V(M), induces a direct sum decomposition of
V(M): V(M) = Vo+Vi+V-t, where Vε (β = 0, ί, -z) is the eigenspace of φ

belonging to its eigenvalue θ, and the projections of V(M) onto VQ, Vt and V~ι
are given by

= n(X) ξ, P(X) = y [X-η(X)ξ-iφX}9 P(X) = y [X-η(X) £+*

for X € V(M), respectively (cf. [1]). Clearly they satisfy

P0+P+P=1, P2 = P, P2 = P, PP =

(2.1) Pf=0, Pf=0, φP=Pφ = iP, φP=Pφ= -/P,

^(pχ,y) = fl(x,pγ) for x,y€y(M).

Now we shall introduce a set of operators ΠW ) P ϊ < 7 (0 rg w ̂  1 0 5g ?̂, g ̂  n)

in A(M). We define U0>p>q by

_ _
= ̂ 7ΓΣ sgn(σ)Λ(PXσ(1), - , PXσ(p), PXσ(P+ί), , PXσ(P+Q))

* ' ϊ " σ

for Λ ^ Λp+5(M) and Xj, , X^+a € V(M), where the summation on σ is taken
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over all substitutions of (1, 2, , p+q\ and TlilPlQ by

(2.2) UltP,q=lU0tP>q\.

For the sake of convenience, we put Tlu>p>Qa=0 if degaί^u+p+q. Then,
the actions of all Tίu>p,Q are extended to the whole A(M).

These operators Tίu,p,q are projective; that is, they satisfy

0 if (u,p,q)*(v,r,s)
(2.3) , > , >

ΠM>Pι(Z if (u, p9 q) = (v9 r, s) ,

(2.4)

(2. 3) is verified by making use of (2. 1) and (1. 2), while (2. 4) is got by expanding

ct(Xl9 , Xr) = c^P^ + PXi + PXto , P0Xr+PXr + PXr).
The complex conjugate and the adjoint of ΐlUtPιQ are given by

W ^) A-' M.P.Q ~ AIM (g j p ,

(2. 6) Π£>Pιβ = ΠM j p > g.

Their proofs are quite simple.
If we put AU>P>Q=ΠU>P>QA(M), by virtue of (2.4) we have

A(M) = Σ Aι,Λα (direct sum).

Moreover, it is easy to see

**-u,p,q /\ -̂ l v.r.s ^— <L±u+v,p+r,q+s ?

where we understand that Au+ViP+r)Q+s=(0) if one of indices exceeds its proper
range. Thus, we have

THEOREM 2.1. In a (^2n + I)-dimensional contact Riemannian manifold
My the algebra A(M) of complex-valued forms on M is naturally endowed
with a trigrade structure such that one grade is of dimension 1 and other
two are of dimension n.

A form cί of Au>p>q is said to be of type (u9 p, q). It is characterized by
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ϊlu,p,qθί=<X In particular, η is clearly of type (1,0,0), while φ is of type (0,1,1)
since we can show Tlo,ι,ι<p=(p easily.

An operator T in A(M) is said to be of type (v,r,s) if it maps Au,p,q

into Au+V}p+r,q+s for every triple (u,p,q). Clearly T is of type (v,r,s) if and
only if

•L *-* u,p,q == -*•-*•«+«, p+r,g+s L

holds for every (u, p, q). Taking its adjoint, we see immediately that if T is
of type (v,r,s), then T* is of type ( — v, — r, — s).

Let us examine the types of our operators. Those of /, λ, L and Λ are
apparent, and thence we have

(2. 7)

lU0ιP)q = UlιP>Ql , IΠ1>P>Q = 0 , Πo ιΛβ l = Q ,

λΠ l tPιβ - Π0ιpι<rλ , λΠ0>ί,)(? = 0 , Π l i Λ βλ = 0,

J^llu,p,Q= Llu,p+I,q+l 1^ > A.L\.UιPιq — llM > p_ l j C r_i A .

Φ is of type (0,0,0). This follows from

(2. 8) ΠM)PιίZΦ - (p-?) i Uu>p>q = ΦΠU,P,Q .

To get (2.8), let a be a (/>+g)-form. Then, we have

1 ( P - —
= TΓ-Γ Σ SgnW Σ tf(JPX(l>> ' > φPXσM, ' ' ' > ^Xσ(p) , PXσ(p+l), ' ' * , PXα(p+9))

^!^! σ U-i
P+9

+ / . (^(PX^Dy , PXσ(p), PXσ(p+D, , φPAσ(μ), , PXσ(p+Q))
μ=p+l

P+g

0» ' ' ') + Σ Λ( ' > -ί-PXσ(μ) , •)

μ=l μ=p+l

= (p-q) iOOo^

for X1? — , Xp+g £ y(M). Hence we see Π0,p,βΦ=(/>—g)iΠ0|pfί, and from (2. 2)
we have a similar relation TlίtPtQΦ=(p—q)iΐlιιP>q. Thus the first equality of
(2, 8) is obtained. The second equality is merely the adjoint of the first.

In a K-contact Riemannian manifold, θ is also of type (0,0,0). This is
verified from the fact that the Lie derivative θ(ξ)ΠUtP)Q of HU,P,Q, which is defined

by means of η, ξ and φ, vanishes in the present case.
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3. Normal contact Riemannian manifolds. A contact Riemannian manifold
M is said to be normal if the so-called torsion tensor field N, which is defined
by

N(X, Y) = [X, Y] + φ[φX, Y] + φ[X, φY] - [φX, φY]-{X(η(YJ)-Y(η(Xm

vanishes identically on M. This condition can be described in terms of the
decompositions of V(M) and A(M).

THEOREM 3.1. In a contact Riemannian manifold, the following three
conditions are equivalent :

(a) the torsion tensor field N vanishes,

(b) [fcFJcy, and [V^VΛ^Vi,

(C) ClAo}p>qd AιtPtq φ A.Q}P+I)Q φ jC±QtPιq+ι

PROOF. The equivalence of (a) and (b) was shown by S. Sasaki and
C. J. Hsu [4], and that of (a) and (c)p=1((Z=o was got by M. Kurita [2]. Though
the analyticity is assumed in both papers, this is not essential so long as the
conditions are stated in these forms. So here we have only to prove (c) under
the assumption (c)p=lια=0 To do this, notice that any form of AP|(/ (for brevity
we often denote A^tPtQ by APiQ and AljPίQ by APtQ) can be expressed locally as
a sum of simple forms aλ/\ /\oίp/\βl/\ /\βp such that aί9 , dp € A1)0

and β1 , , βq £ AO,I. For such a form e^Λ Λ ^ p Λ β i Λ f\βq of AP>Q,
making use of (c)ί?=ιjg=0 and its complex conjugate (c)p=o,5=ι, we have

C ^±

This completes the proof.
On the other hand, it is known [3] that a contact Riemannian manifold

is normal if and only if

(3. 1) Vkφtj = ViQjk — ηjgjk

is satisfied, where V fc denotes the covariant differentiation by means of the
metric g. Making use of this fact, here we shall give another condition to be
normal in terms of our operators.
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THEOREM 3.2. In a normal contact Riemannίan manifold of dimension
, we have

(3.2) JΛ-Arf = Φδ-δΦ-2Σ (n+l-r)\Πr.
r=0

Conversely, if (3. 2) is valid in a contact Riemannίan manifold, then the
manifold is normal.

PROOF. We proceed by tensor calculus. Let oί be an r-form in a normal
contact Riemannian manifold, then we have

μ=2

Σ

and

- ΦδΛ)ίf...ίr

μ=2

μ=2

Combining these two equalities, we get (3. 2). Conversely, if (3. 2) is valid in
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a contact Riemannian manifold, evaluating (3. 2) on 2-forms, we easily attain
to (3.1). Hence the manifold is normal. Q.E.D.

Clearly Theorem 3.2 remains true if we replace (3. 2) by its adjoint

2n+l

(3.3) SL-Lδ = dΦ-Φd+2Σ(n-r)lΠr.
r=0

Making use of (3.2) and (3.3), we can calculate the commutators of the
Laplacian Δ and various operators:

PROPOSITION 3.3. In a normal contact Riemannian manifold of
dimension 2n+l, we have

(3.4) Δλ-λΔ =

(3. 5) ΔΛ-ΛΔ = -4Σ(w + l-r)ΛΠr-2λδ ,

(3. 6) ΔΦ-ΦΔ = -2(0-λJ+Zδ) ,

(3. 7) Δ/-/Δ - 2{JΦ-ΦJ + 2£>-r) ZΠr] ,

(3.8) ΔL-LΔ =

4. Harmonic forms. In this section we concern with harmonic forms on
a compact normal contact Riemannian manifold. About this subject, S. Tachibana
[5] got some fundamental results:

THEOREM 4.1 (S. TACHIBANA). Let a be a harmonic r-form on a com-
pact normal contact Riemannian manifold of dimension 2^4-1. Then,

( i ) if r ̂  7i, \a = 0 ,

(ϋ) if r^n + 1, Λ r f = 0 ,

(iii) Φoί is again harmonic.

These can be verified by using (3. 4)̂ (3. 6) as well. If we use (3. 7) and (3. 8)
instead, we get dual results :

COROLLARY 4.2. a being the same as in the above theorem,

(i) if r^n + 1, la = 0 ,

(ii) if r ̂  n, La = 0 .
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Now we shall show that if a is harmonic, each ΠUtP,Qa is also harmonic (or
zero). Let a be a harmonic r-form and assume that r ̂  n for the moment.
Then, every ΐlltP>qoί vanishes because of (2. 2) and Theorem 4.1 (i). Apply Φ"

(ft=0,1, — , r) on oί= Σ Π0)P,Q<2. Making use of (2.8) repeatedly, we have
p+q=r

a system of linear equations in r+1 variables Π0)ί(r-ίΛ (ί = 0,1, , r) :

The determinant of the coefficients differs from zero, as is easily seen, and so
each Π0|<,r-ί# is expressed as a linear combination (with constant coefficients)
of harmonic forms a, Φa, , Φra. Hence HQ>t>r-toL is harmonic. For a
harmonic r-form a such that rΞ^n-fl, by a similar way we see that Iί0ίPt(]oL=0
and Π1)3?)Q<2 is harmonic. Summarizing above, we have

THEOREM 4.3. In a compact normal contact Riemannian manifold of
dimension 2n + l, various components of simple type HUjpj(pί of a harmonic
form oί are all harmonic (or zero). In particular, Π0)ί>,0<2=0 if p+q^. n + 1
and Uljp)Qa=Q if

Denote by Hr(M) the space of (complex-valued) harmonic r-forms on the
manifold M and by HUtPjQ that of harmonic forms of type (u,p,q). If r^n,
from the above theorem we have

Hr(M} = Σ H»,P,Q (direct sum) .
p+q=r

Since the complex dimension όίmcHr(M} of Hr(M) is equal to the r-th Betti
number br(M) of M, noting that HUtP>q and HUιQtP are (conjugate) isomorphic,
for any odd dimension r (^n) we have

br(M) = όi
p+Q=r



COMPLEX-VALUED DIFFERENTIAL FORMS 359

Thus, br(M) is necessarily even. Consequently, taking account of the Poincare
duality, we get

THEOREM 4.4. The r-th Betti number of a compact normal contact
Riemannian manifold of dimension 2n + l is even, if r is odd and ^n or
if r is even and §r

REMARK. For the purpose to prove this result only, the following argument
may be simpler. If we set (φo£)(Xl9 , Xr) = a(φXl9 , φXr) for a € Ar(M\
we easily see φ2oί = (— l)r<2 for harmonic r(^gτz)-form ct. On the other hand,
it is known [5] that if cί is harmonic, so is φoί. Therefore, the φ defines a
complex structure in the real vector space H?(M) of real harmonic r-forms
on M, and hence the real dimension of H?(M), which is equal to bτ(M),
must be even.

5. The decomposition of d. Throughout this section we assume that the
manifold M in consideration is always a normal contact one.

The operator d is not of simple type; to clarify this situation, we recall
Theorem 3. 1 (c). Differentiating AιtPιq=η/\AoίPtq, we have a similar relation

ι}pιQc AιtP+ι,q Θ AιtPιQ+ι 0 AotP+ιtq+l9 and these relations suggest to define

d\ = / , llM f p + l f f f d ilu>ptQ , dl — 7 . ΠM.P.O
u,p,q u,p,q

d% = / , -Πi.p.cr aΐϊ0>pjQ , α3 = / . Πo^+ι^+1

Then, we have a decomposition d=dl + dl + d2+d3 and each of dl9dl9d2 and
d$ is of simple type. Clearly dλ and dl are complex conjugate with each other,
while both dz and d3 are real operators. The last two have another expressions

(5.1) d2 = lθ9 d, = 2L\.

In fact, d2 = Eπι,^Πo,^=ΣZπo,^λ^^^

The latter is verified in a similar manner.

Denote the adjoints of dίy dl9 d2 and d3 by δ1? 8X, 82 and δ3 respectively.
They are explicitly given by

p-l,qΰTI u,p,q 9 $1 = / . ΠM. P.g-ι8 ΠM.P.Q ,

)p ιβ = — #λ, δ3 = ΣΠι,p-ιlβ-ι8IIofpιff = 2/Λ.
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Now we shall show a result analoguous to a well-known formula in Kahler

manifolds.

PROPOSITION 5.1. In a normal contact Riemannian manifold, we have

(5.2) dlA.-M1 = iJly <M - A.d~,= -^ .

PROOF. With the aid of (3. 2) and (2. 8) we can proceed as

The latter is merely the complex conjugate of the former. Q.E.D,

The commutators of d2 and d3 with Λ. are given by

(5. 3) d2A. - ΛJ2 = 0 , dA - ΛJ3 = -2Σ (n + l-r)λΠr .
r

The first is clear from (5. l)j and the second follows from (5. 1)2 and

(5. 4) ΛL - LA - Σ(n-r)Ur + 2/λ ,

which is obtained by using (3. 2) or directly by tensor calculus. Summing up
(5. 2) and (5. 3), we get

(5.5) dλ-A.d= -z(δ1-δ1)

As an application of this formula, we shall show

PROPOSITION 5.2. In a normal contact Riemannian manifold, any
closed form of type (0, p, 0) is harmonic.

PROOF. Let oί be a form of type (0, p, 0). By considerations on type,

it is easily seen that \aί=Q, Λ#=0 and S1ci=δ2aί=ΰ3aL=Q. Therefore, if a is
closed besides, it follows from (5.5) that δι#=0 and hence δ#=0. Consequently
cί must be harmonic. Q.E.D.
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Now, assume that M is compact. Then any harmonic r(^gw)-form OL
satisfies λ#=0, A.oί=0 and θoί=0. These conditions are perhaps not sufficient
for OL to be harmonic. Then how far are they from the full condition to
be harmonic ? To answer this, we make use of the following identities

(5.6)

The last two equalities are immediate from (5. 1) and (5. 4), while the first is
verified with the aid of (5. 2) and

dl dι + dι d l + d2 ds 4- d3 d2 = 0 ,

which is one of the identities obtained by comparing various types in the
expansion of (dι-}-dι + d2-\-d3)

2 = 0. From the last two of (5.6) we have two
equivalences

(deg a^ri) .

On the other hand, obviously a form a is harmonic if and only if it satisfies

dιθί=d1oί = d2oί=d3oί=Q and δ1Λ=δ"ιΛ=δ2Λ=δ3Λ= 0. Hence, taking account of
the first equality of (5. 6), we have

PROPOSITION 5.3. In a (2n + l)-dimensional compact normal contact
Riemannian manifold, an r(^ri)-form cί satisfying \ai=Q, Λtf=0 and θaί=0

is harmonic if and only if it satisfies d1a=ΰlaί=Q (or dld=S1oί=0).
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