NUMERICAL RANGES OF TENSOR PRODUCTS OF OPERATORS

Teishirô Saitô

(Received November 16, 1966)

1. In a recent paper [1], A. Brown and C. Pearcy proved that if A and B are bounded linear operators on a Hilbert space, then $\sigma(A \otimes B)=\sigma(A) \cdot \sigma(B)$, where $\sigma(\cdot)$ denotes the spectrum of an operator. In connection with this theorem, we shall discuss an analogous relation among the numerical ranges of A, B and $A \otimes B$.
2. In the sequel, spaces under consideration will be complex Hilbert spaces, and all operators will be assumed to be bounded and linear. The spectrum of any operator T is denoted, as above, by $\sigma(T)$ and the numerical range of T is denoted by $W(T)$. For an arbitrary set S in the complex plane, $\operatorname{co}(S)$ means the convex hull of S and we write \bar{S} for the closure of S. It is known that $\operatorname{co}(\sigma(T))$ is closed. Motivated by the above theorem by A. Brown and C. Pearcy, the following questions are naturally raised.
(I) Does the following relation (*) hold for any operators A and B ?

$$
\begin{equation*}
\overline{W(A \otimes B)}=\overline{\mathrm{co}}(W(A) \cdot W(B)) . \tag{*}
\end{equation*}
$$

(II) If the relation (*) is not always true, when does the relation (*) hold ?
3. In this section we shall prove the following two propositions.

Proposition 1. Let A and B be operators on Hilbert space H. Then the condition $\bar{W} \overline{(A \otimes B)}=\operatorname{co}(\sigma(A \otimes B))$ implies the relation (*).

Proposition 2. There exist operators A and B on some Hilbert space such as $\overline{W(A \otimes B)}$ 不 $\overline{\operatorname{co}}(W(A) \cdot W(B))$.

To prove Proposition 1, we shall show the following lemma.
Lemma 1. For arbitrary operators A and B on a Hilbert space H

$$
\overline{W(A \otimes B)} \supseteqq \overline{\mathrm{co}}(W(A) \cdot W(B)) .
$$

Proof. If $\lambda \in W(A)$ and $\mu \in W(B)$, there exist unit vectors $x, y \in H$ such as $\lambda=(A x, x)$ and $\mu=(B y, y)$. Thus we have

$$
((A \otimes B) x \otimes y, x \otimes y)=(A x, x)(B y, y)=\lambda \mu
$$

and so $W(A \otimes B) \supseteqq W(A) \cdot W(B)$. Since $\overline{W(A \otimes B)}$ is convex and closed, the conclusion of the lemma is clear.

Proof of Proposition 1. By the theorem of A. Brown and C. Pearcy

$$
\operatorname{co}(\sigma \cdot(A \otimes B))=\operatorname{co}(\sigma(\mathrm{A}) \cdot \sigma \cdot(B)) \leqq \operatorname{co}(\operatorname{co}(\sigma(A)) \cdot \operatorname{co}(\sigma(B)))
$$

On the other hand, we have

$$
\operatorname{co}(\cdot(A)) \cdot \operatorname{co}(\sigma(B))) \sqsubseteq \overline{\mathrm{co}}(\bar{W}(\bar{A}) \cdot \overline{W(B)})=\overline{\operatorname{co}}(W(A) \cdot W(B))
$$

since $\operatorname{co}(\sigma(T)) \subseteq \overline{W(T)}$ for any operator T. Hence, by Lemma 1 and the hypothesis of the proposition, the relation (*) holds.

As a consequence of Proposition 1, we obtain the following result.
Corollary. If both A and B are hyponormal operators ${ }^{(*)}$, the relation (*) holds.

Proof. Since $A^{*} A-A A^{*} \geqq 0$ and $B^{*} B-B B^{*} \geqq 0$, we have

$$
\begin{aligned}
& (A \otimes B)^{*}(A \otimes B)-(A \otimes B)(A \otimes B)^{*} \\
& \quad=\left(A^{*} A-A A^{*}\right) \otimes B^{*} B+A A^{*} \otimes\left(B^{*} B-B B^{*}\right) \geqq 0 .
\end{aligned}
$$

Thus $A \otimes B$ is also a hyponormal operator and so $A \otimes B$ satisfies the condition $\overline{W(A \otimes B)}=\operatorname{co}(o \cdot(A \otimes B))$ by [2: Corollary 1]. Hence the assertion follows from Proposition 1.

To prove Proposition 2, we shall construct an example. Let A be an operator on a two-dimensional Hilbert space H with the matrix representation $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and let $B=A^{*}$. Then it is easy to show the following lemma and we omit the proof.
$\left(^{*}\right)$ An operator T on a Hilbert space is called to be hyponormal if $T^{*} T \geqq T T^{*}$.

Lemma 2. $W(A)=W(B)=\{\lambda:|\lambda| \leqq 1 / 2\}$.
From Lemma 2 we obtain
Lemma 3. $\overline{\operatorname{co}}(W(A) \cdot W(B)) \cong\{\lambda:|\lambda| \leqq 1 / 4\}$.
Proof of Proposition 2. By Lemma 3 it is sufficient to show that $1 / 2 \in W(A \otimes B)$. Since the matrix corresponding to B is $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$, the matrix representation of $A \otimes B$ is $\left(\begin{array}{ll}0 & 0 \\ A & 0\end{array}\right)$. For a unit vector $\Phi=\binom{x}{y} \in H \otimes H$, $((A \otimes B) \Phi, \Phi)=(A x, y) . \quad$ Furthermore, for $x=\binom{0}{1 / \sqrt{2}}$ and $y=\binom{1 / \sqrt{2}}{0}$ $\in H$, we have $(A x, y)=1 / 2$. Hence $1 / 2 \in W(A \otimes B)$ and the proof is completed.

ADDENDUM. Under the conditions $\overline{W(A)}=\operatorname{co}(\sigma(A))$ and $\overline{W(B)}=\operatorname{co}(\sigma(B))$, the relation (*) is equivalent to the relation $\overline{W(A \otimes B)}=\operatorname{co}(\sigma(A \otimes B)$ which is not always insured by the conditions $\overline{W(A)}=\operatorname{co}(\sigma(A))$ and $\bar{W}(B)=\operatorname{co}(\sigma(B))$. In fact, let X be the operator $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ as in the proof of Proposition 2 and Y an operator such as $\sigma(Y)=\overline{W(Y)}=\{\lambda ;|\lambda| \leqq 1 / 2\}$, then we have $\overline{W(S \otimes T)}$平 $\operatorname{co}(\sigma(S \otimes T))$ where $S=X \oplus Y$ and $T=S^{*}$, while $\overline{W(S)}=\operatorname{co}(\sigma(S))=\{\lambda:|\lambda| \leqq 1 / 2\}$ and $\bar{W}(T)=\operatorname{co}(\sigma(T))=\{\lambda:|\lambda| \leqq 1 / 2\}$.

References

[1] A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc., 17(1966), 162-166.
[2] T. Saitô and T. Yoshino, On a conjecture of Berberian, Tôhoku Math. Journ., 17 (1965), 147-149.

The Collge of General Education Tôhoku University, Sendai, Japan.

