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1. Introduction. In [6], Stampfli proved that if T is a hyponormal
operator (i.e. T*T ^ TT*) and if the spectrum of T lies on a rectifiable
smooth Jordan curve and does not separate the plane, then T is normal, by-
using the localization technique of Dunford.

The purpose of this note is to extend this result as follows by constructing
the resolution of the identity directly:

If T is hyponormal and if the spectrum of T lies on a Jordan curve
which consist? of a finite number of rectifiable smooth arcs (it may well be
the case that the spectrum seperates the plane), then T is normal.

It is known that a hyponormal operator satisfies a certain growth condition
on the resolvent (as Def. 1). This growth condition guarantees the single-
valued maximal analytic continuations of resolvents under some spectral
conditions. Then, in section 3, extending the method of J. Schwartz [4], we
shall show the existence of proper invariant subspaces. Next, in section 4,
we shall prove that for a hyponormal operator, these subspaces are reducing
subspaces, in particular, spectral subspaces. By piecing these subspacas together
to form a resolution of the identity, we conclude our theorem.

2. Some preliminaries. Throughout this note, an operator means a
bounded linear operator on a Hilbert space H. σ*(T), (τp(T), σ*c(T) and σ r(T)
denote the spectrum, the point spectrum, the continuous spectrum and the
residual spectrum of an operator T, respectively.

DEFINITION 1. An operator T on H satisfies the condition (A) if for
each zzp(T), WiT-ziy'W ^ {d(z,σ(T))}~1 where p(T) denotes the resolvent
set of T and d(z, σ(T)) denotes the distance between z and the spectrum σ (T).

DEFINITION 2. An operator T on H satisfies the condition (B) if its
spectrum σ(T) lies on a Jordan curve C which consists of a finite number of
rectifiable smooth arcs (it may well be the case that the spectrum separates
the plane).
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By the statement that 7 is a smooth arc, we shall understand that 7 has
a parametrization ζ = g(s), 0 ^ 5 ^ /(γ), in terms of arc length 5, and that
g(s), g'(s) and g"(s) are continuous.

For convenience' sake, throughout this note, we assume that the curve
C defined as above is positively oriented and, for arbitrary fixed ζ0 on C, C
has a parametrization ξ — g(s)9 0 :g s ĝ /(C), in terms of arc length s from
ζo, gφ) = ξ0, g(s) = g(s + l(C)), and g(s) is continuous on C and g\s), g"(s) are
continuous except the points ξk = g(sk), sk < sk+1, k — 1, 2, , n on C. It is
clear that the existence of the one-sided limits g'+(sk)9 g'-(sk), g'l(sk) and g'l(sk\
k = l,2, ,n by the definition of C (each arc is smooth).

DEFINITION 3. For a bounded closed subset Y of the plane, a point
p € Y is semi-bare if there is a circle through >̂ such that no points of Y lie
inside this circle.

LEMMA 1. Each point on the curve C defined as above is a semi-bare
point.

PROOF. By the smoothness of each arc, for each ζ e C, there is the
tangent of C at ζ (of course, for the case ζ = ζk, we consider the one-sided
limits). And hence, by the simpleness of the curve C, there is a circle
tangent to C at ξ such that no points of C lie inside this circle. This
completes the proof.

THEOREM 1. If an operator T on H satisfies tlie conditions (A) and
(B), then σr(T) = φ and σr(T*) = φ, and it can be expressed uniquely as a
direct sum T=T1($T2 defined on a product space H = Hι@H2 where H1 is
spanned by all the proper vectors of T such that:

(a) TΊ is normal and σ(T1)= the closure of <rp(TΊ)
(b) σ(T2)=σc(T2)
(c) T is normal if and only if T 2 is normal.

PROOF. If ζ € <rr(T), then by Lemma 1, there exists a ξ0 £ p(T) such that
d(ξQ,σ(T))= | ? - f o | , and so, by the condition (A), we have | | ( T - ?0/)"ΊI
"Hf-fol"" 1 . On the other hand, ζ £ σ r(T) implies ξ € σp(T*), then f-f0

zσv(T*-ζJ) and (f-fo)" 1 £ ̂ ( ( T * - ^ / ) - 1 ) hence, (f-fo)"1 ^ σ ^ T - f o / ) " 1 )
Uσ r((T-£0/)-*)• However by [3: Theorem 4 (i)], ^((T-fo/)- 1) Π [z: \z\
= | | (T-? 0 /)"ΊI} =Φ Therefore (ξ-ζoY1 * ^ ( ( T - fo/)"1). This implies
£ <Ξ σp(T). This is a contradiction, i.e. σv(T) = φ. σ*r(T^) = φ may be proved
in just the same way.

Next, let Tx = ζx, xφQ, then by Lemma 1 and by the condition (A),
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there exists a ζozp(T) such that | | (T-? 0 /)"ΊI = If-^ol; 1 and (T-ζjγιx
= (ζ-ξoY'x; hence by [3 : Theorem 3], we have (T*-ξoiy

ix = (ξ-ξoY1^
i.e. T*x=ζx. This means the proper subspaca %lς(T) of T belonging to ζ
(i.e. 9ΐf(jΓ)={:z:: Tx=^ξx}) is a reducing subspace of H". And also this implies
that each proper subspaces of T blonging to distinct proper values are mutually
orthogonal because let Txx = ζλxu Tx2 = ζ2x2, X\ Φ®, x2 Φ 0, ξ1 Φ ζ2y then
ζλ{xu x2) = (ζλxl9 x2) = (T^j, x2) - (xl9 T*x2) = (xl9 ξ2x2) = f^, x2) and hence
(xl9 x2) = 0.

Let Hλ be the direct sum © 9WT) of all the proper subspaces of T
C€σp(Γ)

belonging to the point spectrum, then Hλ is a reducing subspace of H, and
clearly, the restriction Tλ of T on Hx is normal. Hence σp(T) — crv(Tx) and
σ r(T0 is empty.

Consider any complex number ξ which is not in the colsure of σp{Tλ).
Let d > 0 be such that \ξ—z\^d for all z € the closure of σJίTΊ). Then, for

any xeHl9 W^-ξl)x\\>= K^-ξl) φ ^ | | « = | | φ (T^ξl)xλ\\2= E tl>- —Π a

(T) λ ( ϊ )

Λ:λ||
2 = J 2 | | φ ΛλH

2 = <i2. | |^| |2. Therefore the bounded inverse

of (TΊ — ξl) exists for every such ξ. i.e. f€/>(Tx). This means σ(Ti) C the
closure of σ

Next o-r(T) = φ and σr(T*)=φ imply σp(T) =~^JT*). And this means
o'p(T2)=φ and σr(T8) = φ, because σp(T2)<Zσp(T) and σp(T*2)Cσp(T*). Therefore

The last assertion of this theorem is clear by the above discussion.

REMARK. In [1], C. H. Meng proved the same result as Theorem 1 under
the following conditions instead of the conditions (A) and (B)

(1) the closure of the numerical range of T is exactly convex hull Σ(T)
of the spectrum of T.

(2) the spectrum of T lies on a convex curve.
It is known that the condition (1) is equivalent to \\(Ί-ζiyι\\ ^ [d(ξ,

Σ(T))}-1 for all ζ$Σ(T) where Σ(T) denotes the convex hull of σ(T) (see [2]).
It is easy to see that by the condition (2), each ζ e σ(T) is a semi-bare point.
Therefore we can prove thit result by the same method as in Theorem 1.

LEMMA 2. Let C be as Lemma 1. Then for each pairs of the points
ξa = g(sa)9 Sj <sa< sj+1, ξβ = g(sβ), sk<sβ< sk+ι, sa <sβ on C and any
sufficiently small positive number 8, we have a closed simple connected
domain D(sa, sβ) containing the subarc (g(sa\ g(sβ)) of C in its interior such
that:

(a) dD(sa, sβ) (boundary of D(sa, sβ)) is a rectίfiable Jordan curve which
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intersects with C at ζa and ζβ only.
(b) for each ζ z 3D(sa, sβ) Π {ξ: \ζ-g(sa)\<S/A},d(ξ9C)=\ξ-g(sa)\ and

also for each ζ <= 3D(sa, sβ) Π {ζ: \ζ-g{sβ)\<8/A}, d(ζ, Q = \ζ-g(sβ)\.
(c) max d(ξ, arc [g(sa\ g(sβ)]) < £.

ζ^dD(S(χ,Sβ)

PROOF. The smoothness guarantees the existence of g(s) at sa and
sβ9 a n d t h a t for each smooth a.rc[g(sk), g(sk+1)]9 k = l,2, ,n9 t h e m i n i m u m

ρk of the radii of curvature is non-zero hence p0 = min ρfc is non-zero.

Let dx = d(g(sa)9C—arc[g(sj)9g(sJ+1)])9 and d2 = d(g(sβ)9C—axc[g(sk)9g(sk+1)])
and let 8 be so small that S < min(po> d1/29 d2/2). Then we can construct the
simple closed rectifiable curve indicated in the following figure (*) which
contains the segments g(sα) dt i s g'(sα)9 0 ^ 5 ^ θ/2 and ^(5^) dzi s g\sβ)9

0 ^ s ^ 8/2 as its subarcs and which for each ξ on this curve, max d(ξ9

ζ € ίΛis cvrve

arc [flf(5«), ^(5^)]) < S.
Let Z)(5α, 5̂3) be the domain surrounded by this curve.

THEOREM 2. Let T be an operator on H which satisfies the conditions
(A) and (B). If for each xz H and D(sa9 sβ) being given in Lemma 2, we
define the vector-valued function fx(ξ) on dD(sa, sβ) as follows

if ζ ^ 9(Sa) and ζ Φ g{sβ) ,

0, ifζ= g(sa) or ζ = g(sβ) ,

then fx(ξ) is strongly continuous on dD(sa, sβ).

PROOF. Clearly we have only to show the continuity at g(sa) and g(sβ).
But this is also clear by the condition (A) and by Lemma 2 (b).

3. Existence of invariant subspaces. For fixed xzH, (T—ζiyιx is
an analytic vector-valued function on p(T). In this section we consider the
analytic continuation of (T—ξI)~1x defined as follows;
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DEFINITION 4. A vector-valued function x(ζ) is an analytic continuation
of (T—ζI)~ιx if x(ζ) is denned on an open set D{x) containing p(T), analytic
on D(x) and x(ξ)=(T-ξiyιx whenever ζzρ(T).

LEMMA 3. Let T be an operator which satisfies the condition (B) and
let σ(Γ) = σc(T). Then for fixed xzH, (T-ζiyιx has the single-valued
maximal analytic continuation xe{ζ) on De(x) if it has an analytic con-
tinuation, and then xe{ζ) = (T—ζI)~ιx for all ζ € De(x).

Since, in this case, σ(T*) = σc(T*)9 (T*-ξI)~ιx has also the single-valued
maximal analytic continuation if it has an analytic continuation.

PROOF. Let x(ζ) be an analytic continuation of (T—ζI)~ιx on D(x).
By the condition (B), for each ζ € D{x), we can choose a sequence {ξa},
ξa <= p(T) such that ξa -> ζ. Then we have ( T - ζj) x(ζa) = x for all ζa by the
definition 4. Hence, \\x - (T-ζI)x{ζ)\\ = | |(Γ - £«/)*(£«) - (T - ζl) x{ζ)\\
^ \\{T-ζJ)\\ \\x{ζa) - x{ζ)\\ + \\(T-ζaI) - (T-ζI)\\ \\x(ζ)\\ = \\T-ξJ\\ \\x(ξa)
-x(ξ)\\ + | f e - f | . | | ^ f ) | | - > o as ? β ->f for each ?€£>(*). Because f€σ(T)
= σc(T), (T-?/) is one to one and ^(ξ ) - ( T - f / ) - 1 ^ for all ζ € Z>(;c) (1).

Next, let xx(ζ) and x2(ζ) be two analytic continuations of (T—ξI)~1x on
Z)(^i) and D(x2) respectively, then for each ζ eD^x^fλDlx^), {T—ζI){xλ{ζ)
-x2(ζ)) = (T-ζI)x1(ζ)-(T-ξI)x2(ζ) = x-x = 0 by (1). On the other
hand, ξ ξ σp(T). Hence, xλ{ζ) = x2(ζ) on D^nD^x,) (2).

We consider the family {xJX) <% £ N] of all the analytic continuations

xJX) of (T—ξiy1 x on D(xa), respectively. And we define xj£) = xJ£) if

ξ £ D(xa), then xe(ξ) is analytic on DJίx) = \^J D(xa)', hence xe(ξ) is clearly
as!?

the maximal analytic continuation of (T—ζI)~ιx. And by (2), xj£) is single-
valued. By (1), xe(ξ) = (T-ξI)-1x for all ζzDe(x).

DEFINITION5. R(ζ:T,x), p(T:x) and σ(T:x) denote the maximal
single-valued analytic continuation of (T—ζI)~ιx, the set {ξ:R(ξ:T,x) is
analytic at ξ} and its complenent, respectively.

LEMMA 4. Let T be an opei~ator which satisfies the condition (B) and
let o(T) = σc(T). // σ(T:x)no(T*:y) = 0 (the bar indicates the complex
conjugate), then (x,y) = 0.

PROOF. By Lemma 3, R(ξ :T,x) = (T- ζl)~ι x on p(T: x) and R(ξ : T*, Λ:)
= ( T ^ - f / ) " 1 ^ on p(T*:x).

Let / ( ^ = ((Γ - ζl)-ιx,y) = fe (7^ - f/)-1^) - (ΪT*-ξI)-'y, x) , then
is analytic at ξ$σ(T:x) and also at ξ ^ σ(T r r: y). And hence/(ξ*) is
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analytic everywhere. On the other hand, it is known that \\(T—ζI)~1\\

^ {d(ζ,W(T))}-1 whenever ξ KWXT), where W\T) denotes the closure of the
numerical range of T (i.e. W(T) = {(Tx, x): xz H, \\x\\ = 1} see [8]), and
hence f(ξ) vanishes at infinity. Therefore f(ξ) must be identically zero.

oo

However f(ξ) = ]Γ — (Tnx,y)ξ~{n+1\ hence all coefficients of ζn must be zero,

in particular (x, y) = 0.

Using the same method as in [4], we have the following two therems.

THEOREM 3. Suppose T be an operator which satisfies the conditions
(A) and (B), and suppose σ(T) = orc(T). For each pair of the points
ξa = g(sa), ζβ=g(sβ) sa < sβ on C, let

H(sa9 sβ) = {xzH\ σ(T: x) c arc (g(sa), g(sβ)]} , and let

H*(sa, sβ) - [x € H: σ(T* : Λ) C arc (g(sa), g(sβ)]} .

Then H(say sβ) and H*(sa, sβ) are closed linear subs paces of H, invariant
under T and T* respectively, moreover, H(sa,sβ) and H*(sβ,sa + l(C)), and
also H*(sa,sβ) and H(sβ,sa-\-l(C)) are mutually orthogonal.

PROOF. Because both of the invariantness under T and the linearity of
H(sa, Sβ) are clear, we have only to prove the closedness of H(sa, sβ).

Let xn —> x, xn£ H(sa, sβ) and let R(ζ : T, xn) be the maximal single-valued
analytic continuation of (T— ζl)~ι xn, then

R(ξ: T, xn) = (T-ζI)-*xn -> (T-ζl)->x for all ζ e P(T).

For any sufficiently small positive number £', let D(sβ + 8', sa + l(C) 4- £')
be a closed simple connected domain containing the subarc (g(sβ + 8),
<7(sα + Z(C)+θ')) of C as given in Lemma 2. Then i?(f: T,xn) are analytic in
Int (ZX*/, + £', 5α + Z(C) + £'))

Next we define the vector-valued function gn(ζ) on D(sβ + 8\ 5α

as follows

: T, xn)

if ξ^g(sβ+€') and ξ"^^(5α + l(C) + f )

0 ifξ=g(sβ+ε) or C=^(5β + l(C) + £')
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Then gn(ξ) are analytic in lnt(D(sβ+8 ,sa 4- l(C)+€')) and strongly continuous
on dD(sβ+£9 sa + l(C)+8') by Theorem 2. By the maximum modulus principle,
{gn(ζ)} is a uniform Cauchy sequence with respect to ζ hence its limit
function go(ξ) is analytic in Int(P(sβ+e', sa + l(C)+£')) and (f-f l faa+O)" 2 '
(ζ-g(sa + l(C)+8'))-2gQ(ζ) is also analytic in lnt(D{sβ+8',sa+l(C)+8')). Clearly
this is an analytic continuation of (T—ζiyλx onto the arc(g(sβ+8'), g(sa-\-l(C)
+ £')), i.e. σ(T:#) c arc [#($«+ £'),#($£ + £')]. Because we can choose 8"
arbitrarily small, we have σ(T: x) C arc(#(5α), g(sβ)] hence :r € H(sa, sβ).

The closedness of H*(sa, sβ) may be proved in just the same way, and the
last statement is a consequence of Lemma 4.

THEOREM 4. Suppose T be an operator which satisfies the conditions
(A) and (B) and suppose σ(T) = σc(T). L<?£ H(5β, sβ), H(sβ, sa + l(Q) and
D(sβ+8',sa + /(C) + £') fe α5 5αm^ as in Theorem 3, αn<i for arbitrary fixed
x € ίf, define as

ϊ-gv« +

if ζζdD(sβ+S',.

0, ίfζ=g(sβ+ε') or ζ=g{sa+l{C)+ε').

Then, if b(z) is any numerical-valued function, analytic in the interior of
the unit disk and continuous on its boundary Γ and if r is the conformal
mapping from D(sβ+8', sa + l(C)+8') to the unit disk (the simple connectedness
of D(sβ+S ,sa + l(C)+£) guarantees the existence of this mapping), the contour
integral

y= ϊb(z)x(τ-\z))dz (1)
JΓ

belongs to the space H(sβ,sa + l(C)). Moreover, unless x belongs to the space
H(sa, sβ\ there exists a numerical-valued function b(z) analytic in the interior
of the unit disk and continuous on Γ such that the vector y defined by (1)
is different from zero.

PROOF. By Theorem 2 and by the definition of the conformal mapping,
x(τ~ι(z)) is continuous on Γ. And by the resolvent equation, for any

Then, by Cauchy's theorem,
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(T—μI)ιy= I u\ dz
JΓ r-\z)-μ

_ f b(z)(r-Kz)-g(sβ+ε')γ(r-Kz)-g(sa+l(Q+ε')y(T-μI)-ιx d

J r-\z)-μ
f
JΓ

= ί
JΓ

( 2 )

Since the final expression of (2) is plainly analytic in Ext(Z)(5/3+£/, sα + Z(C)+£')),

it follows at once σ(T: y) C arc[g(sβ+£')> g(sa + l(C)+£')]. Because £' is arbitrary,

σ(T: 3;) C aic(g(sβ), g(sα + /(C))]. i.e. ye H(sβ, sα + Z(Q).

Next, we assume that the vector y defined by (1) is zero for each b(z)

which is analytic in the interior of the unit disk and continuous on its

boundary Γ. Then,

b(z)x(j-\z)) dz = 0 for all such b(z) .

Hence the vector-valued function ^ ( T " 1 ^ ) ) defined on Γ must be the boundary

value of a vector-valued function analytic in the interior of the unit disk and

continuous on Γ. Therefore x(ξ) must be continuable in Int(P(sβ-t-G'9sα + l(C)

+ £')). And hence (T—ζI)~1x must be continuable onto the a.rc(g(sβ+£'),

g(sα + l(C) + £'))• Since £' is arbitrary small, σ(T: x) C a.rc(g(sα), g(sβ)]. i.e.

x z H(sα, sβ).

As a consequence of above two theorem we have

THEOREM 5. If an operator T on H with σ(T) = σc(T) satisfies the

conditions (A) and (B), then there exist non-trivial closed linear subspaces

which are invariant under T.

PROOF. By Theorem 3, we have only to prove that H(sa,sβ) and

H(ββ, sa-\-l(C)) are non-trivial. We may assume σ(T) lies on both arcs (g(sα),

g(sβ)] and (g(sβ), g(sα-\-l(Cj)\ because we can choose the pairs of points ζα = g(sα)

and ζβ=g(sβ) arbitrary on C. This implies that H(sα,sβ)φH and H(sβ,sα-

ΦH.

Thus it only remains for us to prove that H(sα,sβ)Φ(0) and H(sβ,sα-

Φ(0). By Theorem 4, H(sα,sβ)ΦH and H(sβ,sα + l(C))ΦH imply that H(sβ,

and H(sα> sβ)Φ(O) respectively.

4. Main results. In this section, we shall treat with the hyponormal
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operators only. It is known that a hyponormal operator satisfies the condition
(A) (see [8: Theorem 1] and [6]).

The following two lemmas were proved by Stampfli in [7].

LEMMA 5. Let T be hyponormal and let z0 z σc(T). If xz Domaίn((T
-zj)-1) then xzDomain({T*-zjyι) and \\(T*-zjyι x\\^\\(T-zjyι x\\.

PROOF. We may assume, without loss of generality, that z0 = 0. Let
^^DomainCT"1), then \\T*T~λx\\ ̂  \\TT~ιx\\ = \\x\\. Thus T*T~ι m a y b e
extended to a bound linear operator on II. Let xux2 € Domam^T"1) and set
T-'x^y, for £=1,2. Then L(x2) = (T*-1 x» x2) = (xu T-ιx2) = (Tyx, T-ιx2)
= (yl9 T*T~ιx2) so \L(x2)\ ^ ĤViII * 11*2II. Hence L(x2) is a bounded linear
functional on Domain^" 1) and can be extended to all of H. By the Riesz's
representation theorem, there exists a vector w on H such that L(x2) = (w, x2)
i.e. w=T*-1xίzH.

Now, \(T^xux2)\ ^ ll̂ ll . Ĥ ll = liT-^J . ||^2|| thus, IIT^JrgllT-^J
which completes the proof.

LEMMA 6. If an operator T on H with σ(T) = σc(T) is hyponormal and
satisfies the condition (B), then for each ξe p(T: x), (T*—ζ I)~ιx exists and
is weakly continuous on p(T: x) for fixed xe H.

PROOF. By Lemma 5, x e Domain((T*-f 7)"1). Thus (T^-ξiy'x is
well-defined for ζ € p(T: x). Let ξ0 <Ξ p(T: x) and let R(ζ : T, x) be the maximal
single-valued analytic continuation of (T— ζl)~ι x. Then R(ζ:T,x) is analytic
in J={z: \z — ζ$\<ty and continuous strongly on J — {z: \z — ξo\ fg δ] for
some δ > 0 and hence bounded on J by the maximum modulus principle.
Therefore \\{T-ζiyιx\\^M for all ζej and for some M> 0. By Lemma 5, we
have \\(T*-ξl)-ιx\\ ^ M for all ξs J and hence, \\(T*-ξI)-ιx-(T*-ξjyιx\\
^ 2M for all ζz J. Given yzH choose vzH such that \\y-(T-ξ0I)v\\ < 8
which is possible since Range((T— ζol)) is dense in H. Then for each ζz J,
we have,

' - (Γ»-f07)- } x,y)\

^2M.\\y-(T-ζJ)v\\ + \({(T*-ξl)-*-(T*-ξJ)-1}x,(T-ζJ)v)\

^2M ε+\ξ-ξo\ \{{T*-ξJ)-\T*-ξI)->x,{T-ζJ)v)\

^2M €+\ζ-ξo\ \\(T*-ξI)-'x\\ \\v\\

+\ζ-ξo\ 'M \\v\\

for I ξ- ξ01 sufficiently small.
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By this and by the Painleve's theorem, we have the following theorem.

THEOREM 6. If a hyponormal operator T with σ(T) = σc(T) satisfies

the condition (B), then σ(T: x)Ώσ(T*: x).

PROOF. (T*—Έl)~λx is analytic for z e p(T) and continuous weakly for
zzp(T:x) by Lemma 6. Hence by the Painleve's theorem, (T*—Έl)~ιx may
be continuable analytically across the subarc of C, which implies that p(T*: x)

x) i.e. σ(T: x)Z)σ(T*: x).

This proof is similar to one by Stampfli in [7].

THEOREM 7. If T is a hyponormal operator with σ(T) = σc(T) and
satisfies the condition (B), then for H(sa,sβ) and H(sβ, sa-\-l(C)) being given
in Theorem 3,

H = ff(5β, sβ) Θ H(sβ9 sa

and H(sa, sβ), H(sβ, sa 4- l(C)) reduce T.

PROOF. By Theorem 6, H(sa,sβ)cH*(sa9sβ) and H(sβ, sa + 1{C)) c H^fe,
5« + Z(C)); and by Theorem 3, we have H(5α, 5̂ ) J_ i ί ^ , 5« + Z(C)) and
H(sβ,sa + l(C))A-H*(sa,sβ), in particular, H(sa,sβ)_l_H(sβ,sa + l(C)). And this
implies that

Ή(5α, sβ)cHQ H*(sβ, sa

and

Hfe, 5α + Z(O) c HQ H*(sa9 sβ).

Conversely, suppose for any fixed non-zero vector

xzHQ H*(sβ9sa+l(C)\ σ(T: x)Π

Since HQH*(sβ9sa + l(C)) is invariant under T, T\(H Q H*(sβy sa + l(C))) is
hyponormal (see [5]). Hence, by Theorem 3, we have

{xeHQ H*(sβ9sa + l(Cj): σ(T\(HQ H*(sβ9sa + l(C))): x)

c sxc(gisβ)9g(sa + l(C))]} ^ (0)

because σ(T\(HQ H*(sβ, sa + l(C))))nzrc(g(sβ)9 g(sa+l(C))]Φ0 by the hypothesis.



96 T. YOSHINO

Therefore there exists a non-zero vector xoz HQ H*(sβ,sa + l(C)) such that
σ(T:xo)G3ic(g(sβ),g(sa + l(C))]. This implies that xosH(sβ9sa + l(C))(zH*(sβ9

sa + l(C)). This is a contradiction. Therefore

H θ H*(sβ, sa + Z(Q) c H(sa, sβ)

and also

H 3 H*(s*, sβ) c H(sβ9 sa + Z(Q). ( 2)

By (1) and (2), we have HQ H*(sβ9sa + l(C)) = H(sa9sβ) and HQH*(sa9sβ)
= H(sβ9sa + l(C)); hence,

H = H(sa9 sβ) 0 H ^ , 5e + /(Q) θ (H*(sβ9 sa+l(C)) θ ^(5,, 5β

= H(5β, 5̂ ) θ AΓfe, 5β + /(C)) θ (H*(5Λ, 5/,) © H(SΛ9 Sβ))

and

H θ (H(sa9 sβ) θ JF/(5^ sa+/(Q))

= (H^fe,5β+/(O) θ Hfo, 5β+/(O))n(£Z*(5«,

c ^ ( 5 ^ , 5 β +/(θ) n fl*(s«, 5,) = (0).

Therefore H= H(sa9 sβ) (& H(sβ9sa + l(C)). It is clear that H(sa, sβ) and H(sβ9

sa + l(C)) reduce T by Theorem 3.

It is known that a hyponormal operator is normaloid (i.e. ||T|| = max{|λ|:
λ ^ σ(T)} see [5]). Therefore we have the following theorem.

THEOREM 8. If an operator T on H with σ(T) = σc(T) ί5 hyponormal
and satisfies the condition (B), ίΛe i T w normal.

PROOF. Let Δ : 0 = sλ < s2 < <sk+1 = l(C) be any partition of l(Q
such that max(5j+1-Sj) ^ 2 l(C)/k, and let /̂  = aic(g(Sj), g(sj+1)], then we can

construct, by Theorem 3, Hj = {xe H: σ(T: x)dlj} and by Theorem 7, we
have H= @H5 where each Hs reduces T and σ{T\H3)αIό. Clearly, Γ | H ,

is also hyponormal and hence for any x = @Xj € H, x} ^ Hj and for any

Xj € / , we have

\\Tx-
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{

2/k2 \\x\\2->0 as

And also we have \\T*x - φ λ ^ J ->0. Therefore,
j

\\\Tx\\ - \\T*x\\\ ^ \\\Tx\\ - II Θ

^ \\Tx- Θ λ Λ || + \\T*x- ®XόxA ->0. i.e. ||T*|| = \\T*x\\ .

By Theorem 1 and Theorem 8, we have the following theorem.

THEOREM 9. If a hyponormal operator T satisfies the condition (B),
then T is normal.
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