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1. Introduction. Let M be an n-dimensional compact differentiable
manifold immersed in the Euclidean space Rn+lc. Let B be the set of unit
normal vectors of M. Then £ is a bundle of (k — l)-sphere over M and is
a manifold of dimension n + k — 1. Let S be the unit {n + k — l)-sphere about

the origin of Rn+k. Let dσ be the volume element of S and cn+k_1 — I dσ
Js

the volume of S. If we denote by v the canonical map B —> S, then the
total curvature of the immersed manifold M is defined by (cf. Chern and
Lashof [3])

Since the total curvature defined above depends not only on M but on the
immersion φ: M->Rn+k, we shall denote it by τ(M,φ,Rn+k) or simply by

Let F be the set of functions f on M whose critical points are all non-
degenerate. The number of the critical points of index ί of fzF will be
denoted by βt(M,f). We set

= min β(M,f)

Since βt(M, f) = βn.iM, ~ f), we have

*) Supported partially by NSF GP-3982.
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βlM) = βn-i{M) .

Evidently we have also

For an arbitrarily fixed coefficient field, let 6t(M) be the ί-th Betti number
of M. Then the Morse inequalities state

Chern-Lashof [4] proved the inequality

Kuiper [8] obtained a stronger inequality:

Thus

•KM, φ, Rn+k) ^ β(M) ^
ί=0

He also proved that if M is fixed, then for variable immersion (p:M-+Rn+k

and variable k:

,φ,Rn+k) = β(M).

An immersion φ : M —* i?w+fc is said to be minimal if τ(̂ >) = β(M). Given
a compact manifold Λf, in general there does not exist a minimal immersion
of M. Kuiper pointed out that an exotic sphere cannot be minimally immersed.
In fact, if M is an exotic sphere, it admits a function with two isolated
singularities (one maximum and one minimum) and hence β(Άd)=2. On the
other hand, by a theorem of Chern-Lashof [3] an immersed compact manifold
M with τ(M,<p,Rn+k) = 2 is a convex hypersurface in some Rn+ι C Rn+/C

y

which implies that M is diffeomorphic with a usual sphere. It is an
interesting but difficult problem to decide which manifolds can be minimally
immersed, since it involves not only topological but differentiable structures
of manifolds. Kuiper [9] proved that every orientable closed surface and also
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every non-orientable closed surface with Eular number ^ — 2 can be minimally
immersed in i?3 and that the real projective plane and the Klein bottle can
not be minimally immersed in R3. In a earlier paper (Kuiper [8]) he exhibited
a minimal immersion of the real projective plane in i? 4 . x )

The purpose of this paper is to prove

THEOREM 1. Every compact homogeneous Kaehler manifold can be
minimally imbedded into a Euclidean space.

We can also estimate the dimension of the receiving Euclidean space.
Every compact homogeneous Kaehler manifold M can be written as a coset
space G/H of a compact Lie group G, (see references given in § 2). Let S be
the semi-simple part of G and C the center of G. Then M can be minimally

imbedded into a Euclidean space of dimension dim S + dim C.
LJ

For further comments on the imbedding we construct, see the last section.

2. Reduction to the simply connected case. Let M and M' be compact
manifolds and φ : M —» R* and φ : M —> RN' be immersions with total
curvature τ(M,φ,RN) and τ(M\φ\RN'). Then the total curvature τ(AfxM',
<pX<p',RN+N') is given by

τ(Mx M',φXφ, RN+N') = τ(M, φ, RN) τ{M\ φ , R*')

see Kuiper [8] for the proof.
From the definition of β(M) and β(M')9 it is clear that

β(M)β(M') ^ β(MxM') ^
k

Hence if β(M) = ΣHM) and β(M) = Σbό(M'), then
i 3

β(M)β{M) =

We may now conclude

1) For the total curvature of immersed manifolds, see also an excellent exposition by
D. Ferus, Die absolute Totalkriimmung Riemannscher Immersionen, Diplomarbeiten,
Bonn 1966.
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LEMMA 1. Let M and M' be compact manifolds minimally immersed

in RN and RN' respectively. If β(M) = Σ &t(M) and β(M) = Σ bs(M'\

then MxM' is minimally immersed in RN+N' in a natural manner.

Since a torus T is a product of circles, we have

LEMMA 2. For a torus T, we have the equality β(T) — Σ bt(T).
i

The following is due to Frankel [5].

LEMMA 3. Let M be a compact Kaehler manifold with bx(M) = 0. If

it admits a Killing vector field X with isolated zeros, then β(M) =

Since we need the proof in the next section, we shall describe it briefly.
Let ξ be the 1-form corresponding to X under the duality defined by the
metric. Let J be the complex structure of M. Then Jξ is a closed 1-form
and hence Jξ = df for some function f Clearly the critical points of f
coincide with the zeros of X. Frankel shows that the isolated critical points
of f are all non-degenerate and of even index, i.e.,

= 0 for all odd i.

From the Morse relations it follows that

blM) = β£M,f) for all i,

which implies Lemma 3.

LEMMA 4. A torus T of dimension r can be minimally imbedded into
3 S

RN where N= —^-r if r is even and N = (r—1) + 2 if r is odd.

If r is even, we write T as a product of 2-dimensional tori. If r is odd,
we write T as a product of 2-dimensional tori and a circle. A 2-dimensional
torus can be minimally imbedded into Rz (in an ordinary doughnut shaped
form) and a circle can be minimally imbedded into R2 in a usual manner.
Lemma 4 follows from Lemmas 1 and 2.

The following main lemma will be proved in the next section.

LEMMA 5. Let M—G/H be a simply connected homogeneous Kaehler
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manifold with G compact. Then β(M) — ]Γ bt(M) and M can be minimally
ί

imbedded into RN where N=dimG.

The following lemma is due to Borel-Remmert [2],

LEMMA 6. A compact homogeneous Kaehler manifold is a direct
product of a complex torus and a compact simply connected homogeneous
Kaehler manifold and can be written as a coset space G/H of a compact
Lie group G.

The following lemma is due to Matsushima [12].

LEMMA 7. Let M= G/H be a homogeneous Kaehler manifold with G
compact. Then G = SxC where S is semi-simple and C is the center of G.
Moreover S contains H so that G/H = (S/H) x C is the decomposition
described in Lemma 6, i.e., S/H is a simply connected homogeneous Kaehler
manifold and C is a complex torus.

It is now clear that the proof of Theorem is reduced to that of the main
lemma (lemma δ).

3. Proof of Lemma 5. Let M—G/H be a simply connected homogeneous
Kaehler manifold on which a compact Lie group G acts effectively. Let 9
denote the Lie algebra of G whose elements are considered as Killing vector
fields on M. Let g* denote the space of 1-forms corresponding to the Killing
vector fields XzQ under the duality defined by the metric. Let Δ = dS 4- hd
denote the Laplacian. We define a space E of functions on M by

E=

Let E* be the dual space of E and φ: M—>E* the evaluation map, i.e.,

<φ(x),f> = f{x) for x € M and fz E.

We shall show that φ gives a minimal imbedding of M into E*.
A compact simply connected homogeneous Kaehler manifold M carries

an Einstein-Kaehler metric (cf. Borel [1] and Koszul [7]). If ξ is a 1-form
corresponding to a Killing vector field of M, then (cf. Yano and Bochner [14;
p. 33])
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Since Jξ is closed (cf. Matsushima [13; lemme 4]), we have

This shows that the mapping ξ € Q* _> ξjξ ζ £ i s a linear isomorphism and
that the critical points of the function f — ΰJξ coincide with the zeros of ξ.
From the proof of Lemma 3 described above, we have

LEMMA 8. Let f = hJξ e E be a function having only isolated points.
Then the critical points of f are all non-degenerate and of even index.
Hence

= B{M).
even i even i

Note that the last equality follows from the first two and from

Since G is transitive on M, it follows that the set

{{df)x / e E] = {{dZJξx ξ € g*} = {(J& ξ € g*}

coincides with the cotangent space of M at x. Hence the evaluation map
<p:M—>E* is an immersion.

The linear isomorphism ξ € g* —> δ Jξ € E induces the dual linear isomorphism
£*—>g. Let p be the representation of G on E* corresponding to the adjoint
representation of G on 9. It is easy to verify that the immersion φ is
equivariant with p in the sense that

p(s)(φ(x)) = φ(s(x)) fof s £ G and x £ M.

The group G acts on φ(M) in a natural manner seG sends φ(x) into
p(s)φ(x) = φ(s{x)). Let o £ M be the origin corresponding to the coset H of
G/H and let //* be the isotropy subgroup of G acting on φ(AI) at <p(o), i.e.,

H * = {s e G P(sXφ(o)) = <p(o)} = {seG; φ{s{o)) = φ(o)} .

Since φ:M-> E* is an equivariant immersion, it follows that φ : M —>φ(λΐ) is
a covering projection. In other words, the natural map G/H—>G/H* is a
covering projection.
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Following Lichnerowicz [11; p. 166] we shall show that H* = H thereby
proving that φ: M —* φ(M) is one-to-one. The group H* is the isotropy
subgroup of G at φ(ό) in the representation p. Under the identification
2 Ϊ * « 8 , H* is the isotropy subgroup of G at <p(p) in the adjoint representation,
i.e., the centralizer of the 1-parameter subgroup generated by φ(p) e 9. Since
G is compact, the closure of this 1-parameter subgroup in G is a torus and
H* is the centralizer of this torus in G. It follows that H* is connected
and hence H* = H.

Now the fact that the imbedding φ:M-+ E* is minimal follows from
Lemma 8 and from the following lemma of Kuiper [10].

LEMMA 9. In general let φ be an immersion of M into a vector space
E*. Consider each element f of the dual space E as a function f°φ.
Then the immersion φ is minimal if and only if

β(M,f) = β(M)

for every function fzE having only isolated non-degenerate critical points
on M.

4. Some comments on the minimal imbedding φ. Throughout this
section M — G/H will be a compact simply connected homogeneous Kaehler
manifold and G will be a compact semi-simple Lie group.

The minimal imbedding φ of M constructed in § 3 may be considered as
an imbedding of M into the Lie algebra 9 of G. The imbedding φ is then
equivariant with the adjoint representation of G.

There is no proper afnne subspace of E* which contains <p(M). Otherwise
there would be a nonzero function fzE which is constant on M. Since
f=$Jξ for some ξ € 8* and 0 = df — 2Jξ, f must vanish identically on M and
hence / is the zero element of E. This is absurd.

If 2m denotes the real dimension of M, then d i m £ * = dimG = d imM +
d i m i / ^ d i m M + dimί/(m) = 2m + m2, and the equality is attained when M
is the complex projective space.

For the complex projective space Pm(C) the minimal imbedding φ may be
described as follows. Let (z°, zι, , zm) be a homogeneous coordinate system
of Pm(Q with the condition z°z° + zιzι + + zmzm = 1. Let JR<OT+1>1 be a
Euclidean space with coordinate system (X\ Xhk, Yhk) where h, k = 0, , m
and h Φ k. Consider the imbedding Pm(C)-^ R<m+ιy defined by

Xh - ^Ύzhz\ Xhk = zhzk + zhz\ Yhk = i(zhzk - zhzk).

Then PJC) lies in the hyperplane of 2J<m+1>f defined by
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x° +. . + xm = V T .

It can be shown that the imbedding of Pm(C) into this hyperplane is the same
as φ. I found this imbedding in Hodge [6; p. 151].2)

Since P2m-1(C) can be written also as Sp(m)/Sp(m-ΐ)xU(l\ P2m_i(C)
can be minimally imbedded into RN where N = dim Sp(m) = m(2m +1).

ADDED IN PROOF. Generalizing the minimal imbedding of a complex
projective space described in §4, S. S. Tai has recently discovered minimal
imbeddings of real and quaternionic projective spaces.
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