Tôhoku Math. Journ. Vol. 19, No. 1, 1967

IMBEDDINGS OF HOMOGENEOUS SPACES WITH MINIMUM TOTAL CURVATURE

SHOSHICHI KOBAYASHI*)

(Received September 21, 1966)

1. Introduction. Let M be an n-dimensional compact differentiable manifold immersed in the Euclidean space R^{n+k} . Let B be the set of unit normal vectors of M. Then B is a bundle of (k-1)-sphere over M and is a manifold of dimension n+k-1. Let S be the unit (n+k-1)-sphere about the origin of R^{n+k} . Let $d\sigma$ be the volume element of S and $c_{n+k-1} = \int_{S} d\sigma$ the volume of S. If we denote by ν the canonical map $B \to S$, then the total curvature of the immersed manifold M is defined by (cf. Chern and Lashof [3])

$$\frac{1}{c_{n+k-1}}\int_{B}\nu^{*}(d\sigma)\,.$$

Since the total curvature defined above depends not only on M but on the immersion $\varphi: M \to R^{n+k}$, we shall denote it by $\tau(M, \varphi, R^{n+k})$ or simply by $\tau(\varphi)$.

Let F be the set of functions f on M whose critical points are all nondegenerate. The number of the critical points of index i of $f \in F$ will be denoted by $\beta_i(M, f)$. We set

$$\left\{egin{aligned} eta_i(M) &= \min_{f \in F} eta_i(M,f)\,, \ eta(M,f) &= \sum_{i=0}^n eta_i(M,f)\,, \ eta(M,f) &= \min_{f \in F} eta(M,f)\,. \end{aligned}
ight.$$

Since $\beta_i(M, f) = \beta_{n-i}(M, -f)$, we have

^{*)} Supported partially by NSF GP-3982.

$$\boldsymbol{\beta}_i(M) = \boldsymbol{\beta}_{n-i}(M) \, .$$

Evidently we have also

$$\boldsymbol{\beta}(M) \geq \sum_{i=0}^{n} \boldsymbol{\beta}_{i}(M).$$

For an arbitrarily fixed coefficient field, let $b_i(M)$ be the *i*-th Betti number of M. Then the Morse inequalities state

$$\boldsymbol{\beta}_i(M) \geq b_i(M)$$
.

Chern-Lashof [4] proved the inequality

$$au(M, arphi, R^{n+k}) \ge \sum_{i=0}^n b_i(M)$$
.

Kuiper [8] obtained a stronger inequality:

$$\tau(M,\varphi,R^{n+k}) \ge \beta(M)$$
.

Thus

$$au(M, arphi, R^{n+k}) \ge eta(M) \ge \sum_{i=0}^n eta_i(M) \ge \sum_{i=0}^n b_i(M)$$
 .

He also proved that if M is fixed, then for variable immersion $\varphi: M \to R^{n+k}$ and variable k:

$$\inf \tau(M,\varphi,R^{n+k}) = \beta(M).$$

An immersion $\varphi: M \to R^{n+k}$ is said to be minimal if $\tau(\varphi) = \beta(M)$. Given a compact manifold M, in general there does not exist a minimal immersion of M. Kuiper pointed out that an exotic sphere cannot be minimally immersed. In fact, if M is an exotic sphere, it admits a function with two isolated singularities (one maximum and one minimum) and hence $\beta(M)=2$. On the other hand, by a theorem of Chern-Lashof [3] an immersed compact manifold M with $\tau(M, \varphi, R^{n+k}) = 2$ is a convex hypersurface in some $R^{n+1} \subset R^{n+k}$, which implies that M is diffeomorphic with a usual sphere. It is an interesting but difficult problem to decide which manifolds can be minimally immersed, since it involves not only topological but differentiable structures of manifolds. Kuiper [9] proved that every orientable closed surface and also every non-orientable closed surface with Eular number ≤ -2 can be minimally immersed in R^3 and that the real projective plane and the Klein bottle can not be minimally immersed in R^3 . In a earlier paper (Kuiper [8]) he exhibited a minimal immersion of the real projective plane in R^4 .¹⁾

The purpose of this paper is to prove

THEOREM 1. Every compact homogeneous Kaehler manifold can be minimally imbedded into a Euclidean space.

We can also estimate the dimension of the receiving Euclidean space. Every compact homogeneous Kaehler manifold M can be written as a coset space G/H of a compact Lie group G, (see references given in §2). Let S be the semi-simple part of G and C the center of G. Then M can be minimally imbedded into a Euclidean space of dimension dim $S + \frac{3}{2}$ dim C.

For further comments on the imbedding we construct, see the last section.

2. Reduction to the simply connected case. Let M and M' be compact manifolds and $\varphi: M \to R^N$ and $\varphi': M' \to R^{N'}$ be immersions with total curvature $\tau(M, \varphi, R^N)$ and $\tau(M', \varphi', R^{N'})$. Then the total curvature $\tau(M \times M', \varphi \times \varphi', R^{N+N'})$ is given by

$$\tau(M \times M', \varphi \times \varphi, R^{N+N'}) = \tau(M, \varphi, R^N) \cdot \tau(M', \varphi', R^{N'});$$

see Kuiper [8] for the proof.

From the definition of $\beta(M)$ and $\beta(M')$, it is clear that

$$eta(M)eta(M') \ge eta(M imes M') \ge \sum_k b_k(M imes M')$$

= $\left(\sum_i b_i(M)\right)\left(\sum_j b_j(M')\right).$

Hence if $\beta(M) = \sum_{i} b_i(M)$ and $\beta(M') = \sum_{j} b_j(M')$, then

$$\beta(M)\beta(M')=\beta(M\times M').$$

We may now conclude

For the total curvature of immersed manifolds, see also an excellent exposition by D. Ferus, Die absolute Totalkrümmung Riemannscher Immersionen, Diplomarbeiten, Bonn 1966.

S. KOBAYASHI

LEMMA 1. Let M and M' be compact manifolds minimally immersed in \mathbb{R}^N and $\mathbb{R}^{N'}$ respectively. If $\beta(M) = \sum_i b_i(M)$ and $\beta(M') = \sum_j b_j(M')$, then $M \times M'$ is minimally immersed in $\mathbb{R}^{N+N'}$ in a natural manner.

Since a torus T is a product of circles, we have

LEMMA 2. For a torus T, we have the equality $\beta(T) = \sum_{i} b_i(T)$.

The following is due to Frankel [5].

LEMMA 3. Let M be a compact Kaehler manifold with $b_1(M) = 0$. If it admits a Killing vector field X with isolated zeros, then $\beta(M) = \sum_i b_i(M)$.

Since we need the proof in the next section, we shall describe it briefly. Let ξ be the 1-form corresponding to X under the duality defined by the metric. Let J be the complex structure of M. Then $J\xi$ is a closed 1-form and hence $J\xi = df$ for some function f. Clearly the critical points of f coincide with the zeros of X. Frankel shows that the isolated critical points of f are all non-degenerate and of even index, i.e.,

 $\beta_i(M, f) = 0$ for all odd *i*.

From the Morse relations it follows that

$$b_i(M) = \beta_i(M, f)$$
 for all i ,

which implies Lemma 3.

LEMMA 4. A torus T of dimension r can be minimally imbedded into R^{N} where $N = \frac{3}{2}r$ if r is even and $N = \frac{3}{2}(r-1)+2$ if r is odd.

If r is even, we write T as a product of 2-dimensional tori. If r is odd, we write T as a product of 2-dimensional tori and a circle. A 2-dimensional torus can be minimally imbedded into R^3 (in an ordinary doughnut shaped form) and a circle can be minimally imbedded into R^2 in a usual manner. Lemma 4 follows from Lemmas 1 and 2.

The following main lemma will be proved in the next section.

LEMMA 5. Let M=G/H be a simply connected homogeneous Kaehler

66

manifold with G compact. Then $\mathcal{B}(M) = \sum_{i} b_{i}(M)$ and M can be minimally imbedded into \mathbb{R}^{N} where $N = \dim G$.

The following lemma is due to Borel-Remmert [2].

LEMMA 6. A compact homogeneous Kaehler manifold is a direct product of a complex torus and a compact simply connected homogeneous Kaehler manifold and can be written as a coset space G/H of a compact Lie group G.

The following lemma is due to Matsushima [12].

LEMMA 7. Let M=G/H be a homogeneous Kaehler manifold with G compact. Then $G = S \times C$ where S is semi-simple and C is the center of G. Moreover S contains H so that $G/H = (S/H) \times C$ is the decomposition described in Lemma 6, i.e., S/H is a simply connected homogeneous Kaehler manifold and C is a complex torus.

It is now clear that the proof of Theorem is reduced to that of the main lemma (lemma 5).

3. Proof of Lemma 5. Let M=G/H be a simply connected homogeneous Kaehler manifold on which a compact Lie group G acts effectively. Let \mathfrak{g} denote the Lie algebra of G whose elements are considered as Killing vector fields on M. Let \mathfrak{g}^* denote the space of 1-forms corresponding to the Killing vector fields $X \in \mathfrak{g}$ under the duality defined by the metric. Let $\Delta = d\delta + \delta d$ denote the Laplacian. We define a space E of functions on M by

$$E = \{\delta(J\xi); \xi \in \mathfrak{g}^*\}.$$

Let E^* be the dual space of E and $\varphi: M \to E^*$ the evaluation map, i.e.,

$$\langle \varphi(x), f \rangle = f(x)$$
 for $x \in M$ and $f \in E$.

We shall show that φ gives a minimal imbedding of M into E^* .

A compact simply connected homogeneous Kaehler manifold M carries an Einstein-Kaehler metric (cf. Borel [1] and Koszul [7]). If ξ is a 1-form corresponding to a Killing vector field of M, then (cf. Yano and Bochner [14; p. 33])

$$\Delta(J\xi) = J\Delta(\xi) = 2J\xi \,.$$

S. KOBAYASHI

Since $J\xi$ is closed (cf. Matsushima [13; lemme 4]), we have

$$d\delta J\xi = 2J\xi$$
.

This shows that the mapping $\xi \in \mathfrak{g}^* \to \delta J \xi \in E$ is a linear isomorphism and that the critical points of the function $f = \delta J \xi$ coincide with the zeros of ξ . From the proof of Lemma 3 described above, we have

LEMMA 8. Let $f = \delta J \xi \in E$ be a function having only isolated points. Then the critical points of f are all non-degenerate and of even index. Hence

$$\mathcal{B}(M,f) = \sum_{\text{even } i} \mathcal{B}_i(M,f) = \sum_{\text{even } i} b_i(M) = \mathcal{B}(M).$$

Note that the last equality follows from the first two and from

$$\mathcal{B}(M,f) \ge \mathcal{B}(M) \ge \sum_i b_i(M)$$
.

Since G is transitive on M, it follows that the set

$$\{(df)_x ; f \in E\} = \{(d\delta J\xi_x ; \xi \in \mathfrak{g}^*\} = \{(J\xi)_x ; \xi \in \mathfrak{g}^*\}$$

coincides with the cotangent space of M at x. Hence the evaluation map $\varphi: M \to E^*$ is an immersion.

The linear isomorphism $\xi \in \mathfrak{g}^* \to \delta J \xi \in E$ induces the dual linear isomorphism $E^* \to \mathfrak{g}$. Let ρ be the representation of G on E^* corresponding to the adjoint representation of G on \mathfrak{g} . It is easy to verify that the immersion φ is equivariant with ρ in the sense that

$$\rho(s)(\varphi(x)) = \varphi(s(x))$$
 for $s \in G$ and $x \in M$.

The group G acts on $\varphi(M)$ in a natural manner; $s \in G$ sends $\varphi(x)$ into $\rho(s)\varphi(x) = \varphi(s(x))$. Let $o \in M$ be the origin corresponding to the coset H of G/H and let H^* be the isotropy subgroup of G acting on $\varphi(M)$ at $\varphi(o)$, i.e.,

$$H^* = \{s \in G ; \rho(s)(\varphi(o)) = \varphi(o)\} = \{s \in G ; \varphi(s(o)) = \varphi(o)\}.$$

Since $\varphi: M \to E^*$ is an equivariant immersion, it follows that $\varphi: M \to \varphi(M)$ is a covering projection. In other words, the natural map $G/H \to G/H^*$ is a covering projection.

68

Following Lichnerowicz [11; p. 166] we shall show that $H^* = H$ thereby proving that $\varphi: M \to \varphi(M)$ is one-to-one. The group H^* is the isotropy subgroup of G at $\varphi(o)$ in the representation ρ . Under the identification $E^* \approx \mathfrak{g}$, H^* is the isotropy subgroup of G at $\varphi(o)$ in the adjoint representation, i.e., the centralizer of the 1-parameter subgroup generated by $\varphi(o) \in \mathfrak{g}$. Since G is compact, the closure of this 1-parameter subgroup in G is a torus and H^* is the centralizer of this torus in G. It follows that H^* is connected and hence $H^* = H$.

Now the fact that the imbedding $\varphi: M \to E^*$ is minimal follows from Lemma 8 and from the following lemma of Kuiper [10].

LEMMA 9. In general let φ be an immersion of M into a vector space E^* . Consider each element f of the dual space E as a function $f \circ \varphi$. Then the immersion φ is minimal if and only if

$$\beta(M, f) = \beta(M)$$

for every function $f \in E$ having only isolated non-degenerate critical points on M.

4. Some comments on the minimal imbedding φ . Throughout this section M = G/H will be a compact simply connected homogeneous Kaehler manifold and G will be a compact semi-simple Lie group.

The minimal imbedding φ of M constructed in § 3 may be considered as an imbedding of M into the Lie algebra \mathfrak{g} of G. The imbedding φ is then equivariant with the adjoint representation of G.

There is no proper affine subspace of E^* which contains $\varphi(M)$. Otherwise there would be a nonzero function $f \in E$ which is constant on M. Since $f = \delta J \xi$ for some $\xi \in \mathfrak{g}^*$ and $0 = df = 2J\xi$, f must vanish identically on M and hence f is the zero element of E. This is absurd.

If 2m denotes the real dimension of M, then $\dim E^* = \dim G = \dim M + \dim H \leq \dim M + \dim U(m) = 2m + m^2$, and the equality is attained when M is the complex projective space.

For the complex projective space $P_m(C)$ the minimal imbedding φ may be described as follows. Let (z^0, z^1, \dots, z^m) be a homogeneous coordinate system of $P_m(C)$ with the condition $z^0 \overline{z}^0 + z^1 \overline{z}^1 + \dots + z^m \overline{z}^m = 1$. Let $R^{(m+1)^2}$ be a Euclidean space with coordinate system (X^h, X^{hk}, Y^{hk}) where $h, k = 0, \dots, m$ and $h \neq k$. Consider the imbedding $P_m(C) \to R^{(m+1)^2}$ defined by

$$X^h = \sqrt{2} z^h \overline{z}^h, \ X^{hk} = z^h \overline{z}^k + \overline{z}^h z^k, \ Y^{hk} = i(z^h \overline{z}^k - \overline{z}^h z^k).$$

Then $P_m(C)$ lies in the hyperplane of $R^{(m+1)^2}$ defined by

S. KOBAYASHI

$$X^{\circ} + \cdots + X^{m} = \sqrt{2} .$$

It can be shown that the imbedding of $P_m(C)$ into this hyperplane is the same as φ . I found this imbedding in Hodge [6; p. 151].²⁾

Since $P_{2m-1}(C)$ can be written also as $Sp(m)/Sp(m-1) \times U(1)$, $P_{2m-1}(C)$ can be minimally imbedded into \mathbb{R}^N where $N = \dim Sp(m) = m(2m+1)$.

ADDED IN PROOF. Generalizing the minimal imbedding of a complex projective space described in §4, S.S. Tai has recently discovered minimal imbeddings of real and quaternionic projective spaces.

BIBLIOGRAPHY

- [1] A. BOREL, Kaehlerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci., 40(1954), 1147-1151.
- [2] A. BOREL AND R. REMMERT, Über kompakt homogene Kählersche Mannigfaltigkeiten, Math. Ann., 145(1962), 429-439.
- [3] S. S. CHERN AND R. K. LASHOF, On the total curvature of immersed manifolds, Amer. Journ. Math., 79(1957), 306-318.
- [4] S. S. CHERN AND R. K. LASHOF, On the total curvature of immersed manifolds II, Michigan Math. Journ., 5(1958), 5-12.
- [5] T. FRANKEL, Fixed points and torsion on Kahler manifolds, Ann. Math., 70(1959), 1-8.
- [6] W. V. D. HODGE, The theory and applications of harmonic integrals, Cambridge University Press, 1941.
- [7] J. L. KOSZUL, Sur la forme hermitienne canonique des espaces homogènes complexes, Canadian Journ. Math., 7(1955), 562-576.
- [8] N. H. KUIPER, Immersions with minimal total absolute curvature, Colloque de géométrie différentielle globale, Bruxelles, 1958, 75-88.
- [9] N. H. KUIPER, Convex immersions of closed surfaces in E³, Comm. Math. Helv., 35 (1961), 85-92.
- [10] N. H. KUIPER, Sur les immersions à courbure totale minimale, Séminaire Ehresmann (1958/59).
- [11] A. LICHNEROWICZ, Géométrie des groupes de transformations, Dunod Paris, 1958.
- [12] Y. MATSUSHIMA, Sur les espaces homogènes k\u00e4hleriens d'un groupe de Lie r\u00e9ductif, Nagoya Math. Journ., 11(1957), 53-60.
- [13] Y. MATSUSHIMA, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kaehlerienne, Nagoya Math. Journ., 11(1957), 145-150.
- [14] K. YANO AND S. BOCHNER, Curvature and Betti numbers, Annals of Math. Studies, No. 32(1953).

UNIVERSITY OF CALIFORNIA, BERKELEY, U.S.A.

7Ò

²⁾ Hodge attributes this imbedding to G. Mannoury, Niew Archief voor Wiskunde 4(1898), 112.