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ON THE EXISTENCE OF O CURVES II *>

JUNJI KATO

(Received November 19, 1966)

Cooke [1] has discussed asymptotic behaviors of solutions of a functional
differential equation

( 1 ) ά(t) + au(t - r{t)) = 0

under the assumption that r(f) is a non-negative continuous function which
satisfies the conditions

r(t) ^ 0 as t -> oo and \ r(t) dt < oo .
Jo

In the previous paper [3], we have obtained some results concerning the ex-
istence of O- curves and some kind of the asymptotic equivalence, which we
shall call the asymptotic semi-equivalence (for the definition, see the below).
By applying the similar arguments to those used in [3], we shall discuss the
same problems as discussed by Cooke, for more general equations.

Here, we shall give the following definitions:

DEFINITION 1. A solution of a system will be called to be an O-curve
of the system, if it tends to zero as t —» oo .

DEFINITION 2. Two systems (Eλ) and (E2) are said to be asymptotically
semi-equivalent, provided that for any bounded solution of (£ x) (or (E2)) we
can find a solution of (E2) (or (Ei)) which approaches the bounded solution
of (Ex) (or (E2), respectively) for infinitely increasing t. In the case where we
can remove the boundedness for the given solution, two systems (2^) and (E2)
are asymptotically equivalent (cf. [2]).

Let r ^ O b e a given constant. Cn denotes the space of continuous func-
tions mapping the interval [ — r, 0] into the Euclidean n-space En with a norm
\\φ\\r defined by

*) This work was partially supported by the Sakkokai Foundations.
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where || <£>(#) || is a Euclidean norm. For an En-valued continuous function x(t),
x(f) denotes the right-hand derivative and we represent by xt the function in
Cn such that

Let M be an (m, ?i)-matrix. Then, \\M\\ denotes the supremum of |jΛίx|| for
all x<zEn such that N | = l .

Our purpose is to discuss the existence of O-curves of a system

(2) ±{t) = Ax(t) + B(t){x{t) - ait-rit))} + fit, xt)

and the asymptotic semi-equivalence between the system (2) and the system

( 3 ) x(t) = Ax(t),

where x is an n-vector and A is a real constant (n, n)-matrix.
Throughout this paper, the following assumptions will be made:

( i ) An (n, n)-matrίx B(t) is continuous and bounded on [0, oo).
(ii) r(t) is a continuous function which satisfies the condition

0 ^ tit) ^ r for all t^O

and

where r is the constant given in the definition of Cn and p is a
positive integer which will be determinded below.

(iii) fit, φ) is defined and continuous on [0, oo) x Cn, and for any cc^O
there exists a continuous function X(t, cί) which is bounded uniformly
in t € [0, oo) and satisfies the conditions

\ f / dtp

and
\\fit,φ)\\^\{t,a), if

where p is the same one as in (ii).
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Here, p is determinded in the following way if A has characteristic roots

with zero real part, then p is the maximum degree of the elementary divisors

corresponding to such roots, and otherwise p = 1.

THEOREM 1. Under the assumptions (i) through (iii), there exists an O-

curve of the system (2).

PROOF. AS was shown in [3], we can find a non-singular (n, τz)-matrix

P{t) such that both of P(f) and Pit)"1 are continuous and bounded on [0, oo)

and that by the transformation

(4 ) x = P(t)y, y = (w, v, wu , tvp^) ,

the system (3) is transformed into a system

( 5) ύ(t) = Axu(t\ Uf) = A2v(t\ wά(t) = CjWj^it),

where and in the followings j stands for 1 through p—1, u, v, Wj are k, mΊ n$-

vectors, n1-\-n2-\- +^p-i = n—k — m, and w0 = v. Here, Al9 A2 and Cj are

constant matrices, and all characteristic roots of Ax have negative real parts,

those of A2 have non-negative real parts and the elementary divisor cor-

responding to each characteristic root of A2 with zero real part is linear. In

the above, if p=l, the system (5) becomes

ύ(t) = Aλu{t), v{t) = A2v{t)

and y = (u, v). Moreover, we can find two continuous Liapunov functions

V(t, u) and W(t, v) as follows; V(t, u) is defined on [0, oo) x Ek and satisfies

the conditions

\\u\\ S V(f, u) ί g X | | « | | , \V(t, u) - Vit, u)\ ^ 2C| |«-« ' | I >

Πm 4 - {V(t+B, u+ZAιU) - V(t,«)} ^ -cVit, u),
δ + o δ

and Wit, v) is defined on [0, oo) x Em and satisfies the conditions

||v|| ^ W(t, v) ^ KM > Wit, v) - W{t, v)I ^ K\\v-v\\ ,

lim 1 {W^(ί+δ, ^+8A2t;) - W(ί, v)} ^ 0,
δ-»+o o

where K and c are positive constants.
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By the transformation (4), the system (2) is transformed into a system

ά(t) = A,«(0 + A(0 b<0 - y(t - ήt))} + Mt, yd

( 6 ) v{t) = Arft) + B2(i){y(0." y(ί-K0» + fit, yt)

w3(t) = Cjwj-άt) + Dj(t){y(t) - y{t-r(t))}

Clearly, β t(ί), B2(t), Dj(t) are continuous and bounded on [0, CXD), and for any
a > 0 we can find a continuous function X*(t, a) such that

0 tX tp-i

and that

II fi(β, φ)\\, \\A(t, φ)\\, Hsf/ί, ^ ) | | ^ λ*(ί, a) if

and moreover, there exists a continuous function λo(α0 such that
5g λo(^), because we assume that λ(ί, Λ) is bounded uniformly in ί ζ [0, oo).
Let Co and β 0 be chosen so that ||C t | | ^ Co and

, \\D3(t)\\ ̂  β»

for all t §: 0. For a given tf > 0, set

β(a) = {λo(4K^) + 8β 0 Kα}(^+l) + {211̂ 11 + ||A2|| + (p-l)C0}Ka.

By our assumptions, we can choose a T(Λ) SO that

), a)<a

and
P-1 ( j

Σ ) Γ* 3TΓΌ (T'ίrΛ sv\ i V^ r* ι-\τ> /7Yw\ ^.λi ^ - τΓj*j•j L o Γ^iVj+iyl \CC), Cί) + / Uo £^ι\± v^Λ ^j f ^ ivCc,
j=i t i=i

where

j(t, <*) = [ ί ί [Boβ(pί) ritj

Let /i*(*, >̂), /2*(ί, >̂) and gό%t, φ) be defined by replacing (t, φ) in fλ(t, φ\
fi(t9φ) and gfaφ), respectively, by (t,min{l,4Ka/\\φ\\r}φ), and let Fλ{t,φ\

t9 φ) and G/ί, φ) be defined by
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where if the denominator in the minimum sign is zero, then we understand
that the minimum is 1. Obviously, f^, f2*9 g^, Fly F2 and Gό are continuous
and satisfy

i*(ί, Ψ)\\, WfΛt, φ)\\, b,*(t, φ)\\ ^

.Cί, φ)\\, \\F2(t, φ)\\, \\G}(t, φ)\\ ^ Boβ(ά) tit)

for all (t, ψ) € [0, oo) x Cn.
Consider the system

(7)

where

Ut) =

= C,*

Λtf,-,) = minji,

Sirce the right-hand sides of the systm (7) are continuous and bounded on
[0, oo) x Cn, for any given r, s € [0, oo), T < 5, and for any ξ e Ek we can find
a solution of the system (7) such that

and that j>(τ+0) = (u(τ + θ), v(τ+θ),
0 e [ - r , O ] (refer Theorem 1 in [2]).

+ Θ), •, tϋp_1(τ + 0)) is a constant for
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By the similar arguments to those used in [3] and by using the Liapunov
functions V(t, u) and W(t, v), we have

^ + KR.it, a), \\v{t)\\ ^ KR&, a)

(8)

|K(*)II ^ Co'KRi+ά, a) + Σ, Co'-'Ut, a)

and

( 9) ||«(ί)|| < 2Ka, KOII < Ka, \\w(t)\\ < Ka

for all t, τ ίg t 5̂  5, if | | | | | ̂  a and T ̂  T(ci), where w = (wly , w r l ) . From
(9), we obtain

(10) \\ym ̂  ll«(0ll + WOII + MOII < ^ a for a l l ί , τ g ί g S .

Now, we shall show that y(t)= (u(t)9 v(t\ w(t)) is a solution of the system (6).
Since y(τ+θ)=y(τ) for θz[-r, 0], by (10) we have ||^(ί)|| < 4 K Λ on [τ-r, s]
which implies that Ĥ H,. <AKcί for all t, r^t^s. Hence,

fi*(t,yt) = f&yά A*(t,yt) = ft*(t,yt), gj*(t,yt) = g,(t,yt)

for all t, r-^t ^ 5, and

<8B0Ka,

which implies that ||y(ί)|| < β(a) for all t, T—rtϋst^s, because yτ is a
constant, HA^it)! ̂  2IΛH2CΛ, || A2*(^ll ^ l|A2||Kα, ||CΛwί-.)ll ^ QXtf and
ll/.*(ί,9>)ll, ll/.*(ί,9»)H, \\gΛt,<p)\\^^(t,4Kά)^U^Kά). On the other hand,
since Fx(t,yt), Fι{t,yt) and G}(t,yt) are bounded by £0||y(ί) - y(t-r(f))\\ and
II KOII </SCrt), we have

ί,Λ)ll, \\G}(t,yι)\\^Boβ(a)r(t),

which shows that

Gj(t,yt) -

Clearly,
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and hence y(t) = (u(t\ v(t), w(t)) is a solution of the system (6). Thus, we

can show the existence of an O-curve of the system (6) by the inequalities (8)

and by the same arguments as used in [3], which implies the existence of an

O-curve of the system (2). The proof is completed.

Now, we shall discuss the asymptotic semi-equivalence of the system (2)

and (3) under the assumptions (i) through (iii).

Let x*(f) be a bounded solution of the system (3) starting at t = tQ. Then,

there exists a constant B* > 0 such that

(11) 11̂ (011 ^ B* for all t ^ t 0 .

By the transformation

(12) χ(t)=y(t) + χ*(t),

the system (2) is transformed into a system

y(t) = Ay(t) + B(t){y(t) - y(t-r(t))} + g(t,yt),

where

g(t, φ) - B(t){x*{t) - a*(t-rit))} + f(t, x*t+φ) .

Since ||i:*(ί)|| ^ \\A\\B* for all t ^ t0, we have

\\g(t, φ)\\ rg IB(t)\\ \\A\\B*r(t) + X(t, cί+B*) for all t Ξ= ί, + r

if | |^ | | r ^Λ, and hence, g(t,<p) satisfies the similar condition to the condition

(iii) for f(t, φ). Conversely, if x*(f) is a solution of the system (2) satisfying

the condition (11) for a constant B*, then by the transformation (12), the

system (3) is transformed into the system

y(t) = Ay(t) + g(t),

where

g(t) = -B{t){x*(t) - x*(t-τίt))} -f(t,x*t)

Bacause ||.i *(ί)ll ^ β* for all t ^ t0 + r, where



ON THE EXISTENCE OF O-CURVES II 133

/3* = sup{|| A|| B* + 2\\B(t)\\B* + λ(ί, B*)} ,

we have

\\g(t)\\ ^ ||5(0ll/3M0 + λ(ί, JB̂ ) for all ί ^ ί0 + 2r,

which implies that

/ f ••• ( tλ < oo.

Thus, by Theorem 1 we can prove the following theorem.

THEOREM 2. Under the assumptions (i) through (iii), ίΛ<? systems (2)

(3) <zr<? asymptotically semi-equivalent.

By the definition, it is obvious that if the systems (2) and (3) are asymp-

totically semi-equivalent and if all solutions of these systems are bounded in

the future, then the systems (2) and (3) are asymptotically equivalent.

Here, we shall state lemmas concerning the boundedness of solutions of

the system (2).

LEMMA 1. In the system

(13) x(t) = Ax{t) + B(t){<t) - x{t-r(t))} ,

we assume the conditions (i) and (ii) with p—\. Furthermore, suppose that

(iv) all solutions of the system (3) are bounded in the future.

Then, there exists a continuous Liapunov functional U(t, φ) defined on

[0, oo) x Cn which satisfies the following conditions

(1°)

(2°) \U(t, φ) - U(t, φ')\ ίg K\\φ-φ'\\τ,

(3°) ΠE -ί- {U{t + 8, XM) - Uit, <p)}^0,
δ-»+0 O

where K is a constant and x(s) is a solution of the system (13) through (t,φ).

PROOF. Since the system (13) is linear, we can find a desired Liapunov

functional, if there exists a constant K such that for any (t0, φ0) <Ξ [0, oo) x Cn
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the solution x(t; φ0, t0) of the system (13) through (t09 φ0) satisfies the
inequality

(14) \\xt(φ09 *o)L ^ K\\φQ\\r for all t ^ t0

(cf. Theorem 33.4 in [4]). Hence, it is sufficient to show the existence of a
constant K for which we have the inequality (14).

Now, we shall prove this. Let X(t) be the fundamental matrix of the
system (3) such that X(0) is the unit (n, n)-matrix. By the assumption (iv),
X(t) is bounded in the future, that is, there exists a constant Mx > 1 such
that ||X(ί)|| ^ Λfj for all t ^ 0. Let M2 > 0 be the supremum of ||J8(ί)|| on
[0, oo). Since

(15) x(t; φ0, t0)

= X(t-to)φo(O) + ί X(t-τ)B(r){x(τ;cpo,to) - x(r-r(τ); cpo,to)} dr

for any (t0, φ0) and for all t ^t0, we have

(16) \\x(t; φ0, to)\\ < MΛφoh exp [2M 1M 2(ί-ί 0)]

for all t^t0 if ||^>0]|r7^0. In fact, if not, then there exists a ί i > ί 0 such that

[2M1Mι(t1-t0)\

and that we have the inequality (16) for all t,to^t< tx.
Here, easily we can see

\\x(τ-r(τ); φ0, to)\\ S Mll^oll

for all r e [t0, tγ\ Hence, by (15), we have

IW*; ̂ o, Oil < Milfoil, j l + f ZMXM* exp [2M1M2(τ-ί0)]Λ

< MJ^oll, exp {2MιMlt-tQ)\

for all t,to^t^t1 from which there arises a contradiction. The inequality
(16) implies that all solutions of the system (13) are continuable in the
future. Let us choose a T ^ O so that

( r(t)dt
2MίMi{\A\V
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and set

a = Λfillpollr exp [2M1Mt max (2r, T)]

for \\φo\\r ^ 0. Clearly, for given (ί 9φ0) £ [0, oo)χCn we have

(17) |K* po, ίo)|| < Λ for all t,to-r^t^ t*

by the inequality (16), where

r, T) .

Suppose that :c(ί) = :r:(£; 9?0, ί0) is bounded by β(a) = 2MXΛ on [ί0, ί] for an
5 > £*. Then, we have

| +2M2} /9(Λ) for all r € [ίo + r, 5)

by the equations (13). Since

*(*) = X{t-t*)x{t*) + Γ X(ί-

we have

\\x(t)\\ ^ MJ^OII + MXMJL\A\ +2M2)β(ά) f r(τ) dτ < β(ά)

for all t, t* ^ t^ s, which implies that

||Λ:(ί)|| S 2Mxa for all t ^ ί*.

From this and the inequality (17), it follows that

| | ^ | | r ^2Λfirt for all ί ^ ί 0 ,

that is, we have the inequality (14), where

K = 2M,2 exp [2MtMt max (2r, T)].

LEMMA 2. /n addition to the assumptions (i), (ii) tε^Λ /> = 1 and (iv),
ze e assume that
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(v) there exist continuous functions \{t) ^ 0 and η(ά) > 0 such that η{cί)

is non-decreasing, λ(ί) is bounded,

I λ(ί) dt < oo , ί
Jo Jo

/or all (t,φ)z[0,oo)χCn.

Then, all solutions of the system (2) are bounded in the future.

PROOF, By Lemma 1, we can find a continuous Liapunov functional

U(t,φ) defined on [0, co)χCw which satisfies the conditions (1°) through (3°)

given in Lemma 1. Let x{t) be a solution of the system (2) through (t0, φ0).

Then, by calculating the upper right derivative of U(t> xt), we have

ϋit, xt) ̂  Km v(\\^\\r) ^ Km n(,u(t, xt))

for all t g: t0, as long as x(t) exists. Hence, comparing U(t, xt) with the

maximum solution of the equation

7

- KX(t) η(v), v(t0) = U(f0, <Po) ,
dt

we can see the boundedness of x(t). Thus, we complete the proof of this

lemma.

Combining Theorem 2 with Lemma 2, immediately we have the following

theorem. Here, it should be noted that under the assumption (iv), the

elementary divisor corresponding to each characteristic root of A with zero

real part is linear, even if such a root exists.

THEOREM 3. Under the assumptions in Lemma 2, the systems (2) and

(3) are asymptotically equivalent.

Now, consider a system

(18) ύ(t) + Bu{t-r{t)) - 0 ,

where u is an n-vector and B is a constant (n, w)-matrix, and assume the

condition (ii) with p—\. Then, obviously the equation (1) is a special case
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of the system (18), where n = l and B=a. Put

x(t) = eBtu(t).

Then, the system (18) is transformed into the system

(19) x(t) = B{x(t)-x(t-r(t))} + B(E-e™) x(t-r(t)),

because the matrices B and eBt are commutative and also so are Bt and Br(t),
where E is the unit (n, n)-matrix. Since

the equation (19) is a special form of the system (2) <*™A ^^ ^nditions (i),
(ii) with p=l9 (iv) and (v) are satisfied. Hence, by ' the system
(19) and the system

x(t) = 0

are asymptotically equivalent. Namely, we have the following corollary of
Theorem 3.

COROLLARY 1. Suppose that

(vi) r(f) is a non-negative, continuous and bounded function on [0, oo)
such that

f rit)dt <oo.

Then, for any solution u(t) of the system (18), there exists a constant n-vector
c such that

(20) emu(t)->c as t -> oo ,

and conversely for any given constant n-vector c we can show the existence
of a solution u(t) of the system (18) which satisfies the condition (20).

Similarly, we have the following corollary of Theorem 3.
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any (n, n)-matrix function G(t) satisfying the condition

(vii) G(t) is continuous and bounded on [—r, oo), and any two of the

matrices B, G(t\ I G(r) r(τ) dr, I G(τ) r(τ) dr are commutative for
Jo Jo .

any t ^ —r and s ^ — r

and for any solution u(t) of the system (18), there exists a constant n-vector
c such that

(21) exp Γ Γ [B+ G(τ)r(τ)} dτ\ u(t) -^ c as t
LJ o J

Furthermore, for any constant n-vector c and for any {n, rί)-matrix function
G(t) satisfying the condition (vii), we can find a solution u(t) of the system
(18) which has the property (21).

PROOF. Let r(t) = r(0) for tz[-r, 0], and let S(t) be the (n, n)-matrix
function defined by

= f{B+G(r)r(r)}dτ
J 0

for a given function G(f) which satisfies the condition (vii). Then, clearly
we have

(22)
-JL exp [S(t)] = {B+G{t) tit)) exp [S(t)],

exp [S(t)] B = Bexp [S(t)-S(t-r(t))] exp [S(t-?

by the condition (vii). Let

x{t) = exp [S(t)] u(t) .

Then, noting the relations (22), the system (18) is transformed into the system

(23) d{t) = B{x(t) - ait-τit))} + G{t)r{i)x{t)

+ B{E- exp [5(0 - S(t-1



ON THE EXISTENCE OF O-CURVES II 139

Since

S(t) - S(t-r(t)) = f [B+G(τ) r(τ)} dτ = Br(t) + f G(τ) r(τ) dr,

we have

\\E- exp [S{t) - S(ί-r(ί))]| | ^ exp[ | |β | | r+G o r 2 ] '(\\B\\r(t) + Go rt<t)),

where Go and r are non-negative constants such that

| | G ( ί ) | | ^ G , and r(ί) ^ r for all ί ^ O ,

which shows that the function

βt, φ) = G{t)rit)φφ) + B{E- exp [S(t) - S(t-r(t))]} ψ{-

satisfies the inequality

\\ exp [||JB||r + Gor>]{\\B\\r(t) + GQ rr{t)} ,

that is, the condition (v) holds good by the assumption (vi). Hence, the
system (23) is a special form of the system (2), and the assumptions (i), (ii)
with p = l, (iv) and (v) hold good. Thus, the proof of this corollary follows
from Theorem 3.

REMARK 1. If w = l, then the second part of the assumption (vii) is
obviously satisfied.

REMARK 2. Here, we should note that our results are not exact generali-
zations of Cook's. For he discussed the existence of a solution u(t) of the
equation (1), which satisfies the condition (20) for a given constant c, on
the whole interval, while we can only show the existence of such a solution
on [T, oo) for a suitably large T.
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