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1. Corresponding to any fixed sequence {μn}, Ramanujan [17] introduced
the summability method given by the sequence-to-sequence transformation

(1.1) tn =

where

(1. 2) Aμn = μn-μn+1, A°μn = μn, Akμn =

Writing

(1.3) tn — bo + bλ + + bn sk — a0 + ax + — + ak,

we shall see in §2 that (1.1) is formally the same as

b0 =
Λ:=0

(1-4)

We shall also see that for those sequences for which, for every fixed n

(1.5) ( " " ^ " ^ ( Δ V - K - O , as * ^ o o ,

(1.1) and (1.4) are, in fact, equivalent in the following sense. Suppose that
(1.5) holds. Then, if (1.1) converges for all n, (1.4) holds; and if (1.4)
converges for all n, (1.1) holds.

It will be convenient to change Ramanujan's notation slightly, and to denote
the summability method given by the series-to-series transformation (1. 4) by
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(S, μn+ι). The necessary and sufficient conditions under which (1.1) is regular
have been given by Ramanujan [17] and it follows from a well known result
(see Cooke [7, pp 64-68]) that (S, μn+1) is regular if (1.1) is.

The object of §3.4 is to obtain the best estimate of \tn — sm\ where tn is
defined by (1.4) and sm is the partial sum of a series satisfying the Tauberian
condition

(1.6) an =

We remark that, if

(1.7) ^ ( Δ V J ^ o ^ , a s £ - > o o ,
V n 7 V \\ogk)9

then (1. 5) holds for every series satisfying (1. 6); and thus the theorems of § 3
will apply also to the sequence-to-sequence transformation (1.1). In section 5,
we obtain sufficient conditions under which (1. 7) holds.

We may observe the result of § 3,4 includes a "o" Tauberian theorem for

the (S, μn+1) transformation. It includes also a "O" Tauberian result for the

(D, CL) transform defind by Ishiguro ([11], p. 15), since the (S, μn+i) trans-

formation reduces to the (D, ct) transformation when μn— (n j .

Theorems of this type were first considered by Hadwiger [9], and have
since been dealt with by various authors; see for example (Agnew [2], [3]),
Anjaneyulu [5], Jakimovski [12], Rajagopal [15] and Tenenbaum [20].

The special case of our result in which μn+1 = rn+ι (0 < r < 1), and which
is called the s(α:)-transform of Meyer-Kδnig [14], or what is called also the
F(a) of Laurent-series continuation introduced by Vermes [21] has been dealt
with by Biegert [6], This special case has also been considered by Anjaneyulu
[4], but with the weaker Tauberian Condition

an = O(1/V"7Γ)

Some similar theorems heve been obtained with (1.6) replaced by the
Tauberian condition

where we write
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see for example Delange [8], Rajagopal [16], Meir [13] and Sherif ([18], [19]).
Finally, I have much pleasure in expressing my gratitude to Dr. B. Kuttner

for his criticisms and suggestions for improvements to present this paper.

2. Let us consider the transformation (1.1), such that (1. 3) holds. Then
formally

Thus

oo

(2. 1) K = tn-tn_λ = Σ
Λ;=0

where

(2 2) an,k = I f(n+n

r) Δ> n + 1 - ( » ; ! + ' ) Δ>

Here ( n ~ _ ί Γ ) must be taken to mean 0 for all r including r = 0 when n = 0.

Now

so that the expression in curly brackets in (2. 2) is equal to

( 2 3 )

Here ( ) must be taken as meaning 1 for all r including r = 0 when

n=0. Assuming that, for fixed n,

as r —> co, it follows that
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(2.4) an,k

which gives (1. 4).

THEOREM 2.1. // (1. 5) holds, then (1. 1) is equivalent to (1. 4) (in the
sense that if (1.1) converges for all n then so does (1.4), and conversely,
and that the sums are related by (1. 3)).

For the proof of Theorem 2.1, we require the following lemma.

LEMMA 2.1. Let any series-to-series transformation bn be such that

oo

(2. 5) K = Σ. <*».*«*
λ =0

Suppose that

(2.6) <*».***->0, as £->oo.

Then (2. 5) and the transformation

oo

(2.7) f» = !>..*«*,
Λ:=0

where

n

(2.8) 7».* = ΣK*-fli».*+i).

are equivalent (in the sense that if (2. 5) converges for all n then so does
(2. 7), and conversely).

PROOF. The convergence of (2. 5) for all n is equivalent to the conver-
gence for all n of

oo

(2.9) tn = ΣβnΛak,
Λ;=0

where we write

(2.10) βn,k = aOtk + <21>A: + + &„,*
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(see Vermes [19]), and if (2. 5), (2. 9) as converge, then the first equality of

(1. 3) holds.

[The convergence of (2. 5) for one particular n is not equivalent to the

convergence of (2. 9) for that particular n.]

Now

Σ &»,*** = Σ βn,k(SkSk-l)

k=0 A-=0

K-l

= Σ ?»,*** + A
fc=0

where we write

(2.11) γ n ,* = βn>k - βn,k+1 .

Thus the equation

will be valid for a given n in the sense that if either side converges then

the other side converges, and has the same sum if (and only if) for that n

(2.12) βn.kSk->0, as £->oo.

This establishes our result (when (2. 5), (2. 7) as converge then the first equality

of (1. 3) holds) provided that, for all n (2.12) holds.

We also note that by the definition of βnΛ the assertion that (2.12) holds

for all n is equivalent to the assertion that for all n, (2. 6) holds.

We are now in a position to prove Theorem 2.1. In the special case

considered in Theorem 2.1,

where, in the case &=0, we take

/v+k-l\ jO 0^1)

\ v I U (v = 0).

Now, by an easy deduction similar to that of equation (2. 3) we can show that
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The result now follows from Lemma 2.1.

3.

THEOREM 3.1. Let {μn} be a moment sequence generated by the function
%(t) (0 ^ t <Ξ 1) such that

(3.1)

(3.2) A».= f *"

(3. 3) χ(0) = 0, %(1) = 1, χ(t) of bounded variation,

(3.4)

and

(3.5)

Let ^2 an be a series satisfying the Tauberian condition (1. 6). Then

(i) the series (1. 4) converges for each n = 0,1, 2, .
(ii) If sm and tn denote respectively the partial sums of the series

an and ^ bn, there exists a finite constant A{ct) (0 < a < oo) such thatΣ<
(3. 7) lim sup\tn — sm\ ^ Aid) lim sup | n a n |

m/n-*a

(iii) further, if the function %{t) satisfies the additional condition

(3.8)

then A{pi) is given by

<3 9 )
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and is the best possible constant in (3. 7) in the sense that there is a series

y^an such that 0 < lim sup\nan\ < oo and the members of (3.7) are equal.
n-»χ>

We remark that, sirce (3. 4), (3. 5) clearly require that

it follows from the results of [17] that the hypotheses imply the regularity of

To prove the theorem we require the following lemmas.

LEMMA 3.1. Suppose that the transformation

In / . &n,mSm

has the proporties

( i ) oίn>m —>0 as n—> oo for any fixed m,

(ϋ) Σ2 \an,m\ is bounded.
m=0

Let

m=0

and let

A = lim sup An .
71-* oo

Then

(3.10) lim sup| tn \ ̂  A lim sup\sm\ .
W->oo 7Π->oo

This result is the best possible, that is to say, {sn} can be chosen so that
there is equality in (3.10).

The result is essentially due to Agnew ([1], Lemma 3.1). Agnew gives
the analogous result for sequence-to-function transforms, but only obvious
modifications of Agnew's argument are required.
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LEMMA 3.2. Let (1. 4) be written as

117

(3.11) K = Σotntkak9

and let βn>k be defined by (2.10). Suppose that {μn} is a moment sequence
generated by the function χ(t) (0 5^ t :g 1). Then

(3. 12)

(3.13) βntk =

n,o = l for all n

m-t)k-1 %(t)dt, for (n ̂  0, ft ̂  1).

PROOF. It is easily seen that

(3.14)
/ Γ1

(1-tγ dχ(t) for (n = 0, k ̂  0).
Jo

(3.15) an,k = \

(3.16)

for (n ̂  1, £ - 0) .

(w ~ °' * -
Using (3.14) and (3.15), it follows that

βn,o = ί dX(t) .
J o

Using (3.1), (3.12) clearly follows.
For the proof of (3.13), we integrate equations (3.14) and (3.16) by parts.

It follows from (3.14) that for n = 0, k ̂  1,

(3.17) aOtk = k \\l-tγ-*χ(t)dt.

Jo

It also follows from (3.16) that, for n 3: 1, £ 2 : 1 ,

a" k n\(k-l)\ j0

_ (n + k-l)\ r1

n\(k-l)\ 1
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i.e.

(3.18) an,k = J f ^ ) ! /ni-tf-iχ(t)dt

Substituting with (3.17) and (3.18) in (2.10), it is clear that (3.13) follows.

PROOF OF THEOREM 3.1. (i) Writing bn as in Lemma 3.2, it follows
that the convergence of (3.11) for all n is equivalent to the convergence for
all n of

(3.19) ίn = Σfr,,*α f c,

where βn>k is defined as in Lemma 3.2. Also, by using Lemma 3.2, we have

<oo

by (3.4).
(ii) We now have by using (3.12) that

where βn<k is defined by (3.13). Applying Lemma 3.1 with sk = kak, we can
assert that the best possible value of A(pί) for which we can assert that (3. 7)
holds is given by

lim sup An,

where
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(3.21) An = Σ, lβn'Γ11 + Σ i % L .

Now is follows (3.13) that, for n ^ 1,

(3.22) l - βnt k =

Thus

(3.23) t^f^

(3.24) έ J^*L

Hence, in virtue of (3. 4), (3. 5), it will be enough to establish (ii) if we prove
that, uniformly in 0 < t < 1,

(3.25)
I

(3. 26) *„(*) = ί- f ^ ± ^ 1 (l-ί)*-« = O

Let constants T\, T2 be chosen so that

Since,

CM

(3. 27) tn Σ

it is clear that (3. 25) holds uniformly in T\ ^ t < 1, and that (3. 26) holds
uniformly in 0 < t rg T2. Now

(3.28)

Thus, if
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n>

the expression on the right of (3. 28) is positive. Since m/n —> <X, we have,
for all sufficiently large n

n>(n+m-ϊ)Tl9

and hence φn(t) is increasing in (0, Tx). It is clear that (3. 25) follows. Again

(3.29)

Thus if

n < (n+m)t

the expression on the right of (3. 29) is negative. Again, for sufficiently large n

n <(n-\-m)T2,

and that ψn(t) is decreasing in (T2,1). Hence (3. 26) follows,
(iii) It follows from (3. 8), (3.13), (3. 21) and (3. 22) that

A ; = l

/ :
%/ 0

n(t) dt + f χ(β) ψ n

Applying Theorem 139 of Hardy [10], it follows that as n —• oo5 m/n —> a
φn{t) tends to l/ί(l —ί) if 1/(Λ + 1 ) < ί ̂  1 and to 0 if 0 ̂  ί < 1/(Λ + 1), and
that ψn(t) tends to 0 if 1/(Λ + 1 ) < ί ̂  1 and to l / ί ( l - ί ) if 0 ̂  ί < 1 / ( Λ + 1 ) .

Also, we can apply Lebesgue's theorem on term-by-term integration of
boundedly convergent series. We thus obtain (3. 9).

THEOREM 3.2. If a=0 or oo in Theorem 3.1 (ii), then there exists, in

each case, a series Σan such that

l imsupK-s m | = oo
m/n-*cc

even 'when lim nan — 0.
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For the proof of Theorem 3.2, we need the the following lemma given by
Agnew [1. 3].

LEMMA 3.3. If F=fn,k is an infinite matrix of real or complex number
such that

oo

Σ I Λ * I < ° ° . (n = 0,1,2,-••),
λ;=0

but

lim sup ̂  | / n ι Λ | = oo,

then there is a real sequence {xk} such that lim xk = 0 and

lim sup

Theorem 3.2 follows from Lemma 3.3, since if we write

the fn>k are in either case, such that

but by an easy modification of the proof of (ii) of Theorem 3.1, we can show
that

lim sup Σ \fntk\ = oo,
n—>o

m/n-*a

4. Suppose that the function χ(t) (O^t^l) satisfies the conditions of
Theorem 3.1 (iii) and that A(ά) is defined by equation (3. 9). Then A{ά) is
an indefinite integral (with respect to ά) of a function, say A\cc\ where
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Now suppose that χ(t) is non-decreasing. Then there is a t0 (0 < t0 t=ί 1)
such that x )

χ{t) ^ 1/2 (0 ^ ί < ί0) χ(t) ^ 1/2 (ί0 < t ^ 1) .

It clearly follows, from (4.1) that the minimum value A(ά) occurs for

a = (lAo) - 1.

5. THEOREM 5.1. Suppose that the conditions of Theorem 3.1 are
satisfied. Suppose also that

^o. I ; %ΛC; — I X\u) a u — ° I i _ _ -i ι+ > a s t —>• u .

Then (1. 7) holds; and hence the results of Theorems 3.1 and 3.2 apply also
to the sequence-to-sequence transformation (1.1).

PROOF. Taking n as fixed,

n\

so that (1. 7) is equivalent to

Λ1 , JL i

(5. 2) / (1—t)k tn dχ(t) = o -τ^i r- , as k —> oo

Taking k ^ 2 and integrating by parts twice, the expression on the left of
(5. 2) is equal to

w.here

Now

1) Either t0 is unique, or t0 can have any value in some closed interval.
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(5.3) RJk,t) = (l-tγ-t-*[τι(n-iχi-tγ + 2nkt(l-t) + k(k-l)t*].

Now for 1/VI ^ t< 1

logίX-tγ-* < -{k-2)t 5Ξ -VX + 0(1)

so that uniformly in this range

Also, it is clear that the expression in square brackets in (5.3) is O(k212).
Since %χ(t) is bounded, it is clear that

1/yF

Thus, it is enough to prove that

1/Λ/F

jf ci
Also, the expression in square brackets in (5.3) is O(l + k2t2). Thus, for
n ^ 1, the expression on the left of (5. 4) is

,logk \ Γ ( Λ + * - 1 ) iXn + A-
\1

/J

kn\ogk ) '

In the case n=0, we can apply a similar argument, but we use the result
that in this case the expression in square brackets in (5. 3) is O(k212),

Anjaneyulu [5] has considered Tauberian constants for the series-to-series
transformation formally equivalent to the sequence-to-sequence quasi-Hausdorff
transformation
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(5.5) ί, =

Let us write (5. 5) in the form (2. 5). By an argument similar to the proof
of Theorem 5.1 it can be shown that if, in addition to the conditions assumed
by Anjaneyulu, we suppose that (5.1) holds then, for every series satisfying
(1. 6), (2.6) holds. Thus it follows, just as in the case of our Theorem 5.1
that under the additional hypothesis (5.1), the results of Anjaneyulu apply also
to the sequence-to-sequence transformation (5. 5).
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