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ON THE MEAN OF AN ENTIRE FUNCTION AND THE MEAN
OF THE PRODUCT OF TWO ENTIRE FUNCTIONS
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Let f(z) be an entire function, which is not a polynomial in general, of
order p and lower order λ. Let 7s(r,/) be denned by

/β(r,/)= ( ^ j \Ar*')\*dθ) , 0 < δ < oo .

Then we have a theorem which was proved recently ([3], Theorem).

THEOREM. Provided ί ^ l ^ have

(1)

When p is finite it would appear that (1) holds for 0 < δ < 1 as well, as the
example /(z) = exρ z would show.

Our main aim at present is to show that we are able to prove the
following theorem in the case of functions of finite order when 0 < δ < 1.

THEOREM 1. When f(z) is a function of finite order p and 0 < δ < 1,
then

r-oo ^ log r ~~Γ

We need the following lemma for the proof.

LEMMA 1. // 0 < δ < 1, then for r<R,

(2) /δ(r,/' ) < C($)(R - rY*UR,f),

where C(δ) is a constant depending on δ alone.

PROOF. It can be shown ([2], Lemma 1) that
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(3) KrJ'y^iR-r

where I(t,u) = Ix{t,u). Now let us assume that / has no zeros in \z\<R.
Choose ψ=fδ so that

where the accents indicate the respective derivatives. Hence by Holder's
inequality

Γ \f\8dθ^z-δΓ

a 2

If we use (3) with <ψ in the place of /, we get from the above inequality,

Jo W\dθ

η(l-δ)/δ »2τt

J - r ) - 1 ^ \ψ(Reiβ)\dθ

(l-δ)/δ

which is equivalent to (2) when C(δ)=δ~\ Next let us suppose that / has
zeros in \z\ <R. Then it is known ([1], p.207) that f(z)=f1(z)+f2(z), where
/ Ί and f2 have no zeros in | z \ < R and \fp(z) \ < 2 \f(z) \, p— 1, 2. Hence we
have from the previous result on using the familiar inequality that \a+b\p

^ \a\p+\b\p for O ^ ^ l ,

^ f \f\(reiβ)\sdθ + f

Γ \f2(Re(>)\sdθ]
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^ 2δ+1[δ(i? - r)]-8 f \f(Reiθ) 18dθ.

Finally

where C(δ) = 2[21/δ/δ].

PROOF OF THEOREM 1. Lemma 1 leads to the following inequality by
a method which is available already ([3], pp.307-308).

/β(r, / ' ) ^ r ' - 1 + ε /δ(r, / ) , 0 < δ < 1, r ^ ro(£),

where £ is an arbitrarily small positive quantity.
The theorem follows from this inequality.

The above theorem also holds with λ, the lower order in the place of p
(Cf. [3], Lemma 4) and limsup replaced by liminf.

Let f(z) and g(z) be two entire functions and let a > 0 , β > 0 ,

Ia,0(r) = I(r, \f\"\g\s) = [ ~

It is well known that | / | α | ^ | ^ is of class PL([5], p.9) and so log Ia,β(r) is a
convex function of log r ([5]). We will prove the following theorem which
extends to two functions a result proved earlier for one function / ([6],
Theorem 1).

THEOREM 2. If f(z) and g(z) are two functions, which are not
polynomials, of orders pf and pg respectively, then

{a + /3)log/α» - log [max \f V I L r -> co ,

If f=g and oί=β = y we get the result for one function f as mentioned
above.

For the proof we need the following lemma.

LEMMA 2. For the entire functions f and g

p = l imjup l θ g } o | ^ < 0 ££/>/ + />, (0 ^ Px.Po ^ oo).
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PROOF. Since \f\a\g\β is of class PL, it follows that it is subharmonic
in \z\^r<R. Hence on \z\=r, we have by Poisson's formula for subhar-
monic functions

(4) L,dr) ^ [max | / V i ]w<x+m =§ W + r)/(R - r ) ] ^ + » Jβli8 (K).

The lemma now follows from the left hand inequality in (4).

PROOF OF THEOREM 2. Since loglatβ(r) is a convex function of log r

/

r / \

where πιa>β(x) is a non decreasing function of x. By Lemma 2, since

(6) log Ia>β(f) < rp+ε, r ^ rQ(β\

where S is denned as before.

Also we get from (5) and (6)

_2r

f ma,e(x) dχ<(2rγ+s
V γ 00

or

(log 2)ma,β{r) < (

and 8 being arbitrary

ma,β(r) < rp+ε.

Hence for r < R

I "^f^1 dx < ma,0(R)\og(R/r)
Jr X

. R-r

< R"+* [(R - r) /r] .

Choosing i? such that
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we get

(7) Γ m"'^ dx < 2"+ε

J r X

This choice of R is correct since in (5) we can take r in the place of r0 and
R > r in the place of r.

Hence from (4), (5), and (7)

(8) log[max|/VI]^ log ( - § 3 7 ) + {μ + β)logIa^R)

< log(l + 2r'+ε)

+ log/α,,(r)]

for all r ^ ro(θ), θ being defined as in previous cases. The theorem now follows
from the inequalities (4) and (8).

Finally if we define the new mean /%(r) by

Iί% = r-*"1 f xkla,β(x)dxy k + 1 > 0,

the following theorem can be proved.

THEOREM 3. If ρf and ρg are finite,

lim sup [I*>β(r)/IΆ(r)]1/logr ^ epf+**.

The proof depends on Lemma 2 and the fact that log I£β (r) is a convex
function of log r (Cf.[4],pp.l277-79). We omit this for conciseness.

Our thanks are due to the referee for his useful comments.

ADDED IN PROOF. The author wishes to express his thanks to Professor
W.K. Hayman who pointed out an error in the original form of Theorem 2.
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