SPHERES AND CELLS IN NEGATIVELY CURVED SPACES

F. J. Flaherty

(Received April 13, 1967)

1. Introduction. A riemannian manifold M is said to be negatively curved if the sectional curvatures of M are not all zero and lie in the interval $[-k, 0]$ for some positive k. It is well known that a complete riemannian manifold with non-positive sectional curvature is covered by euclidean space; in particular, a complete simply connected negatively curved manifold is diffeomorphic to euclidean space. Thus a compact, connected, orientable hypersurface N in a simply connected, complete negatively curved space separates $M-N$ topologically into two components. It is our purpose to give conditions under which the pair (U, N) where U is the closure of the bounded component of $M-N$ is homotopy equivalent to a pair $\left(D^{n+1}, S^{n}\right)$ where D^{n+1} and S^{n} are the standard disc and standard sphere respectively. All notation is the same as [1] and all references, unless otherwise noted, are to this paper.
2. Preliminaries. Since our methods use Morse theory, one needs an oscillation theorem.

Proposition 1. Let M^{n+1} be negatively curved manifold with sectional curvature restricted to $[-k, 0], k>0$. Let S be the second fundamental form of a hypersurface N^{n}, at the point p in N and in the unit normal direction V, with eigenvalues e_{i} restricted to $[a, b]$. Then the geodesic starting from p in the direction V has no focal points for $t<1 / b$ and has at least n focal points for $t>1 / \sqrt{k}$ arc coth $a / \sqrt{ } \bar{k}$, where t is the arc length parameter for g, and $\sqrt{k}<a$.

Proof. As in the proposition in section 3 in [1], one compares the zero of Jacobi fields in M with those in flat spaces and hyperbolic spaces, respectively. Indeed, let Y be a Jacobi field along g satisfying the S boundary condition in a flat space. Thus

$$
Y(t)=\Sigma\left(y_{i}^{\prime} t+y_{i}\right) U_{i}(t)
$$

where the U_{i} are parallel orthonormal along g and $\Sigma y_{i}^{\prime} y_{i}=-\Sigma e_{i} y_{i}$. Hence Y
cannot vanish before $t=1 / b$.

On the other hand consider the Jacobi field Y in the hyperbolic space of curvature $-k$:

$$
Y(t)=\left(\left(y_{i}^{\prime} / \sqrt{k}\right) \sinh \sqrt{k} t+y_{i} \cosh \sqrt{k} t\right) U_{i}(t)
$$

where $y_{i} \neq 0$ and $e_{i} y_{i}=-y_{i}^{\prime}$. This field vanishes at $t=(1 / \sqrt{k})$ arc coth e_{i} / \sqrt{k}. Thus index $g \geqq n$ for $t>(1 / \sqrt{k})$ arc $\operatorname{coth} a / \sqrt{k}$ and the proof is complete.

It is of interest to have a curvature condition which yields compactness of closed submanifolds of complete negatively curved manifolds.

Proposition 2. If M is a complete negatively curved manifold with curvature in $[-k, 0]$ and N is a closed hypersurface with eigenvalues of the second fundamental form S in $(a, b]$ where $a^{2}>k$ then N is compact.

Proof. By a theorem of Myers, corollary 19.5 in [3], it suffices that N have positive sectional curvature. Let σ be a plane tangent to N at p then there exist orthonormal u, w in N_{p}, the tangent space of N at p, so that u, w span $\sigma, S(u, w)=0$ and u, w are eigenvectors for S. Thus by the classical formula of Gauss:

$$
K_{N}(\sigma)=K(\sigma)+S(u, u) S(w, w)
$$

where K_{N} is the sectional curvature of N. A deriviation of this formula using the structural equations may be found in [2]. Thus

$$
0<-k+a^{2}<K_{N}(\sigma)
$$

and the proof is complete.
3. Main theorem. We approach the main theorem along an indirect course. Let N be a closed riemannian submanifold of a complete riemannian manifold M. Further suppose that g is a geodesic ray in a unit normal direction, u, to N. If there is a point t_{0} in $[0, \infty)$ such that $d(g(t), N)=t$ for $t \leqq t_{0}$ and $d(g(t), N)<t$ for $t>t_{0}$ then we say that $g\left(t_{0}\right)$ is in the cut locus of the submanifold N. The cut locus of N, dencted by $C(N)$ is the set of all such points where u varies in the normal sphere bundle of N. Clearly for any u in the normal sphere bundle of N there is at most one point in $C(N)$
along the geodesic in the direction u. Let N^{\perp} denote the normal vector bundle of N with respect to the induced riemannian structure and $T(a)$ the set of all vectors v in N^{\perp} such that $|v|<a$. The expenential map of the tangent bundle then restricts to N^{\perp}. Without changing notation we call this restriction the exponential map as well. If C is a curve in $M, L(C)$ is the length of C. The space of curves from p to q whose length is no more than α is denoted by Ω_{α}.

Lemma. Let $\exp : N^{\perp} \rightarrow M$ and $\exp \mid T(a)$ have maximal rank. Let g_{0}, g_{1} be geodesics defined in the following way:

$$
\begin{aligned}
g_{0}(t)= & \exp \left(t t_{0} v\right) \\
g_{1}(t)= & t \text { in }[0,1] \\
& \exp (2 t w)
\end{aligned} \text { in }[0,1 / 2] .
$$

where v, w are distinct vectors in N^{\perp} and $L\left(g_{0}\right) \leqq L\left(g_{1}\right)$. Further let H_{s} : $[0,1] \rightarrow M$ be a piecewise differentiable homotopy between g_{0}, g_{1} with $H_{0}=g_{0}$, $H_{1}=g_{1}$ in the space of paths beginning in N and ending at $p=y_{0}(1)$. Then there is $a u$ in $[0,1]$ such that

$$
L\left(g_{0}\right)+L\left(H_{u}\right) \geqq 2 a .
$$

Proof. This proof is too similar to that of the lemma in section 4 in [1] to bear repetition.

Let M be a complete simply connected negatively curved space and hence diffeomorphic to euclidean space. Let N be a compact, orientable, connected hypersurface of dimension at least 2 in M. As in the introduction U will denote the closure of the bounded component of $M-N$. With this general situation as background we have:

Proposition. If the eigenvalues of the second fundamental form in the direction pointing into U are restricted to $[a, b]$ where $\sqrt{k}<a \leqq b<2 \sqrt{k}$ and $2 / b>(1 / \sqrt{k})$ arc coth a / \sqrt{k} then the distance from N to $C(N)$ is at least $1 / b$.

Proof. Consider two geodesics starting orthogonal to N and meeting in the interior of U, that is $\exp (v)=\exp (w)$ for v, w distinct in $T(1 / b)$. For small ε, exp is a diffeomorphism on $T(\varepsilon)$. Choose $p=\exp \left(t_{0} v\right)$ a regular value in $T(\varepsilon)$ and in the interior of U, where $0<\varepsilon<2 / b-(1 / \sqrt{k}) \operatorname{arc} \operatorname{coth} a / \sqrt{k}$. Consider then the following geodesics:

$$
\begin{aligned}
g_{0}(t)= & \exp \left(t t_{0} v\right) & & t \text { in }[0,1] \\
g_{1}(t)= & \exp (2 t w) & & t \text { in }[0,1 / 2] \\
& \exp \left(\left(1-(2 t-1)\left(1-t_{0}\right)\right) v\right. & & t \text { in }[1 / 2,1]
\end{aligned}
$$

Since the path space $\Omega(p, N)$ is connected there is a homotopy H_{s} between g_{0}, g_{1}. Also notice that exp has maximal rank on $T(1 / b)$. Thus there is a u in $[0,1]$ so that $L\left(H_{u}\right)+L\left(g_{0}\right) \geqq 2 / b$. Choose a number α such that $\max \left(L\left(g_{1}\right)\right.$, $(1 / \sqrt{k})$ arc $\operatorname{coth} a / \sqrt{k} \leqq \alpha<2 / b-L\left(g_{0}\right)$ and such that Ω_{α} has no geodesic of length α. Choose a number β so that $\beta>\sup L\left(H_{s}\right)$ and Ω_{β} has no geodesic of length β. Thus if g is a geodesic in $\Omega(p, N)$ of length greater than α the index of g is at least 2. Since g_{0} and g_{1} can be connected by the homotopy H_{s} in Ω_{β} and Ω_{β} is homotopy equivalent to Ω_{α} with a cell of dimension at least two attached, one can connect g_{0} to g_{1} by a honctopy G_{s} in Ω_{α}. Thus $L\left(G_{s}\right) \leqq \alpha$ for all α and this contradicts the lemma above with g_{1} unbroken.

COROLLARY. N is a homotopy sphere.
Proof. As in the theorem in [1].
ThEOREM. Let M be a complete simply connected negatively curved manifold with curvature restricted to $[-k, 0], k>0$. Let N be a closed orientable connected hypersurface of dimension at least two in M. Suppose the eigenvalues of the second fundamental form that point into the bounded component lie in the interval $[a, b]$ where $\sqrt{k}<a \leqq b<2 \sqrt{k}$ and $2 / b>(1 / \sqrt{ } \bar{k})$ arc coth $a / \sqrt{ } \bar{k}$ then the closure of the bounded component has the homology of a foint.

Proof. First we observe that N is compact by proposition 2. Let U denote the closure of the bounded component of $M-N$. The homotopy type of $\Omega(U, N)$ is determined by the geodesics in U, beginning and ending in N. Let g be such a geodesic. Clearly g has a cut point, in fact the mid-point of g is in $C(N)$. Thus $L(g)>2 / b>(1 / \sqrt{k})$ arc $\operatorname{coth} a / \sqrt{k}$ and the index of g is at least n, by proposition 1 . Thus $\pi_{i}(U, N)=0$ for $0 \leqq i \leqq n$ and by the relative Hurewicz theorem $H_{i}(U, N)=0,0 \leqq i \leqq n$ and $\pi_{n+1}(U, N)=H_{n+1}(U$, $N)=Z$. As a result $H_{n+1}(U)=0$ and U has the homology of a point. This completes the proof.

Corollary. If dimension $M=n+1 \geqq 6$ then U is diffeomorphic to D^{n+1}.

Proof. This follows from the h-cobordism theorem of Smale, see [4].

Bibliography

[1] F. J. Flaherty, Spherical submanifolds of pinched manifolds, Amer. Jour. Math., to appear.
[2] R. Hermann, Spherical compact hypersurfaces, Jour. Math. Mech., 13(1964), 237-242.
[3] J. W. Milnor, Morse theory, Princeton, Princeton Univ. Press, 1963 (Annals of Math. Studies, 51).
[4] J. W. Milnor, Lectures on the h-cobordism theorem, Princeton, Princeton Univ. Press, 1965 (Princeton Mathematical Notes).

Department of Mathematics
University of Southern California
los Angeles, California, U.S.A.

