Tôhoku Math. Journ. 20(1968), 26-37.

NON-NORMAL ABELIAN SUBALGEBRAS

S. ANASTASIO*)

(Received August 17, 1967)

A W*-subalgebra \mathcal{A}_0 of a W*-algebra \mathcal{A} is said to be normal in \mathcal{A} if $(\mathcal{A}_0' \cap \mathcal{A})' \cap \mathcal{A} = \mathcal{A}_0$ (i.e. if \mathcal{A}_0 has the double commutant property relative to \mathcal{A}). A W*-algebra \mathcal{A} is called normal if every W*-subalgebra \mathcal{A}_0 of \mathcal{A} containing the center of \mathcal{A} is normal in \mathcal{A} .

It is well known (cf. [3] and [4]) that all type I factors (in fact, all type I W^* -algebras) are normal. That no type II factor is normal is proved in [3]. Examples of non-normal type III factors are contained in [5]. There also exist a few examples of non-normal abelian subalgebras in factors of type II (cf. [2], [4], [6]).

In this paper we give a rather simple construction of an infinite sequence of abelian subalgebras which are non-normal in a hyperfinite type II₁ factor \mathcal{A} and which are pairwise non-conjugate under *-automorphisms of \mathcal{A} .

In section 1 we shall construct, for each $n \ge 4$, a hyperfinite factor \mathcal{A}_n and an abelian subalgebra \mathcal{C}_{n0} which is non-normal in \mathcal{A}_n . Since all hyperfinite factors are *-isomorphic, we can suppose that all these subalgebras exist in one hyperfinite factor. In section 2 we prove that the subalgebras \mathcal{C}_{n0} are pairwise non-conjugate.

1. Construction of subalgebras. The factors employed here shall be constructed according to the following general scheme: Let G be a countable discrete group with identity e. Let \mathfrak{H} be $L_2(G)$, the Hilbert space of square-summable complex valued functions on G. For each $g \in G$ there is a unitary operator $U_{\mathfrak{g}}$ defined on \mathfrak{H} by $U_{\mathfrak{g}} x(g') = x(g'g)$. These operators generate a W^* -algebra \mathcal{A} which is a factor of type II_1 if all the non-trivial equivalency classes of G are infinite and which is, in addition, hyperfinite if G is the union of an increasing sequence of finite subgroups.

Let \mathfrak{H}' be the set of those functions $y \in \mathfrak{H}$ possessing the following property: for every $x \in \mathfrak{H}$ the convolution product x * y belongs to \mathfrak{H} . With each $y \in \mathfrak{H}'$ we associate the operator U_y defined by $U_y x = x * y$. Then $\mathcal{A} = \{U_y | y \in \mathfrak{H}'\}$ and we have:

^{*)} Supported by NSF Grant GP 6551.

- (i) $U_y^* = U_{\widetilde{y}} \quad (\widetilde{y}(g) = \overline{y(g^{-1})})$
- (ii) $U_{y*z} = U_z U_y$ and $U_{y+z} = U_y + U_z$ $(y, z \in \mathfrak{H})$
- (iii) $U_{\sigma^{-1}} = U_{\varepsilon_{\sigma}}$ where ε_{σ} is the characteristic function of $\{g\}$

Finally, if \overline{G} is any subgroup of G, the operators U_{σ} $(g \in \overline{G})$ generate a subalgebra $\mathcal{A}(\overline{G})$ of \mathcal{A} and

$$\mathcal{A}(\overline{G}) = \{ U_z | z \in \mathfrak{H}', \ z(g) = 0 \quad \text{if } g \notin \overline{G} \} .$$

The particular factors and subalgebras we shall work with shall be constructed as follows:

Let F denote an infinite commutative field which is the union of an increasing sequence of finite subfields. Then $F = \bigcup_{i=1}^{\infty} F_i$ where F_i are finite fields and $F_1 \subseteq F_2 \subseteq \cdots$.

For each $n \ge 4$, let G_n be the group of $n \times n$ matrices over F of the form:

(1)
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \cdot \cdot \cdot a_{1,n-1} & a_{1n} \\ 0 & 1 & a_{23} \cdot \cdot \cdot a_{2,n-1} & a_{2n} \\ 0 & 0 & 1 & \cdot \cdot \cdot a_{3,n-1} & a_{3n} \\ \cdot & \cdot & \cdot \cdot \cdot \cdot & \cdot & \cdot \\ 0 & 0 & 0 & \cdot \cdot \cdot & 1 & a_{n-1,n} \\ 0 & 0 & 0 & \cdot \cdot \cdot & 0 & 1 \end{pmatrix}$$

where $a_{11} \neq 0$.

Let \mathcal{A}_n be the W*-algebra $\mathcal{A}(G_n)$, the algebra generated by all operators $U_{\mathfrak{g}}$ $(g \in G_n)$ on $L_2(G_n)$. It is proved in [1] that \mathcal{A}_n is a hyperfinite factor of type II₁.

For each $n \ge 4$, let G_{n0} be the subgroup of G_n consisting of all elements of the form:

and let H_{n0} be that subgroup of G_{n0} for which $b_{1n} = 0$. Let $\mathcal{A}_{n0} = \mathcal{A}(G_{n0})$

S. ANASTASIO

be the subalgebra of \mathcal{A}_n generated by the operators U_g $(g \in G_{n0})$, and \mathcal{C}_{n0} = $\mathcal{A}(H_{n0})$ be the subalgebra of \mathcal{A}_n generated by the operators U_g $(g \in H_{n0})$. Then, \mathcal{A}_{n0} is a maximal abelian subalgebra of \mathcal{A}_n (cf. [1]) and \mathcal{C}_{n0} is

abelian. The following lemmas in this section will show that C_{n0} is non-normal in \mathcal{A}_n .

LEMMA, 1. G_{n0} is the centralizer of H_{n0} . That is, an element $g \in G_n$ commutes with every $h \in H_{n0}$ if and only if $g \in G_{n0}$.

PROOF. Clearly, if $g \in G_{n0}$, g commutes with all of H_{n0} .

Conversely, suppose $g \in G_n$ is of form (1) and gh = hg for every $h \in H_{n0}$. Let h be of form (2) with $b_{1n} = 0$. Direct computation establishes the result for n = 4. Assume now that $n \ge 5$. Partition g as

(3)
$$\begin{pmatrix} g_{11} & g_{12} \\ \hline & & \\ 0 & 1 \end{pmatrix}$$
 so that $g_{11} \in G_{n-1}$.

Partition h as

(4)
$$\begin{pmatrix} h_{11} & 0 \\ ---- & --- \\ 0 & 1 \end{pmatrix}$$
 so that $h_{11} \in G_{n-1,0}$.

(Note that h_{11} need not belong to $H_{n-1,0}$).

Then :

(5)
$$gh = \left(\begin{array}{c|c} g_{11}h_{11} & g_{12} \\ \hline 0 & 1 \end{array}\right) \text{ and } hg = \left(\begin{array}{c|c} h_{11}g_{11} & h_{11}g_{12} \\ \hline 0 & 1 \end{array}\right).$$

Now if gh = hg for all $h \in H_{n^0}$ then $g_{11}h_{11} = h_{11}g_{11}$ for all $h_{11} \in G_{n-1,0}$ so that $g_{11} \in G_{n-1,0}$ since $G_{n-1,0}$ is maximal abelian in G_{n-1} (cf. [1]). Furthermore, $g_{12} = h_{11}g_{12}$, i.e.

(6)
$$\begin{pmatrix} a_{1n} \\ a_{2n} \\ a_{3n} \\ \vdots \\ a_{n-1,n} \end{pmatrix} = \begin{pmatrix} a_{1n} + b_{12}a_{2n} + b_{13}a_{3n} + \dots + b_{1,n-1}a_{n-1,n} \\ a_{2n} + b_{12}a_{3n} \\ \vdots \\ a_{3n} \\ \vdots \\ a_{n-1,n} \end{pmatrix}$$

so that $a_{jn} = 0$ for all $j, 2 \leq j \leq n-1$, i.e. $g \in G_{n0}$. Q. E. D.

The following property (β') is a slight variation of the property (β) of Dixmier [2].

DEFINITION 1. Let G be a group. Let \overline{G} and H be subgroups such that $H \subseteq \overline{G} \subseteq G$. \overline{G} is said to have property (β) relative to H if, given an arbitrary finite subset $B \subseteq G$ and an arbitrary $g \in G \setminus \overline{G}$ there exists an element $h_0 \in H$ such that (i) $g^{-1}h_0g \doteq h_0$ and (ii) $u, v \in B$ and $u^{-1}h_0v = h_0$ together imply that u=v.

LEMMA 2. (Dixmier [2]) Let y be a complex function on G vanishing outside a finite set B. Let g and h be elements of G such that the conditions $u \in Bg^{-1}, v \in Bg^{-1}, u^{-1}hv = h \text{ imply } u = v.$ Then $|y(g)|^2 \leq (\tilde{y} * \mathcal{E}_h * y)(g^{-1}hg).$

The following lemma and its proof are adapted from [2].

LEMMA 3. Suppose G is a countable discrete group with infinite equivalency classes and $H \subseteq \overline{G} \subseteq G$. Let $\mathcal{A}(G)$ be the algebra described previously. Let $\mathcal{A}(H)$ and $\mathcal{A}(\overline{G})$ be the subalgebras corresponding to H and \overline{G} , respectively. Suppose that \overline{G} is the centralizer of H and that \overline{G} has property (β) relative to H. Then $\mathcal{A}(H)' \cap \mathcal{A}(G) = \mathcal{A}(\overline{G})$.

PROOF. It is clear that $\mathcal{A}(\overline{G})$ is contained in $\mathcal{A}(H)' \cap \mathcal{A}(G)$. To establish the reverse inclusion, suppose that $A = U_x \in \mathcal{A}(H)' \cap \mathcal{A}(G)$. Since the unitary operators form a generating set for the W^* -algebra $\mathcal{A}(H)' \cap \mathcal{A}(G)$, we may assume U_x is unitary. Therefore, $U_{h^{-1}} = U_x U_{h^{-1}} U_x^*$ for all $h \in H$. That is, using the terminology previously defined, $U_{\varepsilon_h} = U_{\tilde{x} * \varepsilon_h * x}$. Hence, $(\tilde{x} * \varepsilon_h * x)(g') = 0$ unless g' = h. To show that $U_x \in \mathcal{A}(\overline{G})$ we will establish that x(g) = 0 if $g \in G \setminus \overline{G}$.

Let $\varepsilon > 0$ be given and $g \in G \setminus \overline{G}$. Then there exists a complex function y on G, vanishing outside a finite set B, such that

$$||x-y||_2 \leq \varepsilon$$
, $||y||_2 \leq ||x||_2$, and $y(g) = x(g)$.

Let, for $z \in \mathfrak{H}'$, $||z||_{\infty} = 1.u.b. \{|z(g')| | g' \in G\}$. Then, for every $h \in H$,

$$egin{aligned} \|\widetilde{y}*m{arepsilon}_h*y-\widetilde{x}*m{arepsilon}_h*x\|_{\infty} &= \|(\widetilde{y-x})*m{arepsilon}_h*y+\widetilde{x}*m{arepsilon}_h*(y-x)\|_{\infty}\ &\leq \|y-x\|_2\,\|y\|_2+\|x\|_2\,\|y-x\|_2 \leq 2m{arepsilon}\|x\|_2\,. \end{aligned}$$

Using property (B'), choose $h_0 \in H$ such that $g^{-1}h_0g \approx h_0$ and such that $u, v \in Bg^{-1}$ and $u^{-1}h_0v = h_0$ imply u = v. Then, using Lemma 2,

$$egin{aligned} |x(g)|^2 &= |y(g)|^2 &\leq |(\widetilde{y}*\mathcal{E}_{h_0}*y)(g^{-1}h_0g)| \ &\leq |(\widetilde{x}*\mathcal{E}_{h_0}*x)(g^{-1}h_0g)| + 2\mathcal{E}\|x\|_2 = 2\mathcal{E}\|x\|_2 \ & ext{since} \quad g^{-1}h_0g &pprox h_0 \,. \end{aligned}$$

Since ε is arbitrary, x(g) = 0.

LEMMA 4. G_{n0} has property (β') relative to H_{n0} .

The proof of this lemma is presented in section 3.

THEOREM 1. The subalgebras C_{n0} are non-normal in A_n .

PROOF. Lemmas 1 and 4 allow us to apply Lemma 3, putting $G=G_n$, $\overline{G}=G_{n0}$, and $H=H_{n0}$. We may then conclude that

(7)
$$C'_{n0} \cap \mathcal{A}_n = \mathcal{A}_{n0}.$$

Since \mathcal{A}_{n0} is maximal abelian, $\mathcal{A}'_{n0} \cap \mathcal{A}_n = \mathcal{A}_{n0}$. Therefore, $(\mathcal{C}'_{n0} \cap \mathcal{A}_n)' \cap \mathcal{A}_n = \mathcal{A}'_{n0} \cap \mathcal{A}_n = \mathcal{A}_{n0}$. Since \mathcal{C}_{n0} is properly contained in \mathcal{A}_{n0} , \mathcal{C}_{n0} is non-normal. Q.E.D.

Statement (7) leads immediately to:

COROLLARY 1. \mathcal{A}_{n0} is the unique maximal abelian subalgebra containing C_{n0} .

2. The subalgebras C_{n0} are pairwise non-conjugate. Suppose, in general, that \mathcal{A}_1 is a W*-subalgebra of the factor \mathcal{A} . Denote by $R(\mathcal{A}_1)$ the W*-algebra generated by all unitaries $U \in \mathcal{A}$ such that $U\mathcal{A}_1U^* \subseteq \mathcal{A}_1$. Then $R(\mathcal{A}_1)$ is a W*-subalgebra of \mathcal{A} , and $\mathcal{A}_1 \subseteq R(\mathcal{A}_1) \subseteq \mathcal{A}$. Let $R^1(\mathcal{A}_1) = R(\mathcal{A}_1)$ and, for each $j \geq 2$, define $R^j(\mathcal{A}_1)$ to be $R(R^{j-1}(\mathcal{A}_1))$.

Q.E.D.

DEFINITION 2. (cf. [7]) \mathcal{A}_1 is said to be of *length* L in \mathcal{A} if there is a chain

$$\mathcal{A}_1 \cong R(\mathcal{A}_1) \cong R^2(\mathcal{A}_1) \cong \cdots \cong R^L(\mathcal{A}_1) = \mathcal{A}$$

It is proved in [1] that the length of a subalgebra \mathcal{A}_1 in \mathcal{A} is a *-algebraic invariant.

LEMMA 5. Let \mathcal{A}_0 be an abelian W*-subalgebra of the factor \mathcal{A} . Suppose \mathcal{A}_0 is contained in a unique maximal abelian subalgebra $M(\mathcal{A}_0)$. Let σ be a *-automorphism of \mathcal{A} . Then $\sigma(M(\mathcal{A}_0))$ is the unique maximal abelian subalgebra containing the abelian subalgebra $\sigma(\mathcal{A}_0)$.

PROOF. Clearly, if $\sigma(M(\mathcal{A}_0))$ were not maximal abelian, so that there existed $\mathcal{B}_0 \cong \sigma(M(\mathcal{A}_0))$, then $\sigma^{-1}(\mathcal{B}_0) \cong M(\mathcal{A}_0)$.

And, if $\sigma(\mathcal{M}(\mathcal{A}_0))$ were not unique, so that \mathcal{D}_0 were also maximal abelian, $\mathcal{D}_0 \supseteq \sigma(\mathcal{A}_0)$, then $\sigma^{-1}(\mathcal{D}_0)$ would also be maximal abelian and contain \mathcal{A}_0 . Q.E.D.

LEMMA 6. Let \mathcal{A}_0 and \mathcal{B}_0 be abelian W*-subalgebras of the factor \mathcal{A} , contained in unique maximal abelian subalgebras $M(\mathcal{A}_0)$ and $M(\mathcal{B}_0)$, respectively. If σ is a *-automorphism of \mathcal{A} such that $\sigma(\mathcal{A}_0) = \mathcal{B}_0$, then $\sigma(M(\mathcal{A}_0)) = M(\mathcal{B}_0)$.

PROOF. Since $M(\mathcal{B}_0)$ is then the unique maximal abelian subalgebra containing $\sigma(\mathcal{A}_0)$, by the previous lemma, $\sigma(M(\mathcal{A}_0)) = M(\mathcal{B}_0)$. Q.E.D.

LEMMA 7. Let \mathcal{A}_0 and \mathcal{B}_0 be abelian W*-subalgebras of the factor \mathcal{A} , contained in unique maximal abelian subalgebras $M(\mathcal{A}_0)$ and $M(\mathcal{B}_0)$, respectively. If the length of $M(\mathcal{A}_0)$ is not equal to the length of $M(\mathcal{B}_0)$, then \mathcal{A}_0 and \mathcal{B}_0 are not conjugate under *-automorphisms of \mathcal{A} .

PROOF. Suppose \mathcal{A}_0 and \mathcal{B}_0 were conjugate under σ , so that $\sigma(\mathcal{A}_0) = \mathcal{B}_0$. Then, $\sigma(\mathcal{M}(\mathcal{A}_0)) = \mathcal{M}(\mathcal{B}_0)$. On the other hand, since the length of a subalgebra in \mathcal{A} is a *-algebraic invariant, and since the length of $\mathcal{M}(\mathcal{A}_0)$ is not equal to the length of $\mathcal{M}(\mathcal{B}_0)$, we cannot have $\sigma(\mathcal{M}(\mathcal{A}_0)) = \mathcal{M}(\mathcal{B}_0)$. Q.E.D.

We may now suppose that all the subalgebras C_{n0} lie in one hyperfinite factor \mathcal{A} .

THEOREM 2. The abelian subalgebras C_{n0} are pairwise non-conjugate under *-automorphisms of \mathcal{A} .

S. ANASTASIO

PROOF. It is proved in [1] that, for each $n \ge 4$, \mathcal{A}_{n0} has length n-2 in \mathcal{A}_n .

Since \mathcal{A}_{n0} is the unique maximal abelian subalgebra containing \mathcal{C}_{n0} , the result follows from Lemma 7. Q.E.D.

3. Proof of Lemma 4. Let $g \in G_n \setminus G_{n0}$ be given, g of form (1). Let B be a finite subset of G_n , $B = \{u^{(1)}, u^{(2)}, \dots, u^{(m)}\}$. We must produce an element $h_0 \in H_{n0}$ such that

- (i) $gh_0 \neq h_0g$
- (ii) $u^{(p)}h_0 = h_0 u^{(q)}$ implies $u^{(p)} = u^{(q)}, 1 \le p, q \le m$.

Let $u^{(p)}$ be of form (1) with entries $a_{ij}^{(p)}$.

Let $h \in H_{n0}$ be of form (2) with entries b_{ij} ,

the b_{ij} to be determined. Because of the nature of h, it is clear that, regardless of the choice of b_{ij} , the matrices gh and hg are identically equal to g, except for the first two rows. Also, $u^{(p)}h$ agrees with $u^{(p)}$ except for these rows and $hu^{(q)}$ agrees with $u^{(q)}$ except for these rows. Accordingly, we investigate rows 1 and 2 of these four matrices.

$$gh = \left(\begin{array}{ccccc} a_{11} & a_{11}b_{12} + a_{12} & a_{11}b_{13} + a_{12}b_{12} + a_{13} & c_4 & c_5 \cdots c_n \\ 0 & 1 & b_{12} + a_{23} & a_{24} & a_{25} \cdots a_{2n} \end{array} \right),$$

where $c_j = a_{11}b_{1j} + a_{1j}, \ 4 \le j \le n$.

$$hg = \begin{pmatrix} a_{11} & a_{12} + b_{12} & a_{13} + b_{12}a_{23} + b_{13} & d_4 & d_5 \cdots & d_n \\ 0 & 1 & b_{12} + a_{23} & e_4 & e_5 \cdots & e_n \end{pmatrix},$$

where

$$d_{j} = a_{1j} + b_{1j} + \sum_{k=2}^{j-1} b_{1k} a_{kj}, \quad 4 \leq j \leq n,$$

$$e_{j} = a_{2j} + b_{12} a_{3j}, \quad 4 \leq j \leq n.$$

Clearly, if gh is to equal hg, we must have $a_{12}+b_{12}=a_{11}b_{12}+a_{12}$. Hence, if $b_{12} \neq 0$, a_{11} must equal 1. We henceforth assume $b_{12} \neq 0$ and $a_{11} = 1$. Taking this into consideration, (1, 3) (the entry in first row, third column) gives $b_{12}(a_{12}-a_{23})=0$, i.e. $a_{12}=a_{23}$. Next, we must have, for each j, $4 \leq j \leq n$, $e_j = a_{2j}$. That is, $b_{12}a_{3j} = 0$. Therefore, $a_{3j} = 0$ for $4 \leq j \leq n$. Finally, we must have, for each j, $4 \leq j \leq n$, $c_j = d_j$. That is:

(*)
$$\sum_{k=2}^{j-1} b_{1k} a_{kj} = 0.$$

We leave this for the present to consider the first two rows of $u^{(p)}h$ and $hu^{(q)}$:

$$u^{(p)}h = \begin{pmatrix} a_{11}^{(p)} & a_{11}^{(p)}b_{12} + a_{12}^{(p)} & a_{11}^{(p)}b_{13} + a_{12}^{(p)}b_{12} + a_{13}^{(p)} & c_4^{(p)} & c_5^{(p)} & \cdots & c_n^{(p)} \\ 0 & 1 & b_{12} + a_{23}^{(p)} & a_{24}^{(p)} & a_{25}^{(p)} & \cdots & a_{2n}^{(p)} \end{pmatrix}$$

where $c_j^{(p)} = a_{11}^{(p)} b_{1j} + a_{1j}^{(p)}$

$$hu^{(q)} = \begin{pmatrix} a_{11}^{(q)} & a_{12}^{(q)} + b_{12} & a_{13}^{(q)} + b_{12}a_{23}^{(q)} + b_{13} & d_4^{(q)} & d_5^{(q)} \cdots & d_n^{(q)} \\ 0 & 1 & b_{12} + a_{23}^{(q)} & e_4^{(q)} & e_5^{(q)} \cdots & e_n^{(q)} \end{pmatrix}$$

where

$$d_{j}^{(q)} = a_{1j}^{(q)} + b_{1j} + \sum_{k=2}^{j-1} b_{1k} a_{kj}^{(q)}, \quad 4 \leq j \leq n$$
$$e_{j}^{(q)} = a_{2j}^{(q)} + b_{12} a_{3j}^{(q)}, \quad 4 \leq j \leq n.$$

and

Now, if $u^{(p)}h$ is equal to $hu^{(q)}$ we must have $a_{11}^{(p)} = a_{11}^{(q)}$. Further, considering (1, 2), we need $b_{12}(a_{11}^{(p)}-1) = a_{12}^{(q)}-a_{12}^{(p)}$. Let

$$A_{1} = \left\{ \frac{a_{12}^{(q)} - a_{12}^{(p)}}{a_{11}^{(p)} - 1} \mid p, q = 1, 2, \cdots m; a_{11}^{(p)} \approx 1 \right\}$$

 A_1 is a finite set. We now assume $b_{12} \notin A_1$. Then, unless $a_{11}^{(p)} = 1$, $u^{(p)}h$ differs from $hu^{(q)}$ in (1, 2). We assume henceforth that $a_{11}^{(p)} = 1$ so that also $a_{12}^{(p)} = a_{12}^{(q)}$. Next, (2, 3) requires $a_{23}^{(p)} = a_{23}^{(q)}$. And (1, 3) requires $b_{12}(a_{12}^{(p)} - a_{23}^{(q)}) = a_{13}^{(q)} - a_{13}^{(q)}$. Let

$$A_{2} = \left\{ \frac{a_{13}^{(q)} - a_{13}^{(p)}}{a_{12}^{(p)} - a_{23}^{(q)}} \, | \, p, q = 1, 2, \cdots, m \, ; \, a_{12}^{(p)} \approx a_{23}^{(q)} \right\}.$$

We assume that b_{12} does not belong to the finite set A_2 . Reasoning as before, this requires $a_{12}^{(p)} = a_{23}^{(q)}$ and $a_{13}^{(p)} = a_{13}^{(q)}$. Next, for each j, $4 \leq j \leq n$, we need $e_j^{(q)} = a_{2j}^{(p)}$, i.e. $b_{12}a_{3j}^{(q)} = a_{2j}^{(p)} - a_{2j}^{(q)}$. For each j, $4 \leq j \leq n$, let

$$A_{3}^{(j)} = \left\{ \frac{a_{2j}^{(p)} - a_{2j}^{(q)}}{a_{3j}^{(q)}} \mid p, q = 1, 2, \cdots, m; \ a_{3j}^{(q)} \neq 0 \right\}.$$

We now assume $b_{12} \notin A_3^{(j)}$. Thus, $a_{3j}^{(q)} = 0$ and $a_{2j}^{(p)} = a_{2j}^{(q)}$. Finally, we need, for each $j, 4 \leq j \leq n, d_j^{(q)} = c_j^{(p)}$, i.e.

S. ANASTASIO

(**)
$$\sum_{k=2}^{j-1} b_{1k} a_{kj}^{(q)} = a_{1j}^{(p)} - a_{1j}^{(q)}.$$

We now investigate equations (*) and (**), recalling that $b_{12} \notin A_1 \cup A_2 \cup A_3^{(4)} \cup \cdots \cup A_3^{(n)} \cup \{0\}$. (*) gives the following (n-3) equations (recalling that $a_{3j}=0$):

$$\begin{array}{ll} (*) & j = 4) & b_{12}a_{24} = 0 \\ (*) & j = 5) & b_{12}a_{25} + b_{14}a_{45} = 0 \\ (*) & j = 6) & b_{12}a_{26} + b_{14}a_{46} + b_{15}a_{56} = 0 \\ & & & \\ & & & \\ & & & \\ (*) & & j = n) & b_{12}a_{2n} + b_{14}a_{4n} + b_{15}a_{5n} + \dots + b_{1,n-1}a_{n-1,n} = 0 \end{array}$$

(**) gives the following $m^2(n-3)$ equations (recalling that $a_{3j}^{(q)} = 0$ for all j, q):

$$\begin{array}{ll} (**) & j = 4) & b_{12}a_{24}{}^{(q)} = a_{14}{}^{(p)} - a_{14}{}^{(q)} \\ (**) & j = 5) & b_{12}a_{25}{}^{(q)} + b_{14}a_{45}{}^{(q)} = a_{15}{}^{(p)} - a_{15}{}^{(q)} \\ (**) & j = 6) & b_{12}a_{26}{}^{(q)} + b_{14}a_{46}{}^{(q)} + b_{15}a_{56}{}^{(q)} = a_{16}{}^{(p)} - a_{16}{}^{(q)} \\ & & \cdot \\ & & \cdot \\ (**) & j = n) & b_{12}a_{2n}{}^{(q)} + b_{14}a_{4n}{}^{(q)} + \cdots + b_{1,n-1}a_{n-1,n}{}^{(q)} = a_{1n}{}^{(p)} - a_{1n}{}^{(q)} . \end{array}$$

Considering (*) j = 4) we see that $a_{24} = 0$. Now let

$$A_{4}^{(12)} = \left\{ \frac{a_{14}^{(p)} - a_{14}^{(q)}}{a_{24}^{(q)}} \mid p, q = 1, 2, \cdots, m ; a_{24}^{(q)} \neq 0 \right\}$$

$$\vdots$$

$$A_{n}^{(12)} = \left\{ \frac{a_{1n}^{(p)} - a_{1n}^{(q)}}{a_{2n}^{(q)}} \mid p, q = 1, 2, \cdots, m ; a_{2n}^{(q)} \neq 0 \right\}$$

(all these sets are finite)

Assume henceforth that $b_{12} \notin A_4^{(12)} \cup A_5^{(12)} \cup \cdots \cup A_n^{(12)}$. Then, equations (**) j = 4 cannot be satisfied unless $a_{24}^{(q)} = 0$, in which case $a_{14}^{(p)} = a_{14}^{(q)}$. We may assume, therefore, that $a_{24}^{(q)} = 0$ for all q and that $a_{14}^{(p)} = a_{14}^{(q)}$ for all p, q.

Now, fix b_{12} subject to all previous restrictions. We now institute the following procedure:

At step k-3, $k=4, 5, \dots, n-4$, define the following finite sets:

$$A_{s}^{(1k)} = \left\{ \frac{a_{1s}^{(p)} - a_{1s}^{(q)} - b_{12}a_{2s}^{(q)} - \sum_{r=4}^{k-1} b_{1r}a_{rs}^{(q)}}{a_{ks}^{(q)}} \right\}$$

where $s = k+1, k+2, \cdots, n$.

Then, restrict b_{1k} so that $b_{1k} \notin \bigcup_{s=k+1}^{n} A_s^{(1k)}$. Also, restrict b_{1k} so that:

$$b_{1k} \approx \frac{-b_{12}a_{2t} - \sum_{r=4}^{k-1} b_{1r}a_{rt}}{a_{kt}} \tag{(\dagger)}$$

for any t = k+1, $k+2, \dots, n$, whenever $a_{kt} \neq 0$. (For k = 4, the summation in (\dagger) is understood to be zero.)

Then, because of (\dagger) , in order to satisfy equation (*) j = k+1), it will be necessary that $a_{k,k+1} = 0$, whence, by (\dagger) for previous values of k,

$$a_{k-1,k+1} = a_{k-2,k+1} = \cdots = a_{2,k+1} = 0$$

Next, because $b_{1k} \notin \bigcup_{s=k+1}^{n} A_s^{(1k)}$, it will not be possible to satisfy equations (**) j = k+1) unless $a_{k,k+1}^{(q)} = 0$ whereupon, by a combined use of previous restrictions on $b_{12}, \dots, b_{1,k-1}$ and (\dagger) it will follow that $a_{k-1,k+1}^{(q)} = a_{k-2,k+1}^{(q)}$ $= \dots = a_{2,k+1}^{(q)} = 0$ and that $a_{1k}^{(p)} = a_{1k}^{(q)}$ for all p, q.

Finally, fix b_{1k} subject to all previous restrictions and proceed to the next step.

Therefore, at the end of the k^{th} step, we have established that the superdiagonal entries of g in the $(k+4)^{th}$ column, except for the entry in the first row, are zero. And, also at the end of the k^{th} step, we have established that the $(k+4)^{th}$ column of $u^{(p)}$ is identical to the $(k+4)^{th}$ column of $u^{(q)}$. (The work previous to step 1 took care of columns 1, 2, 3, and 4 both for gand $u^{(p)}, u^{(q)}$.)

Finally, let h_0 consist of the *fixed* entries b_{ij} . This element h_0 is the one required to guarantee that $gh_0 \approx h_0 g$ and $u^{(p)}h_0 = h_0 u^{(q)}$ only if $u^{(p)} = u^{(q)}$.

We exemplify the above procedure in the case k=6, $n \ge 8$.

At step 3, we define

$$A_{s}^{(16)} = \left\{ \frac{a_{1s}^{(p)} - a_{1s}^{(q)} - b_{12}a_{2s}^{(q)} - b_{14}a_{4s}^{(q)} - b_{15}a_{5s}^{(q)}}{a_{6s}^{(q)}} \right\}.$$

We restrict b_{16} so that $b_{16} \notin \bigcup_{s=7}^{n} A_{s}^{(16)}$ and also

$$b_{16} \approx \frac{-b_{12}a_{27} - b_{14}a_{47} - b_{15}a_{57}}{a_{67}}$$

and

$$b_{16} \approx \frac{-b_{12}a_{25} - b_{14}a_{48} - b_{15}a_{58}}{a_{68}}$$

$$\vdots$$

$$b_{16} \approx \frac{-b_{12}a_{2n} - b_{14}a_{4n} - b_{15}a_{5n}}{a_{6n}}$$

Consider equation (*) j = 7):

 $b_{12}a_{27} + b_{14}a_{47} + b_{15}a_{57} + b_{16}a_{67} = 0.$

By (†), since $b_{16} \approx \frac{-b_{12}a_{27} - b_{14}a_{47} - b_{15}a_{57}}{a_{67}}$, we must have $a_{67} = 0$ This means that $b_{12}a_{27} + b_{14}a_{47} + b_{15}a_{57} = 0$. But, by (†) for step 2, $b_{15} \approx \frac{-b_{12}a_{27} - b_{14}a_{47}}{a_{57}}$, so that $a_{57} = 0$. Therefore, $b_{12}a_{27} + b_{14}a_{47} = 0$. But, by (†) for step 1, $b_{14} \approx \frac{-b_{12}a_{27}}{a_{47}}$, so that $a_{47} = 0$. And, since $b_{12} \approx 0$, $a_{27} = 0$.

Consider equations (**) j = 7):

$$b_{12}a_{27}^{(q)} + b_{14}a_{47}^{(q)} + b_{15}a_{57}^{(q)} + b_{16}a_{67}^{(q)} = a_{17}^{(p)} - a_{17}^{(q)}$$

Since $b_{16} \notin A_7^{(16)}$, we must have $a_{67}^{(q)} = 0$, whereupon

$$b_{12}a_{27}^{(q)} + b_{14}a_{47}^{(q)} + b_{15}a_{57}^{(q)} = a_{17}^{(p)} - a_{17}^{(q)}.$$

Since $b_{15} \notin A_7^{(15)}$, we must have $a_{57}^{(q)} = 0$, whereupon

$$b_{12}a_{27}^{(q)} + b_{14}a_{47}^{(q)} = a_{17}^{(p)} - a_{17}^{(q)}$$

Finally, we get

$$a_{27}^{(q)} = 0$$
 and $a_{17}^{(p)} = a_{17}^{(q)}$

References

- S. ANASTASIO, Maximal Abelian Subalgebras in Hyperfinite Factors, Amer. Journ. Math., 87(1965), 955-971.
- [2] J. DIXMIER, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of

Math. 59(1954), 279-286.

- [3] B. FUGLEDE AND R. KADISON, On a conjecture of Murray and von Neumann, Proc. Nat. Acad. Sci., 37(1951), 420-425.
- [4] R. KADISON, Normalcy in operator algebras, Duke Math. Journ., 29(1962), 459-464.
- [5] J. VON NEUMANN, On rings of operators III, Ann. of Math., 41(1940), 94-161.
 [6] T. SAITÔ, Some remarks on a representation of a group. II, Tôhoku Math. Journ., 17 (1965), 206-209.
- [7] R. TAUER, Maximal abelian subalgebras in finite factors of type II, Trans. Amer. Math. Soc., 114(1965), 281-308.

DEPARTMENT OF MATHEMATICS FORDHAM UNIVERSITY AND COURANT INSTITUTE NEW YORK, U.S.A.