NON-NORMAL ABELIAN SUBALGEBRAS

S. ANASTASIO*)

(Received August 17, 1967)

A W^{*}-subalgebra \mathcal{A}_{0} of a W^{*}-algebra \mathcal{A} is said to be normal in \mathcal{A} if $\left(\mathcal{A}_{0}^{\prime} \cap \mathcal{A}\right)^{\prime} \cap \mathcal{A}=\mathcal{A}_{0}$ (i.e. if \mathcal{A}_{0} has the double commutant property relative to $\mathcal{A})$. A W^{*}-algebra \mathcal{A} is called normal if every W^{*}-subalgebra \mathcal{A}_{0} of \mathcal{A} containing the center of \mathcal{A} is normal in \mathcal{A}.

It is well known (cf. [3] and [4]) that all type I factors (in fact, all type I W^{*}-algebras) are normal. That no type II factor is normal is proved in [3]. Examples of non-normal type III factors are contained in [5]. There also exist a few examples of non-normal abelian subalgebras in factors of type II (cf. [2], [4], [6]).

In this paper we give a rather simple construction of an infinite sequence of abelian subalgebras which are non-normal in a hyperfinite type II_{1} factor \mathcal{A} and which are pairwise non-conjugate under ${ }^{*}$-automorphisms of \mathcal{A}.

In section 1 we shall construct, for each $n \geqq 4$, a hyperfinite factor \mathcal{A}_{n} and an abelian subalgebra $\mathcal{C}_{n 0}$ which is non-normal in \mathcal{A}_{n}. Since all hyperfinite factors are ${ }^{*}$-isomorphic, we can suppose that all these subalgebras exist in one hyperfinite factor. In section 2 we prove that the subalgebras $\mathcal{C}_{n 0}$ are pairwise non-conjugate.

1. Construction of subalgebras. The factors employed here shall be constructed according to the following general scheme : Let G be a countable discrete group with identity e. Let \mathfrak{F} be $L_{2}(G)$, the Hilbert space of squaresummable complex valued functions on G. For each $g \in G$ there is a unitary operator U_{g} defined on \mathfrak{S} by $U_{g} x\left(g^{\prime}\right)=x\left(g^{\prime} g\right)$. These operators generate a W^{*}-algebra \mathcal{A} which is a factor of type II_{1} if all the non-trivial equivalency classes of G are infinite and which is, in addition, hyperfinite if G is the union of an increasing sequence of finite subgroups.

Let \mathfrak{g}^{\prime} be the set of those functions $y \in \mathfrak{G}$ possessing the following property: for every $x \in \mathfrak{F}$ the convolution product $x * y$ belongs to \mathfrak{y}. With each $y \in \mathfrak{S}^{\prime}$ we associate the operator U_{y} defined by $U_{y} x=x * y$. Then $\mathcal{A}=\left\{U_{y} \mid y \in \mathfrak{S}^{\prime}\right\}$ and we have:

[^0](i) $U_{y}{ }^{*}=U_{\tilde{y}} \quad\left(\widetilde{y}(g)=\overline{y\left(g^{-1}\right)}\right)$
(ii) $U_{y * z}=U_{z} U_{y}$ and $U_{y+z}=U_{y}+U_{z} \quad\left(y, z \in \mathfrak{Y}^{\prime}\right)$
(iii) $U_{\sigma^{1}}=U_{\varepsilon_{\theta}}$ where ε_{σ} is the characteristic function of $\{g\}$

Finally, if \bar{G} is any subgroup of G, the operators $U_{\theta}(g \in \bar{G})$ generate a subalgebra $\mathcal{A}(\bar{G})$ of \mathcal{A} and

$$
\mathcal{A}(\bar{G})=\left\{U_{z} \mid z \in \mathfrak{F}^{\prime}, z(g)=0 \text { if } g \notin \bar{G}\right\} .
$$

The particular factors and subalgebras we shall work with shall be constructed as follows:

Let F denote an infinite commutative field which is the union of an increasing sequence of finite subfields. Then $F=\bigcup_{i=1}^{\infty} F_{i}$ where F_{i} are finite fields and $F_{1} \cong F_{2} \cong \cdots$.

For each $n \geqq 4$, let G_{n} be the group of $n \times n$ matrices over F of the form :

$$
\left(\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1, n-1} & a_{1 n} \tag{1}\\
0 & 1 & a_{23} & \cdots & a_{2, n-1} & a_{2 n} \\
0 & 0 & 1 & \cdots & a_{3, n-1} & a_{3 n} \\
\cdot & \cdot & \cdot & \cdots & \cdot & - \\
0 & 0 & 0 & \cdots & 1 & a_{n-1, n} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

where $a_{11} \neq 0$.
Let \mathcal{A}_{n} be the W^{*}-algebra $\mathcal{A}\left(G_{n}\right)$, the algebra generated by all operators $U_{g}\left(g \in G_{n}\right)$ on $L_{2}\left(G_{n}\right)$. It is proved in [1] that \mathcal{A}_{n} is a hyperfinite factor of type II_{1}.

For each $n \geqq 4$, let $G_{n 0}$ be the subgroup of G_{n} consisting of all elements of the form:

$$
\left(\begin{array}{cccccccc}
1 & b_{12} & b_{13} & b_{14} & b_{15} & \cdots & b_{1, n-1} & b_{1 n} \tag{2}\\
0 & 1 & b_{12} & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\
. & - & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

and let $H_{n 0}$ be that subgroup of $G_{n 0}$ for which $b_{1 n}=0$. Let $\mathcal{A}_{n 0}=\mathcal{A}\left(G_{n 0}\right)$
be the subalgebra of \mathcal{A}_{n} generated by the operators $U_{g}\left(g \in G_{n 0}\right)$, and $\mathcal{C}_{n 0}$ $=\mathcal{A}\left(H_{n 0}\right)$ be the subalgebra of \mathcal{A}_{n} generated by the operators $U_{g}\left(g \in H_{n 0}\right)$.

Then, $\mathcal{A}_{n 0}$ is a maximal abelian subalgebra of \mathcal{A}_{n} (cf. [1]) and $\mathcal{C}_{n 0}$ is abelian. The following lemmas in this section will show that $\mathcal{C}_{n 0}$ is nonnormal in \mathcal{A}_{n}.

Lemma 1. $G_{n 0}$ is the centralizer of $H_{n 0}$. That is, an element $g \in G_{n}$ commutes with every $h \in H_{n 0}$ if and only if $g \in G_{n 0}$.

Proof. Clearly, if $g \in G_{n 0}, g$ commutes with all of $H_{n 0}$.
Conversely, suppose $g \in G_{n}$ is of form (1) and $g h=h g$ for every $h \in H_{n 0}$. Let h be of form (2) with $b_{1 n}=0$. Direct computation establishes the result for $n=4$. Assume now that $n \geqq 5$. Partition g as

$$
\left(\begin{array}{c|c}
g_{11} & g_{12} \tag{3}\\
\hline 0 & 1
\end{array}\right) \text { so that } g_{11} \in G_{n-1} .
$$

Partition h as
(4)
$\left(\begin{array}{c|c}h_{11} & 0 \\ \hline 0 & 1\end{array}\right)$ so that $h_{11} \in G_{n-1,0}$.
(Note that h_{11} need not belong to $H_{n-1,0}$).
Then:

$$
g h=\left(\begin{array}{c|c|}
g_{11} h_{11} & g_{12} \tag{5}\\
\hline 0 & 1
\end{array}\right) \text { and } \quad h g=\left(\begin{array}{c|c}
h_{11} g_{11} & h_{11} g_{12} \\
\hline 0 & 1
\end{array}\right) .
$$

Now if $g h=h g$ for all $h \in H_{n 0}$ then $g_{11} h_{11}=h_{11} g_{11}$ for all $h_{11} \in G_{n-1,0}$ so that $g_{11} \in G_{n-1,0}$ since $G_{n-1,0}$ is maximal abelian in G_{n-1} (cf. [1]).

Furthermore, $g_{12}=h_{11} g_{12}$, i.e.

$$
\left(\begin{array}{l}
a_{1 n} \tag{6}\\
a_{2 n} \\
a_{3 n} \\
\cdot \\
a_{n-1, n}
\end{array}\right)=\left(\begin{array}{c}
a_{1 n}+b_{12} a_{2 n}+b_{13} a_{3 n}+\cdots+b_{1, n-1} a_{n-1, n} \\
a_{2 n}+b_{12} a_{3 n} \\
a_{3 n} \\
\cdot \\
a_{n-1, n}
\end{array}\right)
$$

so that $a_{j n}=0$ for all $j, 2 \leqq j \leqq n-1$, i.e. $g \in G_{n 0}$.
Q. E. D.

The following property $\left(\beta^{\prime}\right)$ is a slight variation of the property (β) of Dixmier [2].

DEFINITION 1. Let G be a group. Let \bar{G} and H be subgroups such that $H \equiv \bar{G} \subseteq G . \quad \bar{G}$ is said to have property (β^{\prime}) relative to H if, given an arbitrary finite subset $B \subseteq G$ and an arbitrary $g \in G \backslash \bar{G}$ there exists an element $h_{0} \in H$ such that (i) $g^{-1} h_{0} g \neq=h_{0}$ and (ii) $u, v \in B$ and $u^{-1} h_{0} v=h_{0}$ together imply that $u=v$.

Lemma 2. (Dixmier [2]) Let y be a complex function on G vanishing outside a finite set B. Let g and h be elements of G such that the conditions $u \in B g^{-1}, v \in B y^{-1}, u^{-1} h v=h$ imply $u=v$. Then $|y(g)|^{2} \leqq\left(\widetilde{y} * \varepsilon_{h} * y\right)\left(g^{-1} h g\right)$.

The following lemma and its proof are adapted from [2].
LEMMA 3. Suppose G is a countable discrete group with infinite equivalency classes and $H \subseteq \bar{G} \subseteq G$. Let $\mathcal{A}(G)$ be the algebra described previously. Let $\mathcal{A}(H)$ and $\mathcal{A}(\bar{G})$ be the subalgebras corresponding to H and \bar{G}, respectively. Suppose that \bar{G} is the centralizer of H and that \bar{G} has property $\left(\beta^{\prime}\right)$ relative to H. Then $\mathcal{A}(H)^{\prime} \cap \mathcal{A}(G)=\mathcal{A}(\bar{G})$.

Proof. It is clear that $\mathcal{A}(\bar{G})$ is contained in $\mathcal{A}(H)^{\prime} \cap \mathcal{A}(G)$. To establish the reverse inclusion, suppose that $A=U_{x} \in \mathcal{A}(H)^{\prime} \cap \mathcal{A}(G)$. Since the unitary operators form a generating set for the W^{*}-algebra $\mathcal{A}(H)^{\prime} \cap \mathcal{A}(G)$, we may assume U_{x} is unitary. Therefore, $U_{h^{-1}}=U_{x} U_{h^{-1}} U_{x}^{*}$ for all $h \in H$. That is, using the terminology previously defined, $U_{\varepsilon_{h}}=U_{\tilde{x} * \epsilon_{h} * x}$. Hence, $\left(\widetilde{x} * \varepsilon_{h} * x\right)\left(g^{\prime}\right)=0$ unless $g^{\prime}=h$. To show that $U_{x} \in \mathcal{A}(\bar{G})$ we will establish that $x(g)=0$ if $g \in G \backslash \bar{G}$.

Let $\varepsilon>0$ be given and $g \in G \backslash \bar{G}$. Then there exists a complex function y on G, vanishing outside a finite set B, such that

$$
\|x-y\|_{2} \leqq \varepsilon, \quad\|y\|_{2} \leqq\|x\|_{2}, \quad \text { and } \quad y(g)=x(g)
$$

Let, for $z \in \mathfrak{G}^{\prime},\|z\|_{\infty}=$ l.u.b. $\left\{\left|z\left(g^{\prime}\right)\right| \mid g^{\prime} \in G\right\}$. Then, for every $h \in H$,

$$
\begin{aligned}
\left\|\widetilde{y} * \varepsilon_{h} * y-\widetilde{x} * \varepsilon_{h} * x\right\|_{\infty} & =\left\|(\widetilde{y-x}) * \varepsilon_{h} * y+\widetilde{x} * \varepsilon_{h} *(y-x)\right\|_{\infty} \\
& \leqq\|y-x\|_{2}\|y\|_{2}+\|x\|_{2}\|y-x\|_{2} \leqq 2 \varepsilon\|x\|_{2} .
\end{aligned}
$$

Using property (β^{\prime}), choose $h_{0} \in H$ such that $g^{-1} h_{0} g \neq h_{0}$ and such that $u, v \in B g^{-1}$ and $u^{-1} h_{0} v=h_{0}$ imply $u=v$. Then, using Lemma 2,

$$
\begin{aligned}
&|x(g)|^{2}=|y(g)|^{2} \leqq\left|\left(\widetilde{y} * \varepsilon_{h_{0}} * y\right)\left(g^{-1} h_{0} g\right)\right| \\
& \leqq\left|\left(\widetilde{x} * \varepsilon_{h_{0}} * x\right)\left(g^{-1} h_{0} g\right)\right|+2 \varepsilon\|x\|_{2}=2 \varepsilon\|x\|_{2} \\
& \text { since } g^{-1} h_{0} g \neq h_{0} .
\end{aligned}
$$

Since ε is arbitrary, $x(g)=0$.
Q.E.D.

Lemma 4. $G_{n 0}$ has property $\left(\beta^{\prime}\right)$ relative to $H_{n 0}$.
The proof of this lemma is presented in section 3.
THEOREM 1. The subalgebras $\mathcal{C}_{n 0}$ are non-normal in \mathscr{A}_{n}.
Proof. Lemmas 1 and 4 allow us to apply Lemma 3, putting $G=G_{n}$, $\bar{G}=G_{n 0}$, and $H=H_{n 0}$. We may then conclude that

$$
\begin{equation*}
\mathcal{C}_{n 0}^{\prime} \cap \mathcal{A}_{n}=\mathcal{A}_{n 0} . \tag{7}
\end{equation*}
$$

Since $\mathcal{A}_{n 0}$ is maximal abelian, $\mathcal{A}_{n 0}^{\prime} \cap \mathcal{A}_{n}=\mathcal{A}_{n 0}$.
Therefore, $\left(\mathcal{C}_{n 0}^{\prime} \cap \mathcal{A}_{n}\right)^{\prime} \cap \mathcal{A}_{n}=\mathcal{A}_{n 0}^{\prime} \cap \mathcal{A}_{n}=\mathcal{A}_{n 0}$.
Since $\mathcal{C}_{n 0}$ is properly contained in $\mathcal{A}_{n 0}, \mathcal{C}_{n 0}$ is non-normal.
Q.E.D.

Statement (7) leads immediately to:
COROLLARY $1 . \mathcal{A}_{n 0}$ is the unique maximal abelian subalgebra containing $\mathcal{C}_{n 0}$.
2. The subalgebras $\mathcal{C}_{n 0}$ are pairwise non-conjugate. Suppose, in general, that \mathcal{A}_{1} is a W^{*}-subalgebra of the factor \mathcal{A}. Denote by $R\left(\mathcal{A}_{1}\right)$ the W^{*}-algebra generated by all unitaries $U \in \mathcal{A}$ such that $U \mathcal{A}_{1} U^{*} \subseteq \mathcal{A}_{1}$. Then $R\left(\mathscr{A}_{1}\right)$ is a W^{*}-subalgebra of \mathcal{A}, and $\mathcal{A}_{1} \subseteq R\left(\mathcal{A}_{1}\right) \subseteq \mathcal{A}$. Let $R^{1}\left(\mathcal{A}_{1}\right)=R\left(\mathcal{A}_{1}\right)$ and, for each $j \geqq 2$, define $R^{j}\left(\mathcal{A}_{1}\right)$ to be $R\left(R^{j-1}\left(\mathcal{A}_{1}\right)\right)$.

DEFINITION 2. (cf. [7]) \mathcal{A}_{1} is said to be of length L in \mathcal{A} if there is a chain

$$
\mathscr{A}_{1} \varsubsetneqq R\left(\mathscr{A}_{1}\right) \subsetneq R^{2}\left(\mathscr{A}_{1}\right) \varsubsetneqq \cdots \varsubsetneqq R^{L}\left(\mathcal{A}_{1}\right)=\mathcal{A}
$$

It is proved in [1] that the length of a subalgebra \mathcal{A}_{1} in \mathcal{A} is a *-algebraic invariant.

Lemma 5. Let \mathcal{A}_{0} be an abelian W^{*}-subalgebra of the factor \mathcal{A}. Suppose \mathcal{A}_{0} is contained in a unique maximal abelian subalgebra $M\left(\mathcal{A}_{0}\right)$. Let σ be $a{ }^{*}$-automorphism of \mathcal{A}. Then $o\left(M\left(\mathcal{A}_{0}\right)\right)$ is the unique maximal abelian subalgebra containing the abelian subalgebra o $\left(\mathcal{A}_{0}\right)$.

Proof. Clearly, if $o \cdot\left(M\left(\mathcal{A}_{0}\right)\right)$ were not maximal abelian, so that there existed \mathcal{B}_{0} 平 $\sigma\left(M\left(\mathcal{A}_{0}\right)\right)$, then $\sigma^{-1}\left(\mathscr{B}_{0}\right)$ 平 $M\left(\mathscr{A}_{0}\right)$.

And, if $\sigma\left(M\left(\mathcal{A}_{0}\right)\right)$ were not unique, so that \mathscr{D}_{0} were also maximal abelian, $\mathscr{D}_{0} \supseteqq \sigma\left(\mathcal{A}_{0}\right)$, then $\sigma^{-1}\left(\mathscr{D}_{0}\right)$ would also be maximal abelian and contain \mathcal{A}_{0}.
Q.E.D.

Lemma 6. Let f_{0} and \mathscr{B}_{0} be abelian W^{*}-subalgebras of the factor \mathcal{A}, contained in unique maximal abelian subalgebras $M\left(\mathcal{A}_{0}\right)$ and $M\left(\mathcal{B}_{0}\right)$, respectively. If σ is a *-automorphism of \mathcal{A} such that $\sigma\left(\mathcal{A}_{0}\right)=\mathscr{B}_{0}$, then $o\left(M\left(\mathcal{A}_{0}\right)\right)=M\left(\mathscr{B}_{0}\right)$.

Proof. Since $M\left(\mathscr{B}_{0}\right)$ is then the unique maximal abelian subalgebra containing $\sigma\left(\mathcal{A}_{0}\right)$, by the previous lemma, $\sigma\left(M\left(\mathscr{A}_{0}\right)\right)=M\left(\mathscr{B}_{0}\right)$.
Q.E.D.

Lemma 7. Let \mathcal{A}_{0} and \mathscr{B}_{0} be abelian W^{*}-subalgebras of the factor \mathcal{A}, contained in unique maximal abelian subalgebras $M\left(\mathcal{A}_{0}\right)$ and $M\left(\mathscr{B}_{0}\right)$, respectively. If the length of $M\left(\mathcal{A}_{0}\right)$ is not equal to the length of $M\left(\mathscr{B}_{0}\right)$, then \mathcal{A}_{0} and \mathscr{B}_{0} are not conjugate under ${ }^{*}$-automorphisms of \mathcal{A}.

Proof. Suppose \mathscr{A}_{0} and \mathscr{B}_{0} were conjugate under σ, so that $\sigma\left(\mathcal{A}_{0}\right)=\mathscr{B}_{0}$. Then, $\sigma\left(M\left(\mathscr{A}_{0}\right)\right)=M\left(\mathscr{B}_{0}\right)$. On the other hand, since the length of a subalgebra in \mathcal{A} is a ${ }^{*}$-algebraic invariant, and since the length of $M\left(\mathcal{A}_{0}\right)$ is not equal to the length of $M\left(\mathscr{B}_{0}\right)$, we cannot have $\sigma \cdot\left(M\left(\mathscr{A}_{0}\right)\right)=M\left(\mathscr{B}_{0}\right)$. Q.E.D.

We may now suppose that all the subalgebras $\mathcal{C}_{n 0}$ lie in one hyperfinite factor \mathcal{A}.

THEOREM 2. The abelian subalgebras $\mathcal{C}_{n 0}$ are pairwise non-conjugate under ${ }^{*}$-automorphisms of \mathcal{A}.

Proof. It is proved in [1] that, for each $n \geqq 4, \mathcal{A}_{n 0}$ has length $n-2$ in \mathcal{A}_{n}.

Since $\mathcal{A}_{n 0}$ is the unique maximal abelian subalgebra containing $\mathcal{C}_{n 0}$, the result follows from Lemma 7.
Q.E.D.
3. Proof of Lemma 4. Let $g \in G_{n} \backslash G_{n 0}$ be given, g of form (1). Let B be a finite subset of $G_{n}, B=\left\{u^{(1)}, u^{(2)}, \cdots, u^{(m)}\right\}$. We must produce an element $h_{0} \in H_{n 0}$ such that
(i) $g h_{0} \neq h_{0} g$
(ii) $u^{(p)} h_{0}=h_{0} u^{(q)} \quad$ implies $u^{(p)}=u^{(q)}, 1 \leqq p, q \leqq m$.

Let $u^{(p)}$ be of form (1) with ©ntries $a_{i j}{ }^{(p)}$.
Let $h \in H_{n 0}$ be of form (2) with entries $b_{i j}$,
the $b_{i j}$ to be determined. Because of the nature of h, it is clear that, regardless of the choice of $b_{i j}$, the matrices $g h$ and $h y$ are identically equal to g, except for the first two rows. Alsc, $u^{(p)} h$ agrees with $u^{(p)}$ except for these rows and $h u^{(q)}$ agrees with $u^{(q)}$ except for these rows. Accordingly, we investigate rows 1 and 2 of these four matrices.

$$
g h=\left(\begin{array}{ccccc}
a_{11} & a_{11} b_{12}+a_{12} & a_{11} b_{13}+a_{12} b_{12}+a_{13} & c_{4} & c_{5} \cdots c_{n} \\
0 & 1 & b_{12}+a_{23} & a_{24} & a_{25} \cdots a_{2 n}
\end{array}\right),
$$

where $\quad c_{j}=a_{11} b_{1 j}+a_{1 j}, 4 \leqq j \leqq n$.

$$
h g=\left(\begin{array}{cccc}
a_{11} & a_{12}+b_{12} & a_{13}+b_{12} a_{23}+b_{13} & d_{4} \\
d_{5} \cdots d_{n} \\
0 & 1 & b_{12}+a_{23} & e_{4}
\end{array} e_{5} \cdots e_{n} .\right.
$$

where

$$
\begin{aligned}
d_{j} & =a_{1 j}+b_{1 j}+\sum_{k=2}^{j-1} b_{1 k} a_{k j}, \quad 4 \leqq j \leqq n, \\
e_{j} & =a_{2 j}+b_{12} a_{3 j}, \quad 4 \leqq j \leqq n .
\end{aligned}
$$

Clearly, if $g h$ is to equal $h g$, we must have $a_{12}+b_{12}=a_{11} b_{12}+a_{12}$. Hence, if $b_{12} \neq 0, a_{11}$ must equal 1 . We henceforth assume $b_{12} \neq 0$ and $a_{11}=1$. Taking this into consideration, $(1,3)$ (the entry in first row, third column) gives $b_{12}\left(a_{12}-a_{23}\right)=0$, i.e. $a_{12}=a_{23}$. Next, we must have, for each j, $4 \leqq j \leqq n, e_{j}=a_{2 j}$. That is, $b_{12} a_{3 j}=0$. Therefore, $a_{3 j}=0$ for $4 \leqq j \leqq n$. Finally, we must have, for each $j, 4 \leqq j \leqq n, c_{j}=d_{j}$. That is:

$$
\begin{equation*}
\sum_{k=2}^{j-1} b_{1 k} a_{k j}=0 \tag{*}
\end{equation*}
$$

We leave this for the present to consider the first two rows of $u^{(p)} h$ and $h u^{(q)}$:
$u^{(p)} h=\left(\begin{array}{ccccc}a_{11}{ }^{(p)} & a_{11}{ }^{(p)} b_{12}+a_{12}{ }^{(p)} & a_{11}{ }^{(p)} b_{13}+a_{12}{ }^{(p)} b_{12}+a_{13}{ }^{(p)} & c_{4}{ }^{(p)} & c_{5}{ }^{(p)} \\ 0 & 1 & b_{12}+a_{23}{ }^{(p)} & c_{n}{ }^{(p)} \\ 0 & a_{24}{ }^{(p)} & a_{25}{ }^{(p)} & \cdots & a_{2 n}{ }^{(p)}\end{array}\right)$
where $\quad c_{j}{ }^{(p)}=a_{11}{ }^{(p)} b_{1 j}+a_{1 j}{ }^{(p)}$

$$
h u^{(q)}=\left|\begin{array}{cccc}
a_{11}{ }^{(q)} & a_{12}{ }^{(q)}+b_{12} & a_{13}{ }^{(q)}+b_{12} a_{23^{(q)}}{ }^{(q)}+b_{13} & d_{4}{ }^{(q)} \\
d_{5}{ }^{(q)} & \cdots & d_{n}{ }^{(q)} \\
0 & 1 & b_{12}+a_{23}{ }^{(q)} & e_{4}{ }^{(q)}
\end{array} e_{5}{ }^{(q)} \cdots e_{n}{ }^{(q)} . ~\right| ~
$$

where
and

$$
d_{j}^{(q)}=a_{1 j}{ }^{(q)}+b_{1 j}+\sum_{k=2}^{j-1} b_{1 k} a_{k j}^{(q)}, \quad 4 \leqq j \leqq n
$$

$$
e_{j}{ }^{(q)}=a_{2 j}{ }^{(q)}+b_{12} a_{3 j}{ }^{(q)}, \quad 4 \leqq j \leqq n .
$$

Now, if $u^{(p)} h$ is equal to $h u^{(q)}$ we must have $a_{11}{ }^{(p)}=a_{11}{ }^{(q)}$. Further, considering (1,2), we need $b_{12}\left(a_{11}{ }^{(p)}-1\right)=a_{12}{ }^{(q)}-a_{12}{ }^{(p)}$. Let

$$
A_{1}=\left\{\left.\frac{a_{12}{ }^{(q)}-a_{12}{ }^{(p)}}{a_{11}{ }^{(p)}-1} \right\rvert\, p, q=1,2, \cdots m ; a_{11}{ }^{(p)} \neq 1\right\}
$$

A_{1} is a finite set. We now assume $b_{12} \notin A_{1}$. Then, unless $a_{11}{ }^{(p)}=1, u^{(p)} h$ differs from $h u^{(q)}$ in (1,2). We assume henceforth that $a_{11}{ }^{(p)}=1$ so that also $a_{12}{ }^{(p)}=a_{12}{ }^{(q)}$. Next, $(2,3)$ requires $a_{23}{ }^{(p)}=a_{23}{ }^{(q)}$. And $(1,3)$ requires $b_{12}\left(a_{12}{ }^{(p)}-a_{23}{ }^{(q)}\right)=a_{13}{ }^{(q)}-a_{13}{ }^{(q)}$. Let

$$
A_{2}=\left\{\left.\frac{a_{13}{ }^{(q)}-a_{13}{ }^{(p)}}{a_{12}{ }^{(p)}-a_{23}{ }^{(q)}} \right\rvert\, p, q=1,2, \cdots, m ; a_{12}{ }^{(p)} \neq a_{23}{ }^{(q)}\right\} .
$$

We assume that b_{12} does not belong to the finite set A_{2}. Reasoning as before, this requires $a_{12}{ }^{(p)}=a_{23}{ }^{(q)}$ and $a_{13}{ }^{(p)}=a_{13}{ }^{(q)}$. Next, for each $j, 4 \leqq j \leqq n$, we need $e_{j}{ }^{(q)}=a_{2 j}{ }^{(p)}$, i.e. $b_{12} a_{3 j}{ }^{(q)}=a_{2 j}{ }^{(p)}-a_{2 j}{ }^{(q)}$. For each $j, 4 \leqq j \leqq n$, let

$$
A_{3}{ }^{(j)}=\left\{\left.\frac{a_{2 j}{ }^{(p)}-a_{2 j}{ }^{(q)}}{a_{3 j}{ }^{(q)}} \right\rvert\, p, q=1,2, \cdots, m ; a_{3 j}{ }^{(q)} \neq 0\right\}
$$

We now assume $b_{12} \notin A_{3}{ }^{(j)}$. Thus, $a_{3 j}{ }^{(q)}=0$ and $a_{2 j}{ }^{(p)}=a_{2 j}{ }^{(q)}$. Finally, we need, for each $j, 4 \leqq j \leqq n, d_{j}{ }^{(q)}=c_{j}{ }^{(p)}$, i.e.

$$
\begin{equation*}
\sum_{k=1}^{j-1} b_{1 k} a_{k j}^{(q)}=a_{1 j}^{(p)}-a_{1 j}^{(q)} . \tag{**}
\end{equation*}
$$

We now investigate equations (*) and (**), recalling that $b_{12} \notin A_{1} \cup A_{2}$ $\cup A_{3}{ }^{(4)} \cup \cdots \cup A_{3}{ }^{(n)} \cup\{0\} .\left(^{*}\right)$ gives the following ($n-3$) equations (recalling that $a_{3 j}=0$):
(*)

$$
j=4) \quad b_{12} a_{24}=0
$$

(*) $\quad j=5) \quad b_{12} a_{25}+b_{14} a_{45}=0$
(*) $\quad j=6) \quad b_{12} a_{26}+b_{14} a_{46}+b_{15} a_{56}=0$

$$
\begin{equation*}
j=n) \quad b_{12} a_{2 n}+b_{14} a_{4 n}+b_{15} a_{5 n}+\cdots+b_{1, n-1} a_{n-1, n}=0 \tag{*}
\end{equation*}
$$

(**) gives the following $m^{2}(n-3)$ equations (recalling that $a_{3 j}{ }^{(q)}=0$ for all $j, q)$:

$$
\begin{array}{lll}
(* *) & j=4) & b_{12} a_{24}{ }^{(q)}=a_{14}{ }^{(p)}-a_{14}{ }^{(q)} \\
\left({ }^{(q *}\right) & j=5) & b_{12} a_{25}{ }^{(q)}+b_{14} a_{45}{ }^{(q)}=a_{15}{ }^{(p)}-a_{15}{ }^{(q)} \tag{**}
\end{array}
$$

$$
\begin{equation*}
j=n) \quad b_{12} a_{2 n}{ }^{(q)}+b_{14} a_{4 n}{ }^{(q)}+\cdots+b_{1, n-1} a_{n-1, n}{ }^{(q)}=a_{1 n}{ }^{(p)}-a_{1 n}{ }^{(q)} . \tag{**}
\end{equation*}
$$

Considering ${ }^{(*)} j=4$) we see that $a_{24}=0$. Now let

$$
\begin{aligned}
& A_{4}{ }^{(12)}=\left\{\left.\frac{a_{14}{ }^{(p)}-a_{14}{ }^{(q)}}{a_{24}{ }^{(q)}} \right\rvert\, p, q=1,2, \cdots, m ; a_{24}{ }^{(q)} \neq 0\right\} \\
& \vdots \\
& \vdots \\
& A_{n}{ }^{(12)}=\left\{\left.\frac{a_{1 n}{ }^{(p)}-a_{1 n}{ }^{(q)}}{a_{2 n}{ }^{(q)}} \right\rvert\, p, q=1,2, \cdots, m ; a_{2 n}{ }^{(q)} \neq 0\right\}
\end{aligned}
$$

(all these sets are finite)
Assume henceforth that $b_{12} \notin A_{4}{ }^{(12)} \cup A_{5}^{(12)} \cup \cdots \cup A_{n}{ }^{(12)}$. Then, equations ${ }^{\left({ }^{*} *\right)} j=4$ cannot be satisfied unless $a_{24}{ }^{(q)}=0$, in which case $a_{14}{ }^{(p)}=a_{14}{ }^{(q)}$. We may assume, therefore, that $a_{24}{ }^{(q)}=0$ for all q and that $a_{14}{ }^{(p)}=a_{14}{ }^{(q)}$ for all p, q.

Now, fix b_{12} subject to all previous restrictions. We now institute the following procedure:

At step $k-3, k=4,5, \cdots, n-4$, define the following finite sets:

$$
A_{s}{ }^{(1 k)}=\left\{\frac{a_{1 s}{ }^{(p)}-a_{1 s}{ }^{(q)}-b_{12} a_{2 s}{ }^{(q)}-\sum_{r=4}^{k-1} b_{1 r} a_{r s}{ }^{(q)}}{a_{k s}{ }^{(q)}}\right\}
$$

where $s=k+1, k+2, \cdots, n$.
Then, restrict $b_{1 k}$ so that $b_{1 k} \notin \bigcup_{s=k+1}^{n} A_{s}{ }^{(1 k)}$. Also, restrict $b_{1 k}$ so that:

$$
\begin{equation*}
b_{1 k} \neq \frac{-b_{12} a_{2 t}-\sum_{r=4}^{k-1} b_{1 r} a_{r t}}{a_{k t}} \tag{†}
\end{equation*}
$$

for any $t=k+1, k+2, \cdots, n$, whenever $a_{k t} \neq 0$. (For $k=4$, the summation in (\dagger) is understood to be zero.)

Then, because of (\dagger), in order to satisfy equation ($\left.{ }^{*}\right) j=k+1$), it will be necessary that $a_{k, k+1}=0$, whence, by (\dagger) for previous values of k,

$$
a_{k-1, k+1}=a_{k-2, k+1}=\cdots=a_{2, k+1}=0
$$

Next, because $b_{1 k} \notin \bigcup_{s=k+1}^{n} A_{s}{ }^{(1 k)}$, it will not be possible to satisfy equations ${ }^{(* *)} j=k+1$) unless $a_{k, k+1}{ }^{(q)}=0$ whereupon, by a combined use of previous restrictions on $b_{12}, \cdots, b_{1, k-1}$ and (\dagger) it will follow that $a_{k-1, k+1}{ }^{(q)}=a_{k-2, k+1}{ }^{(q)}$ $=\cdots=a_{2, k+1}{ }^{(q)}=0$ and that $a_{1 k}{ }^{(p)}=a_{4 k}{ }^{(q)}$ for all p, q.

Finally, fix $b_{1 k}$ subject to all previous restrictions and proceed to the next step.

Therefore, at the end of the $k^{t h}$ step, we have established that the superdiagonal entries of g in the $(k+4)^{\text {th }}$ column, except for the entry in the first row, are zero. And, also at the end of the $k^{t_{i}}$ step, we have established that the $(k+4)^{t h}$ column of $u^{(p)}$ is identical to the $(k+4)^{t h}$ column of $u^{(q)}$. (The work previous to step 1 took care of columns $1,2,3$, and 4 both for ! and $u^{(p)}, u^{(q)}$.)

Finally, let h_{0} consist of the fixed entries $b_{i j}$. This element h_{0} is the one required to guarantee that $g h_{0} \neq h_{0} g$ and $u^{(p)} h_{0}=h_{0} u^{(q)}$ ondy if $u^{(p)}=u^{(q)}$.

We exemplify the above procedure in the case $k=6, n \geqq 8$.
At step 3, we define

$$
A_{s}{ }^{(16)}=\left\{\frac{a_{1 s}{ }^{(p)}-a_{18}{ }^{(q)}-b_{12} a_{2 s^{(q)}}^{(q)}-b_{14} a_{4 s}{ }^{(q)}-b_{15} a_{5 s}{ }^{(q)}}{a_{6 s}{ }^{(q)}}\right\} .
$$

We restrict b_{16} so that $b_{16} \notin \bigcup_{s=7}^{n} A_{8}^{(16)}$ and also

$$
b_{16} \neq \frac{-b_{12} a_{27}-b_{14} a_{47}-b_{15} a_{57}}{a_{67}}
$$

and

$$
\begin{aligned}
& b_{16} \neq \frac{-\dot{b}_{12} a_{28}-b_{14} a_{48}-b_{15} a_{58}}{a_{68}} \\
& \cdot \\
& \cdot \\
& b_{16} \neq \frac{-b_{12} a_{2 n}-b_{14} a_{4 n}-b_{15} a_{5 n}}{a_{6 n}} .
\end{aligned}
$$

Consider equation (*) $j=7$):

$$
b_{12} a_{27}+b_{14} a_{47}+b_{15} a_{57}+b_{18} a_{67}=0
$$

By (\dagger), since $b_{18} \neq \frac{-b_{12} a_{27}-b_{14} a_{47}-b_{15} a_{57}}{a_{67}}$, we must have $a_{67}=0$ This means that $b_{12} a_{27}+b_{14} a_{47}+b_{15} a_{57}=0$. But, by (\dagger) for step $2, b_{15} \neq \frac{-b_{12} a_{27}-b_{14} a_{47}}{a_{57}}$, so that $a_{57}=0$. Therefore, $b_{12} a_{27}+b_{14} a_{47}=0$. But, by (\dagger) for step 1 , $b_{14} \neq \frac{-b_{12} a_{27}}{a_{47}}$, so that $a_{47}=0$. And, since $b_{12} \neq 0, a_{27}=0$.

Consider equations (${ }^{* *}$) $j=7$):

$$
b_{12} a_{27}{ }^{(q)}+b_{14} a_{47}{ }^{(q)}+b_{15} a_{57}{ }^{(q)}+b_{16} a_{67}{ }^{(q)}=a_{17}{ }^{(p)}-a_{17}{ }^{(q)} .
$$

Since $b_{16} \notin A_{7}{ }^{(18)}$, we must have $a_{67}{ }^{(q)}=0$, whereupon

$$
b_{12} a_{27}{ }^{(q)}+b_{14} a_{47}{ }^{(q)}+b_{15} a_{57}^{(q)}=a_{17}{ }^{(p)}-a_{17}{ }^{(q)}
$$

Since $b_{15} \notin A_{7}{ }^{(15)}$, we must have $a_{57}{ }^{(9)}=0$, whereupon

$$
b_{12} a_{27}{ }^{(q)}+b_{14} a_{47}{ }^{(q)}=a_{17}{ }^{(p)}-a_{17}{ }^{(q)}
$$

Finally, we get

$$
a_{27}{ }^{(q)}=0 \quad \text { and } \quad a_{17}{ }^{(p)}=a_{17}{ }^{(q)}
$$

References

[1] S. Anastasio, Maximal Abelian Subalgebras in Hyperfinite Factors, Amer. Journ. Math., 87(1965), 955-971.
[2] J. DIXMIER, Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. of

Math. 59(1954), 279-286.

[3] B. Fuglede and R. Kadison, On a conjecture of Murray and von Neumann, Proc. Nat. Acad. Sci., 37(1951), 420-425.
[4] R. Kadison, Normalcy in operator algebras, Duke Math. Journ., 29(1962), 459-464.
[5] J. von Neumann, On rings of operators III, Ann. of Math., 41(1940), 94-161.
[6] T. SAITô, Some remarks on a representation of a group. II, Tôhoku Math. Journ., 17 (1965), 206-209.
[7] R. Tauer, Maximal abelian subalgebras in finite factors of type II, Trans. Amer. Math. Soc., 114(1965), 281-308.

Department of Mathematics
Fordham University and Courant Institute
New York, U.S.A.

[^0]: *) Supported by NSF Grant GP 6551.

