ON KILLING TENSORS IN A RIEMANNIAN SPACE

Shun-IChi Tachibana

(Received January 20, 1968)
0. Introduction. Let M^{n} be an n dimensional Riemannian space whose metric tensor is given by $g_{a b}$ in terms of local coordinates $\left\{x^{a}\right\}^{11}$. A vector field v^{a} is called a Killing vector if it satisfies the Killing's equation :

$$
\begin{equation*}
\nabla_{a} v_{b}+\nabla_{b} v_{a}=0, \tag{0.1}
\end{equation*}
$$

where $v_{a}=g_{a c} v^{c}$ and ∇_{a} denotes the operator of the covariant derivation. An affine Killing vector is, by definition, a vector field v^{a} satisfying the equation :

$$
\begin{equation*}
\nabla_{a} \nabla_{b} v^{c}+R_{e a b}^{c} v^{e}=0, \tag{0.2}
\end{equation*}
$$

where $R_{\text {eab }}{ }^{c}$ is the Riemannian curvature tensor. As the equation (0.2) is a consequence of (0.1), a Killing vector is necessarily an affine Killing vector. As to the converse, the following theorem is famous.

Theorem A. (Yano [5] ${ }^{2)}$) In a compact Riemannian space an affine Killing vector is a Killing vector.

On the other hand, concerning the integrability condition of Killing's equation, the following theorem is well known. ${ }^{3}$)

Theorem B. A necessary and sufficient condition in order that for any point p of a Riemannian space M^{n} and any constants C_{a} and $C_{a b}$ $\left(=-C_{b a}\right)$ there exists (locally) a Killing vector v^{a} satisfying $v_{a}(p)=C_{a}$, $\left(\nabla_{a} v_{b}\right)(p)=C_{a b}$ is that M^{n} is a space of constant curvature.

As a generalization of Killing vector, K. Yano [6] has defined Killing tensor as follows:

A skew symmetric tensor $u_{a_{1} \ldots a_{r}}$ is called a Killing tensor of order r, if it satisfies

[^0]\[

$$
\begin{equation*}
\nabla_{a_{1}} u_{a_{2} \cdots a_{r+1}}+\nabla_{a_{2}} u_{a_{1} a_{3} \cdots a_{r+1}}=0 . \tag{0.3}
\end{equation*}
$$

\]

We shall call this equation the Killing-Yano's equation.
The purpose of this paper is to obtain the corresponding theorems for Killing tensor of order 2 to the theorems stated above.

In §1 we shall deduce an equation for Killing tensor corresponding to (0.2). $\S 2$ will be devoted to the discussion of the integrability condition of Killing-Yano's equation. T. Fukami and S. Ishihara [3] have given an example of Killing tensor of order 2 which is related to the almost complex structure on S^{6} given by A. Fröhlicher [2]. Recently Y. Ogawa [4] showed that there exists Killing tensors of order odd in a Sasakian space. In $\S 3$ we shall give examples of Killing tensor of order 2 in the Euclidean space and in the sphere. About Killing tensor of order $r(>2)$ we shall discuss in another place.

1. Killing tensor. Let $u_{a b}$ be a Killing tensor in an $n(>2)$ dimensional Riemannian space M^{n}. Then as we have

$$
\nabla_{b} u_{c d}+\nabla_{c} u_{b d}=0,
$$

it follows that

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}+\nabla_{a} \nabla_{c} u_{b d}=0 \tag{1.1}
\end{equation*}
$$

Interchanging the indices in (1.1) as $a \rightarrow b \rightarrow c \rightarrow a$, we have

$$
\begin{align*}
& \nabla_{b} \nabla_{c} u_{a d}+\nabla_{b} \nabla_{a} u_{c d}=0, \tag{1.2}\\
& \nabla_{c} \nabla_{a} u_{b d}+\nabla_{c} \nabla_{b} u_{a d}=0 . \tag{1.3}
\end{align*}
$$

Forming (1.1)+(1.2)-(1.3), we get

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}+\nabla_{b} \nabla_{a} u_{c d}+\left(\nabla_{a} \nabla_{c} u_{b d}-\nabla_{c} \nabla_{a} u_{b d}\right)+\left(\nabla_{b} \nabla_{c} u_{a d}-\nabla_{c} \nabla_{b} u_{a d}\right)=0 . \tag{1.4}
\end{equation*}
$$

Then by virtue of the Ricci's identity:

$$
\nabla_{a} \nabla_{c} u_{b d}-\nabla_{c} \nabla_{a} u_{b d}=-R_{a c b}{ }^{e} u_{e d}-R_{a c d}{ }^{e} u_{b e}
$$

we can write (1.4) in the following form:

$$
\begin{equation*}
2 \nabla_{a} \nabla_{b} u_{c d}+2 R_{b c a}{ }^{e} u_{d e}-R_{b a d}{ }^{e} u_{c e}-R_{a c d}{ }^{e} u_{b e}-R_{b c d}{ }^{e} u_{a e}=0 . \tag{1.5}
\end{equation*}
$$

Though (1.5) may be the equation corresponding to (0.2), it seems to be desirable that we have equations in the form skew symmetric with respect
to b, c and d. We shall proceed to find such equations as follows.
Interchanging the indices in (1.5) as $b \rightarrow c \rightarrow d \rightarrow b$, we have

$$
\begin{aligned}
& 2 \nabla_{a} \nabla_{c} u_{d b}+2 R_{c a a}{ }^{e} u_{b e}-R_{c a b}{ }^{e} u_{d e}-R_{a d b}{ }^{e} u_{c e}-R_{c d b}{ }^{e} u_{a e}=0, \\
& 2 \nabla_{a} \nabla_{d} u_{b c}+2 R_{d b a}{ }^{e} u_{c e}-R_{d a c}{ }^{e} u_{b e}-R_{a b c}{ }^{e} u_{d e}-R_{d b c}{ }^{e} u_{a e}=0 .
\end{aligned}
$$

Adding these equations to (1.5) and taking account of the skew symmetric property of $\nabla_{b} u_{c d}$, we can get

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}+(1 / 2)\left(R_{c a a}{ }^{e} u_{b e}+R_{b c a}{ }^{e} u_{d e}+R_{d b a}{ }^{e} u_{c e}\right)=0, \tag{1.6}
\end{equation*}
$$

or equivalently

$$
\nabla_{a} \nabla_{b} u_{c d}+(1 / 2)\left(R_{\text {aec } d} u_{b}^{e}+R_{e a b c} u_{d}^{e}+R_{e a b d} u_{c}^{e}\right)=0
$$

It seems to be suitable to consider (1.6) as the equation corresponding to (0.2).

REMARK. In a space of constant curvature, as we have

$$
\begin{equation*}
R_{a b c}{ }^{d}=k\left(g_{b c} \delta_{a}{ }^{d}-g_{a c} \delta_{b}{ }^{d}\right) \tag{1.7}
\end{equation*}
$$

where k is constant, the equation (1.5) reduces to the following form:

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}=-k\left(g_{a b} u_{c d}+g_{a c} u_{d b}+g_{a d} u_{b c}\right) . \tag{1.8}
\end{equation*}
$$

For the discussion in the next section we prepare the following
LEMMA. If there exists (locally) a Killing tensor $u_{a b}$ satisfying $u_{a b}(p)=C_{a b}$ for any point p of M^{n} and any constants $C_{a b}\left(=-C_{b a}\right)$, then M^{n} is a space of constant curvature.

Proof. Forming (1.6) $\times 2-(1.5)$, we can get

$$
R_{c b a}{ }^{e} u_{d e}-R_{c b d}{ }^{e} u_{a e}+R_{a d c}{ }^{e} u_{b e}-R_{a d b}{ }^{e} u_{c e}=0,
$$

i.e.,

$$
\left(R_{c b a}{ }^{e} \delta_{d}{ }^{f}-R_{c b d}{ }^{e} \delta_{a}{ }^{f}+R_{a d c}{ }^{e} \delta_{b}{ }^{f}-R_{a d b}{ }^{e} \delta_{c}{ }_{c}^{f}\right) u_{f e}=0 .
$$

By the assumption, as the skew symmetric part of coefficients of $u_{f e}$ are zero, we have

$$
\begin{gathered}
R_{c b a}{ }^{e} \delta_{d}{ }^{f}-R_{c b d}{ }^{e} \delta_{a}{ }^{f}+R_{a d c}{ }^{e} \delta_{b}{ }^{f}-R_{a d b}{ }^{e} \delta_{c}{ }^{f} \\
-R_{c b a}{ }^{f} \delta_{d}{ }^{e}+R_{c b d}{ }^{f} \delta_{a}^{e}-R_{a d c}{ }^{f} \delta_{b}^{e}+R_{a d b}{ }^{f} \delta_{c}^{e}=0 .
\end{gathered}
$$

By contraction with respect to d and f it follows that

$$
(n-1) R_{c b a}{ }^{e}=-R_{a c} \delta_{b}^{e}+R_{a b} \delta_{c}^{e}
$$

Transvecting this with $g^{b a}$, we have $R_{c}{ }^{e}=(R / n) \delta_{c}{ }^{e}$, where R means the scalar curvature. Thus we can obtain the equation of the form (1.7).
Q.E.D.

Now we shall call a skew symmetric tensor $u_{a b}$ an affine Killing tensor (of order 2) if it satisfies (1.6). Then a Killing tensor is an affine Killing tensor. Conversely, we can obtain the following theorem corresponding to Theorem A.

THEOREM 1. In a compact Riemannian space, an affine Killing tensor (of order 2) is a Killing tensor.

Proof. Transvecting (1.6) with $g^{a b}$, we have

$$
\begin{equation*}
\nabla^{a} \nabla_{a} u_{c d}+(1 / 2)\left(R_{d}{ }^{e} u_{c e}+R_{c}^{e} u_{e d}+R_{c d a e} u^{a e}\right)=0 \tag{1.9}
\end{equation*}
$$

where $R_{c e}=g^{a b} R_{\text {cabe }}$ means the Ricci tensor.
Next from transvection (1.6) with $g^{b c}$, it follows that $\nabla_{a} \nabla^{b} u_{b d}=0$, so we get

$$
\begin{equation*}
\left(\nabla^{a} u_{a}^{d}\right)\left(\nabla^{b} \boldsymbol{u}_{b d}\right)=\nabla^{a}\left(\boldsymbol{u}_{a}^{d} \nabla^{b} \boldsymbol{u}_{b d}\right) . \tag{1.10}
\end{equation*}
$$

Without loss of generality we may assume that M^{n} is orientable and then applying the Green's theorem to (1.10) we have

$$
\begin{equation*}
\nabla^{b} u_{b d}=0 \tag{1.11}
\end{equation*}
$$

Thus we know that an affine Killing tensor satisfies (1.9) and (1.11). On the other hand, it is known that these equations are a sufficient condition for a skew symmetric tensor $u_{a b}$ to be a Killing tensor. ${ }^{\text {) }}$ Thus the theorem is proved.
Q.E.D.
2. Integrability condition of Killing-Yano's equation ${ }^{5}$. In a Riemannian space $M^{n}(n>2)$ we consider Killing-Yano's equation as a system of partial

[^1]differential equations of unknown functions $u_{a b}$. This system is equivalent to the following system of partial differential equations with unknown functions $u_{a b}$ and $u_{a b c}$:
\[

$$
\begin{gather*}
u_{b c}+u_{c b}=0, \tag{2.1}\\
u_{b c d}+u_{c b d}=0, \tag{2.2}\\
u_{b c d}+u_{b d c}=0, \tag{2.3}\\
\nabla_{b} u_{c d}=u_{b c d}, \tag{2.4}\\
\nabla_{a} u_{b c d}=-R_{b c a} e^{e} u_{d e}+(1 / 2)\left(R_{b a d}{ }^{e} u_{c e}+R_{a c d}{ }^{e} u_{b e}+R_{b c d}{ }^{e} u_{a e}\right) . \tag{2.5}
\end{gather*}
$$
\]

We shall discuss the integrability condition of this system.
Assume that the system (2.1) $\sim(2.5)$ is completely integrable, so for any point p of M^{n} and any constant $C_{a b}\left(=-C_{b a}\right)$ and $C_{b c d}\left(=-C_{c b d}=-C_{b d c}\right)$ there exists (locally) a Killing tensor $u_{a b}$ satisfying $u_{a b}(p)=C_{a b}$ and $\left(\nabla_{b} u_{c d}\right)(p)=C_{b c d}$. Then, by Lemma in $\S 1$, we know that M^{n} is a space of constant curvature.

Conversely, we shall show that the system is compltely integrable if M^{n} is of constant curvature.

From our assumtion, we can replace (2.5) by the following equation :

$$
\begin{equation*}
\nabla_{a} u_{b c d}=-k\left(g_{a b} u_{c d}+g_{a c} u_{d b}+g_{a d} u_{b c}\right), \tag{2.5}
\end{equation*}
$$

on taking account of (1.8).
The equation obtained from (2.1) by differentiation :

$$
\partial_{a} u_{b c}+\partial_{a} u_{c b}=0, \quad\left(\partial_{a}=\partial / \partial x^{a}\right)
$$

are satisfied identically by (2.4), (2.3) and (2.1). Next consider the equations obtained from (2.2) by differentiation :

$$
\begin{equation*}
\partial_{a} u_{b c d}+\partial_{a} u_{c b d}=0 . \tag{2.6}
\end{equation*}
$$

We can see easily that (2.6) is satisfied identically by (2.5)', (2.1) and (2.3). The equation obtained from (2.3):

$$
\partial_{a} u_{b c a}+\partial_{a} u_{b d c}=0
$$

are satisfied identically too by virtue of (2.1), (2.5)' and (2.3).
Next consider the integrability condition of (2.4):

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}-\nabla_{b} \nabla_{a} u_{c d}=-R_{a b c}{ }^{e} u_{e d}-R_{a b d}{ }^{e} u_{c e} \tag{2.7}
\end{equation*}
$$

Taking account that M^{n} is of constant curvature, we know that (2.7) is an algebraic consequence of (2.4), (2.5)' and (2.1).

The integrability condition of (2.5)' is

$$
\nabla_{f} \nabla_{a} u_{b c i}-\nabla_{a} \nabla_{f} u_{b c d}=-R_{f a b}{ }^{e} u_{e c a}-R_{f a c}{ }^{e} u_{b e d}-R_{f a d}{ }^{e} u_{b c e}
$$

which follows from (2.5)', (2.4), (2.2) and (2.3).
Thus the system (2.1) $\sim(2.4)$ and (2.5)' is completely integrable. Hence we get

Theorem 2. A necessary and sufficient condition in order that KillingYano's equation is completely integrable is that the Riemannian space M^{n} ($n>2$) is a space of constant curvature.
3. Examples of Killing tensors. (i) Let E^{n+1} be a Euclidean space and $\left\{y^{\lambda}\right\}(\lambda=1, \cdots, n+1)$ an orthogonal coordinate system. A Killing tensor in E^{n+1} is a skew symmetric tensor $u_{\lambda \mu}$ such that

$$
\begin{equation*}
\partial_{\lambda} u_{\mu \nu}+\partial_{\mu} u_{\lambda \nu}=0, \quad\left(\partial_{\lambda}=\partial / \partial y^{\lambda}\right) \tag{3.1}
\end{equation*}
$$

For such a tensor, we have by virtue of (1.5)

$$
\partial_{\lambda} \partial_{\mu} u_{\nu \omega}=0 .
$$

Integrating the last equation we get as the general solution of (3.1)

$$
\begin{equation*}
u_{\nu \omega}=y^{\alpha} a_{\alpha \nu \omega}+b_{\nu \omega} \tag{3.2}
\end{equation*}
$$

where $a_{\alpha \nu \omega}$ and $b_{\nu \omega}$ are skew symmetric constant tensors.
(ii) Consider an $n+1$ dimensional Riemannian space M^{n+1} and a hypersurface M^{n} represented locally by $y^{\lambda}=y^{\lambda}\left(x^{a}\right)$ in terms of local coordinates $\left\{y^{\lambda}\right\}$ in M^{n+1} and $\left\{x^{a}\right\}$ in M^{n}. Putting $B_{a}^{\lambda}=\partial y^{\lambda} / \partial x^{a}$, the induced metric $g_{a b}$ is given by $g_{a b}=G_{\lambda \mu} B_{a}^{\lambda} B_{b}{ }^{\mu}$, where $G_{\lambda \mu}$ means the Riemannian metric of M^{n+1}. The second fundamental tensor $H_{a b}{ }^{\lambda}$ is defined by

$$
H_{a b}^{\lambda} \equiv \nabla_{a} B_{b}^{\lambda} \equiv \partial B_{b}^{\lambda} / \partial x^{a}-\left\{\begin{array}{c}
c \\
a b
\end{array}\right\} B_{c}^{\lambda}+\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\} B_{a}^{\mu} B_{b}{ }^{\nu},
$$

where $\left\{\begin{array}{c}c \\ a b\end{array}\right\}$ means the Christoffel's symbols of $g_{a b}$.
Let $u^{\lambda \mu}$ be a skew symmetric tensor field in M^{n+1} and assume that it is tangent to M^{n} at any point of M^{n}, i.e., we have on M^{n}

$$
\begin{equation*}
u^{\lambda_{\mu}}=B_{a}^{\lambda} B_{b}{ }^{\mu} v^{a b}, \tag{3.3}
\end{equation*}
$$

where $v^{a b}$ is a skew symmetric tensor field on M^{n}.
Defining $B^{a}{ }_{\lambda}$ by $B^{a}{ }_{\lambda}=g^{a b} g_{\lambda \mu} B_{b}{ }^{\mu}$, (3.3) reduces to

$$
u_{\lambda_{\mu}}=B^{a}{ }_{\lambda} B^{b}{ }_{\mu} v_{a b}
$$

in terms of covariant components of the tensor.
If we differentiate the last equation covariantly along M^{n}, we obtain

$$
\begin{aligned}
\nabla_{c} u_{\lambda \mu} & \equiv B_{c}{ }^{\nu} \nabla_{\nu} u_{\lambda \mu} \\
& =\left(H_{c}{ }_{\lambda}{ }_{\lambda} B^{b}{ }_{\mu}+B^{a}{ }_{\lambda} H_{c}{ }^{b}{ }_{\mu}\right) v_{a b}+B^{a}{ }_{\lambda} B_{\mu}^{b}{ }_{\mu} \nabla_{c} v_{a b} .
\end{aligned}
$$

Transvecting this with $B_{d}{ }^{\lambda}$ we can get

$$
\begin{equation*}
B_{c}{ }^{\nu} B_{d}{ }^{\lambda} \nabla_{\nu} u_{\lambda \mu}=H_{c}{ }^{b}{ }_{\mu} v_{a b}+B^{b}{ }_{\mu} \nabla_{c} v_{d b} . \tag{3.4}
\end{equation*}
$$

Now we assume that our M^{n} is totally umbilic. Then there exists a vector field C_{λ} on M^{n} locally such as $H_{c}{ }^{b}{ }_{\mu}=C_{\mu} \delta_{c}{ }^{b}$ and hence (3.4) reduces to

$$
B_{c}{ }^{\nu} B_{d}{ }^{\lambda} \nabla_{\nu} u_{\lambda \mu}=C_{\mu} v_{d c}+B_{\mu}^{b}{ }_{c} \nabla_{c} v_{d b} .
$$

This equation shows that $v_{d b}$ is a Killing tensor on M^{n} provided that $u_{\lambda \mu}$ is Killing.

Now let $M^{n+1}=E^{n+1}$ and apply the above argument to the sphere $S^{n}: \Sigma\left(y^{\lambda}\right)^{2}=1$. The condition in order that a skew symmetric tensor $u_{\lambda \mu}$ to be tangent to S^{n} everywhere is $y^{\alpha} u_{\alpha \mu}=0$. As a Killing tensor in E^{n+1} is of the form (3.2), we know that

$$
u_{\lambda \mu}=y^{\alpha} a_{\alpha \lambda \mu}
$$

is a Killing tensor defined globally on S^{n}, where $a_{\alpha \lambda \mu}$ is a skew symmetric constant tensor in E^{n+1}.

Bibliography

[1] L. P. Eisenhart, Continuous groups of transformations, Princeton Univ. Press, 1933.
[2] A. FröHlicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann., 129 (1955), 50-95.
[3] T. Fukami and S. Ishihara, Almost Hermitian structure on S^{6}, Tôhoku Math. Journ., 7(1955), 151-156.
[4] Y. Ogawa, On C-harmonic forms in a compact Sasakian space, Tôhoku Math. Journ., 19(1967), 267-296.
[5] K. Yano, On harmonic and Killing vector fields, Ann. of Math., 55(1952), 38-45.
[6] K. YaNO, Some remarks on tensor fields and curvature, Ann. of Math., 55(1952), 328-347.
[7] K. Yano, and S. Bochner, Curvature and BettiInumbers, Ann. of Math., Studies, N. 32, 1953.

Department of Mathematics
Ochanomizu University
TOKYO, JAPAN

[^0]: 1) Indices a, b, \ldots run over the range $1,2, \ldots, n$.
 2) The number in brackets refers to the Bibliography at the end of the paper.
 3) For example, L.P. Eisenhart, [1], p. 213.
[^1]: 4) K. Yano, [6]. K. Yano and S. Bochner, [7] p. 76.
 5) In this section, we shall assume that M^{n} and all quantities are real analytic.
