A REMARK ON A CLASS OF CONVOLUTION TRANSFORMS

Z. Ditzian and A.Jakimovski

(Received September 11, 1967; revised November 21, 1967)

1. Introduction. In this paper the kernels of a class of convolution transforms will be treated. The convolution transform is defined (as usual) by

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} G(x-t) Y(t) d t \tag{1.1}
\end{equation*}
$$

where $G(t)$ is the kernel. In our case the bilateral Laplace transform of $G(t)$ exists in a certain vertical strip, and

$$
\begin{equation*}
[F(s)]^{-1}=\int_{-\infty}^{\infty} e^{-s t} G(t) d t \tag{1.2}
\end{equation*}
$$

We shall limit $F(s)$ (which is of course limited also by (1.2)) as follows:

$$
\begin{equation*}
F(s)=e^{b s} \prod_{k=1}^{\infty}\left\{\left(1-s a_{k}^{-1}\right) e^{s / a_{k}} /\left(1-s c_{k}^{-1}\right) e^{s / c_{k}}\right\} \tag{1.3}
\end{equation*}
$$

where b, $\left\{a_{k}\right\}_{k=1}^{\infty}$ and $\left\{c_{k}\right\}_{k=1}^{\infty}$ are real numbers, $0 \leqq\left(a_{k} / c_{k}\right)<1$ and $\sum_{k=1}^{\infty} a_{k}^{-2}<\infty$. We shall permit $c_{k}=\infty$ when $a_{k}>0$ or $c_{k}=-\infty$ when $a_{k}<0$ by which we shall understand $\left(1-s c_{k}^{-1}\right) e^{s / c_{k}} \equiv 1$.
Y. Tanno in some papers (see [3], [4] and [5] for example) treated these transforms which were first introduced by Hirschman and Widder [1].

We shall show that one of the main conditions imposed on the kernels and in fact on $F(s)$ in [5] (see formula (5) of [5, p. 157]) is satisfied automatically for a much greater class than that treated in [3] [4] and [5]. In the following papers we shall treat the behaviour and inversion of this class of transforms.
2. Properties of $\boldsymbol{F}(\boldsymbol{s})$ defined in (1.3). The investigation of $F(s)$ will be useful for that of $G(t)$. For the following Theorem we have to define

$$
\begin{equation*}
\alpha_{1}=\max \left\{a_{k},-\infty \mid a_{k}<0\right\}, \alpha_{2}=\min \left\{a_{k}, \infty \mid a_{k}>0\right\} \tag{2.1}
\end{equation*}
$$

$$
\gamma_{1}=\max \left\{c_{k},-\infty \mid c_{k}<0\right\} \text { and } \gamma_{2}=\min \left\{c_{k}, \infty \mid c_{k}>0\right\} .
$$

ThEOREM 2.1. Let $F(s)$ be defined by (1.3), $s=\sigma+i \tau,\left(\gamma_{1}+\alpha_{1}\right) / 2 \leqq \sigma$ $\leqq\left(\gamma_{2}+\alpha_{2}\right) / 2$ and $-\infty<\tau<\infty$; then

$$
\begin{equation*}
|F(\sigma+i \tau)|^{-1} \leqq|F(\sigma)|^{-1} . \tag{2.3}
\end{equation*}
$$

Proof. By definition

$$
|F(\sigma+i \tau)|=e^{b \sigma} \prod_{k=1}^{\infty}\left\{\left[\left(1-\frac{\sigma}{a_{k}}\right)^{2}+\frac{\tau^{2}}{a_{k}^{2}}\right] e^{\sigma / a_{k}} /\left[\left(1-\frac{\sigma}{c_{k}}\right)^{2}+\frac{\tau^{2}}{c_{k}^{2}}\right] e^{\sigma / c_{k}}\right\}^{\frac{1}{2}}
$$

A simple calculation will show that for $k=1,2, \cdots$ and $\left(\alpha_{1}+\gamma_{1}\right) / 2 \leqq \sigma$ $\leqq\left(\alpha_{2}+\gamma_{2}\right) / 2$ the function $\left\{\left[\left(1-\frac{\sigma}{a_{k}}\right)^{2}+\left(\frac{\tau}{a_{k}}\right)^{2}\right] /\left[\left(1-\frac{\sigma}{c_{k}}\right)^{2}+\left(\frac{\tau}{c_{k}}\right)^{2}\right]\right\}$ has a single minimum at $\tau=0$ as a function of τ.
Q.E.D.

For the next Theorem we shall need the following definitions.
Definition 2.1. For a sequence $\left\{b_{k}\right\}$ of real numbers, the integer $N\left(\left\{b_{k}\right\}\right.$, x) is the number of elements of the sequence $\left\{b_{k}\right\}$ between 0 and x, (may also be equal to x.

Definition 2.2. For a pair of sequence $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ of real numbers we define

$$
\begin{align*}
& N_{+} \equiv N_{+}\left(\left\{a_{k}\right\},\left\{c_{k}\right\}\right) \equiv \liminf _{x \rightarrow \infty}\left(N\left(\left\{a_{k}\right\}, x\right)-N\left(\left\{c_{k}\right\}, x\right)\right), \tag{2.4}\\
& N_{-} \equiv N_{-}\left(\left\{a_{k}\right\},\left\{c_{k}\right\}\right) \equiv \liminf _{x \rightarrow-\infty}\left(N\left(\left\{a_{k}\right\}, x\right)-N\left(\left\{c_{k}\right\}, x\right)\right) . \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
N \equiv N\left(\left\{a_{k}\right\},\left\{c_{k}\right\}\right) \equiv N_{+}+N_{-} . \tag{2.6}
\end{equation*}
$$

REMARK. N_{+}, N_{-}and N may be $0,1,2, \cdots$ or $+\infty$.
THEOREM 2.2. Let $F(s)$ be defined by (1.3), then for all integers n satisfying $n \leqq N$,

$$
\begin{equation*}
|F(\sigma+i \tau)|^{-1}=O\left(|\tau|^{-n}\right) \quad|\tau| \rightarrow \infty \tag{2.7}
\end{equation*}
$$

uniformly in the strip $|\sigma| \leqq R$.

Proof. Define $F_{+}(s)$ and $F_{-}(s)$ by

$$
\begin{equation*}
F_{+}(s)=\prod_{a_{k}>0}\left\{\left(1-s a_{k}^{-1}\right) /\left(1-s c_{k}^{-1}\right)\right\} \exp \left(s\left(a_{k}^{-1}-c_{k}^{-1}\right)\right) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{-}(s)=e^{-b s} F(s) / F_{+}(s) \tag{2.9}
\end{equation*}
$$

It is enough to prove that for every n_{1} and n_{2} satisfying $n_{1} \leqq N_{+}$and $n_{2} \leqq N_{-}$we have

$$
\begin{equation*}
\left|F_{+}(\sigma+i \tau)\right|^{-1}=O\left(|\tau|^{-n_{1}}\right) \quad|\tau| \rightarrow \infty \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F_{-}(\sigma+i \tau)\right|^{-1}=O\left(|\tau|^{-n_{s}}\right) \quad|\tau| \rightarrow \infty . \tag{2.11}
\end{equation*}
$$

Let $\left\{a_{k(i)}\right\}$ and $\left\{c_{k(i)}\right\}$ be a finite (and in this case of the same number of elements) or infinite subsequences of $\left\{a_{k}\right\}$ and $\left\{c_{k}\right\}$ respectively such that $a_{k(i)}>0$ and if $a_{k_{0}}>0$ then $k_{0} \in\{k(i)\}$. Obviously

$$
F_{+}(s)=\Pi\left(1-s a_{k(i)}^{-1}\right) \exp s a_{k(i)}^{-1} / \Pi\left(1-s c_{k(i)}^{-1}\right) \exp s c_{k(i)}^{-1}
$$

and the two finite or infinite products do converge. Define the subsequence of $\{k(i)\}$ for which $c_{k(i)}=\infty$ by $\{k(i, 1)\}$ and $a_{k j}, c_{k,}^{*}$ be a rearrangement of $a_{k(i)}$, and $c_{k(i)}$ for which $c_{k(i)}<\infty$ such that $a_{k}<a_{k s_{+1}}, c_{k,}^{*}<c_{k_{j+1}}^{*}$.

One has now $F_{+}(s) \equiv F_{+, 1}(s) F_{+, 2}(s)$, where

$$
\begin{aligned}
& F_{+, 1}(s)=\Pi\left(1-\frac{s}{a_{k(i, 1)}}\right) \exp \frac{s}{\mathrm{a}_{k(i, 1)}}, \\
& F_{+, 1}(s)=\Pi\left[\left(1-\frac{s}{a_{k,}}\right) /\left(1-\frac{s}{c_{k,}^{*}}\right)\right] \exp \left(\frac{s}{a_{k_{s}}^{-1}}-\frac{s}{c_{k,}^{*}}\right) .
\end{aligned}
$$

If the product $F_{+, 1}(s)$ is infinite or its number of elements is equal to N_{+}then the proof of (2.10) follows immediately. If $F_{+, 1}(s)$ is a finite product of p elements (p may be zero), then: $N^{*}=N_{+}\left(\left\{a_{k_{i}}\right\},\left\{c_{k_{i}}^{*}\right\}\right)=N_{+}-p$. To conclude the proof we should show for all finite $n, n \leqq N^{*}$ that

$$
\left|F_{+, 2}(\sigma+i \tau)\right|^{-1}=O\left(|\tau|^{-n}\right) \quad|\tau| \rightarrow \infty
$$

uniformly in the strip $|\sigma| \leqq R$ (R arbitrary).
The range of values of $N\left(\left\{a_{k_{i}}\right\}, x\right)-N\left(\left\{c_{k_{i}}^{*}\right\}, x\right)$ as a function of x is included in $\{0,1,2, \cdots\}$. Therefore for any finite $n, n \leqq N^{*} \equiv \liminf _{x \rightarrow \infty}\left(N\left(\left\{a_{k_{1}}\right\}, x\right)\right.$ $\left.-N\left(\left\{c_{k_{1}}^{*}\right\}, x\right)\right)$ there exists an x_{0} such that for $x \geqq x_{0} N\left(\left\{a_{k_{1}}\right\}, x\right)-N\left(\left\{c_{k_{k_{1}}^{*}}^{*}\right\}, x\right) \geqq n$.

Let us choose m to be the biggest integer satisfying $a_{k_{m+n}} \leqq x_{0}+R$ and therefore $c_{k_{m+1}}^{*}>x_{0}+R$.

One may write $F_{+, 2}(s)=F_{3}(s) \cdot F_{4}(s) \cdot F_{5}(s)$, where $s=\boldsymbol{o}+i \tau$ and

$$
\begin{aligned}
& F_{3}(s)=\prod_{i=1}^{m}\left[\left(1-\frac{s}{a_{k_{t}}}\right) \exp \frac{s}{a_{k_{t}}} /\left(1-\frac{s}{c_{k_{4}}^{*}}\right) \exp \frac{s}{c_{k_{t}}^{*}}\right] \\
& F_{4}(s)=\prod_{j=1}^{n}\left(1-\frac{s}{a_{k_{m+j}}}\right) \exp \frac{s}{a_{k_{m+j}}}, \\
& F_{5}(s)=\prod_{i=m+1}^{\infty}\left[\left(1-\frac{s}{a_{k_{t+n}}}\right) \exp \frac{s}{a_{k_{t+n}}} /\left(1-\frac{s}{c_{i+n}^{*}}\right) \exp \frac{s}{c_{k_{t+n}}^{*}}\right] .
\end{aligned}
$$

By the arguments which were used by I. I. Hirschman and D.V.Widder in [2] $\left|F_{4}(\sigma+i \tau)\right|^{-1}=O\left(|\tau|^{-n}\right)|\tau| \rightarrow \infty$ uniformly in $|\sigma| \leqq R$. Since for $x \geqq x_{0}$ $N\left(\left\{a_{k_{t}}\right\}, x\right)-N\left(\left\{c_{k_{t}}^{*}\right\}, x\right) \geqq n$, and therefore $N\left(\left\{a_{k_{i+n}}\right\}, x\right)-N\left(c_{k_{i}}^{*}, x\right) \geqq 0$ we have $a_{k_{t+n}} \leqq c_{k_{1}}^{*}$ for $i \geqq m$, therefore we have by Theorem $2.1 \quad\left|F_{5}(s)\right|^{-1} \leqq\left|F_{5}(\sigma)\right|^{-1}$. For $|\tau| \geqq 1$ and for $|\sigma| \leqq R$ (and since $a_{k_{i}} \leqq c_{k_{\mathrm{t}}}^{*}$)

$$
\begin{aligned}
\left|F_{3}(s)\right| \geqq & \geqq \exp \left(-R\left(\sum_{i=1}^{m} a_{k_{i}}^{-1}-\sum_{i=1}^{m} c_{k_{i}}^{-1}\right)\right) \\
\cdot & \prod_{i=1}^{m}\left\{\left[\left(1-\sigma / a_{k_{i}}\right)^{2}+\tau^{2} / a_{k^{\prime}}^{2}\right] /\left[\left(1-\sigma / c_{k_{i}}^{*}\right)^{2}+\tau^{2} / c_{k_{i}}^{*}\right]\right\} \geqq k . \quad \text { Q.E.D. }
\end{aligned}
$$

REMARK 2.3. One can note that for the class treated by Y.Tanno in [5] if there are infinitely many positive a_{k} 's we have $N_{-}=\infty$; if there are infinitely many negative a_{k} 's we have $N_{+}=\infty$; since $\left\{a_{k}\right\}$ was an infinite sequence $N_{+}+N_{-}=\infty$. For the class defined by Y.Tanno in [3] and [4],
i.e.,

$$
\begin{aligned}
& \Omega=\lim _{k \rightarrow \infty} a_{k} / k, \quad \lim _{k \rightarrow \infty} c_{k} / k=\Omega_{1} \quad \text { and } \\
& F(s)=\prod_{k=1}^{\infty}\left(1-s^{2} / a_{k}^{2}\right) / \prod_{k=1}^{\infty}\left(1-s^{2} / c_{k}^{2}\right)
\end{aligned}
$$

both $N_{+}=\infty$ and $N_{-}=\infty$. Theorem 2.2 implies that for the class defined in [3], [4] and [5] $|F(s)|^{-1}=O\left(|\tau|^{-n}\right),|\tau| \rightarrow \infty$, for any n and therefore the restriction (5) of [5, §1] is unnecessary. Moreover it is mentioned in [5, p.162] that "if $G(t)$ satisfies (5) of $\S 1$ for any positive α then $G(t) \in C^{\infty}(-\infty, \infty)$ " and since
it does for the class defined in [5] the kernels treated there are infinitely differentiable.

REMARK 2.4. Though the goal of this paper was an estimate of $F(s)$ to show $G(t) \in C^{\infty}(-\infty, \infty)$ for the convolution transforms of [5], we, in fact, introduced a rather wide class of convolution transforms that will satisfy $N_{+}+N_{-} \geqq n$. In forthcoming papers we shall treat the behaviour of the kernels of such transforms, convergence properties and for $N_{+}+N_{-} \geqq 2$ an inversion theory similar to that given by Y.Tanno.

References

[1] I.I.Hirschman and D.V.Widder, Generalized inversion formulas for convolution transforms, Duke Math. Journ., 15 (1948), 659-696.
[2] I. I. Hirschman and D.V. Widder, The convolution transform, Princeton Univ. Press, 1955.
[3] Y. Tanno, On the convolution transform, I, Kōdai Math. Sem. Rep., 2(1959), 40-50.
[4] Y. Tanno, On the convolution transform, II, III, Sci. Rep. of the Faculty of Litrature and Science, Hirosaki Univ., 9 (1962), 5-20.
[5] Y. Tanno, On a class of convolution transforms, Tôhoku Math. Journ., 18 (1966), 156-173.

Depertment of Mathmatics
The University of Alberta
Edmonton, Alberta, Canada
AND
Tel-Aviv University
Tel-Aviv, Israel

