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1. In [3] J.Schwartz has proved the following result.

Let T be an operator on a Hilbert space Sj of more than one dimension.
Write T = A + iB, where A and B are selfadjoint, and suppose that the
imaginary part B of T belongs to one of the classes Cp, where l : g / > < °°.
Then the Hilbert space admits a proper closed subspace which is invariant
under T.

The purpose of this note is to show that the above theorem may be
generalized to an operator such as T is the sum of a normal operator A
with some spectrum condition and a compact operator B with some condition.
In fact, we shall show the following theorem:

THEOREM. Let T be an operator on a Hilbert space ξ> of more than
one dimension. Write T = A + B, where T is the sum of a normal operator
A, whose spectrum lies on a Jordan curve J, which consists of a finite
number of rectifiable smooth arcs, (it may well be the case that the spectrum
separates the plane), and a compact operator B, which belo?ιgs to one of
the classes Cpy where 1 :g p<l oo. Then the Hilbert space admits a proper
closed subspace which is invariant under T.

Throughout the present note, an operator means a bounded linear operator
on a Hilbert space «£) which we assume to be separable. We denote by
o (T), σ p(T), σ*c(T), σγ(T) and ρ(T) the spectrum, the point spectrum, the
continuous spectrum, the residual spectrum and the resolvent set of an
operator T respectively. For the sake of convenience, we shall list some
results on the classes Cp ([2], Part II, Section XI. 9).

Let T be a compact operator on a Hilbert space and H = (T*T)1/2. Let
fc i, μ2 , , μn, * " be the eigenvalues of H, arranged in decreasing order and
repeated according to multiplicity. We write μ n{T) for the n-th eigenvalue
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of H. we write

in case p~ oo, | |T | | P , as usual, has the meaning | |T| |T O = sup/^/T) = μ-

The class Cp is the set of all compact operators T such that \\T\\P is finite.

THEOREM A. Let T £ CP, -where 1 ̂  ρ < oo, and let λ* = λ t(T)
eigenvalues of T, repeated according to multiplicity. Then

(a)

(b) if k^p, the infinite product

UT) = Π [(l+λ.) exp j - λ, + > ! + i~r^

converges absolutely,

(c) if k^p^k — 1, ί/ien? exists a finite constant Kι depending only on
p, such that

(d) for each TX^CV, the function hk(T+zT^) is an analytic function
of z.

THEOREM B. Let l^ρ<oo and TzCp. Let k^p^k—1, and let
δΛ(T) denote the infinite product of the preceding theorem. Then the
operator ΰk(T)(I-hT)~ι depends continuously on T, and satisfies the inequality

where K2 is a finite constant depending only on p.

Before going into discussions, the author wishes to express his hearty
thanks to Professor M. Fukamiya and Professor M. Takesaki for their valuable
suggestions and constant encouragement.

2. In order to prove our theorem, we need the following lemmas.

Now, we shall understand a smooth arc to be such that it has a continuous
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second derivative when parametrized with respect to arc length. We assume
that the curve J is positively oriented and, for a fixed λ0 on J, J has a
parametrization X=g(s), 0 rg 5 ίg l(J), in terms of arc length s from λ0, <7(0)=λ0,
g(s) = g(s+l(J)), and #(5) is continuous on J and g'(s), g"(s) are continuous
except the points ^k = g(sk), sk <sk+u k = 1,2, ,n on J, where Z(J) denotes
the whole length of J.

LEMMA 2.1. ([4]) Let J be as above. Then for each pair of the
points \a = g(sa\ Sj < sa < sj+l9 Xβ = g(sβ)y sk<sβ< sk+l9 sa < sβ on J and for
any sufficiently small number £, we have a closed simply connected domain
D(sa, sβ) containing the sub arc (g(sa), g(sβ)) of J in its interior such that

(a) 3D(sa, sβ), boundary of D(sa, sβ), is a rectifiable Jordan curve
traversing J at λα and \β only,

(b) for each λ € 3D(sa, sβ)Π {λ \\-g(sa)\ <€/4] , d(Λ,J)=\X-g(sa)\

and also for each \edD(sa,sβ)Π (λ |λ—^(5^)| <£/4}, d(X,J) = |λ —

(c) max d(\ arc [g(sa)9 g(sβ)]) < 8 .
λ€3Z>( )

LEMMA 2.2. (due to T. Yoshino) If an operator T is the sum of a com-
pact operator C and an operator S, then

PROOF. Suppose λ e σc(T) and λ € ρ(S). Then there exist unit vectors
xn € φ such that Txn — Xxn —•> 0, because λ £ a c(T). Here by the compactness
of C, there exists a non-zero vector y € ξ> such that Cxn — y —> 0, because if
y is a zero vector, then

US*, - λ^w|| rg \\Txn - Xxn\\ + IIC^JI - > 0 ,

i.e., λ € O*(AS) and this contradicts with Xzρ(S). On the other hand, X £ ρ(S)
implies *?—λ is invertible. Let 2: = (*S—λ)"1^, then clearly z is a non-zero
vector and

||(5-λ)-'|| | |(5-λ)xn + y\\

= ll(5-λ)-|l \\(T-\)xn - (C^-^ll

^ IKS-λΠKIIT^-λ rJI + \\Cxn-y\\}

Therefore,
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||T*-λ*|| ^ \\Tz+Txn\\ + \\Txn-\xn\\

i.e., %£σp(T), this contradicts with λ € <rc(T). Thus σc(T)Cσ(5).

LEMMA 2.3. Ltf£ 7̂  be a quasi-nilpotent operator which is the sum of

a normal operator and a compact operator, then T is compact.

PROOF. By virture of that a normal quasi-nilpotent operator is zero.
This lemma may be proved just in the same way as in the proof of Lemma
2.2 of [3].

LEMMA 2.4. Let f{z) be a function analytic in the unit disc and for
some p^l. the following condition be satisfied

M)-p for N < 1 .

Then, there exists a finite constant K, independent of z, such that

\z\Y*-i for \z\<l.

PROOF. Let r be an arbitrary real value, satisfying 1/2 5g r < 1, then
using the Caratheodory inequality for the disc 12r | < r, we have

\f(z) - / ( 0 ) | ^2{(l-r)-» - Re/(0)} ^ ^ L

for \z\ < r. Thus we have

(i) l/(-)I^^P + v^Γ + ^

for all \z\ =2r— 1, where Kt (i = 1,2, 3) are finite constants. On the other
hand, let z be an arbitrary point of the unit disc 12: | < 1, then there exists
the real value r, satisfying \z\ =2r—1, therefore, it follows that the right hand
side of the inequality (1) is equal to 2p+ιK1(l-\z\)-p-1+2K2(l-\z\) + K3.
By p^ 1, we obtain the following inequality

where K is a finite constant independent of z. The proof of Lemma 2.4 is
now completed.
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3. We return to the proof of our theorem. We shall divide the proof
into portions. Theorem follows immediately in each case where the following
condition is satisfied : (i) σp(T)φ 0 (ii) σr(T)Φ 0 (iii) σ(T) is disconnected.
Therefore, we may prove this theorem under the condition that <τ(T)
coincide with σc(T) and is connected. Since the operator T may be translated,
we may assume without loss of generality that either σ(T) = {0} or or(T) is
a connected subarc of J. In the case or(T) = {0}, from Lemma 2.3, it follows
that the Hilbert space admits a proper closed invariant subspace under T, using
Aronszajn-Smith theorem ([1]). Therefore, we have only to show that there
can exist no operator T=A+B, where A is normal such that σ(A)dJ and
B e Cp, for some finite p^l, and σ(T) is a connected subarc of J and ξ)
admits no proper closed invariant subspace under T.

Let k be an integer such that k^p^k-1. Let δ(λ) = Bk(-B(\-A)-1).
By Theorem A, δ(λ) is defined and analytic for all λ £ p(A) and satisfies
the inequality

where dλ = d(\, σ(A)) denotes the distance from λ to the spectrum σ(A) and
K denotes some finite constant. By Theorem A, we have δ(λ) Φ 0 for every
\£p(A). Thus we have δ(λ) = exp {αc/λ)}, where ^ ( λ ) is defined and analytic
in the interior of the Jordan curve J, which we denote by Du and cc2(χ) is
defined and analytic in the exterior of the Jordan curve J, which we denote
by A- Then Λ/λ), ( j = l , 2 ) satisfy the inequalities

Let z = φj(X) be the conformal mappings of the domain Dό onto the unit
disc and let λ = ψj(z) be its inverse for j = 1,2 respectively. Then oL
are functions analytic in the unit disc, which satisfy the inequality

ReΛ,(λ) = Re(*,(&,(?)) ^Kχi-

for some finite constants K'j (7 = 1,2). It follows by Lemma 2.4 that

for some finite constants K' (7 = 1,2). Thus, returning back to the domain
Du D2 respectively, we find that

K'djΓ*-1 (.7 = 1,2)
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for some finite constant K\ In particular,

Re α/λ)^-£ '<&-»-• 0 = 1 , 2 )

so that

Since

( λ i ) = ,

it follows by Theorem B that there exists a finite constant Ko such that

(2) IKλ-TΠI

This growth condition of the resolvent of T near its spectrum σ(T) plays an
important role in our considerations.

LEMMA 3.1. Let T be as above. For each pair of the points Xa = g(sa),
Xβ = g(sβ), where sa < sβ on J and sa^sj9 sβ^sjy (J = 1929 , n) we put

( 3 ) @(sa, Sβ) — {x; (X—T)~1x is continuable to a function which is

analytic near the arc (g(sa), g(sβ))}

and

( 4 ) ©(Λo sβ) = [x (λ — T)~ιx is continuable to a function which is
analytic near the arc (g(sβ), g(sa + l(J)))} .

Then both <3(sa9Sβ) and <S(sα, sβ) are closed linear subspaces of the Hilbert
space ξ), invariant under T.

Proof of the first assertion of Lemma 3.1. Because both of the linearity
of @(sα, sβ) and the invariantness under T are plain, we have only to prove
that @(s«, sβ) is closed. Let xn <z <S(sa, sβ), and xn —> x. Let i?(λ, T : xn)
denote the analytic continuation of (λ — T)~x xn, then for every λ € p(T),
i?(λ, T :xn) —• (λ — T)" 1 x. For any sufficiently small positive number £, let
D0(sa+S9 sβ—€) be a closed simply connected domain containing the subarc
(g(sa+S)9 g(sβ—S)) of J indicated in Figure (#) in relation to given domain
D( ) in Lemma 2.1 (we can consider that Do( ) with sufficiently small ω
has the same properties of D( ) in Lemma 2.1). Then i?(λ, T : xn) are
analytic in the interior of D0(sa+8, sβ—£). Here we define the function
such that
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I Q(\ sa+ε,se-ε)

m(λ) = J
0

if λ Φ g(sa+€) and λ Φ g(sβ—S)

if λ = $<$«+£) or λ = g(sβ-£)

where Q(λ :*«+£, s^-f) = e x p t - e x p K λ - ^ + e ) ) " 1 eiW+θ^} - exp{-(X-g(sβ

-£))-i e*<*/»+*>}], 0χ = argz s .# (sα+£) and 02 - argί-s-^'fo-S). Then, m(λ)
is analytic and nonvanishing in the interior of D0(sa+G,Sβ—8). We define the
function /n(λ) on DoiSa+SySβ—S) as follows:

0

if A, Φ g(sa+S) and λ φ g(sβ—8)

if λ = g(sa+£) or λ = g(sβ-ε).

Then/ n (λ) are analytic in the interior of D0(sa+S,Sβ—£) and strongly con-
tinuous on 9 ΰ o ( ^ + ^ ^ - £ ) , which follows from the inequality (2). By the
maximum modulus principle, ί/n(λ)} is a uniform Cauchy sequence with
respect to λ, hence the limit function /0(λ) is analytic in the interior
of D0(sa+ε,Sβ—6) and so

^oo(λ) = /0(λ) Q(λ : sa+S, Sβ-S)-1

is also analytic in the interior of D0(sa-\-8, sβ—S). It follows that (λ — T)~ιx
has an analytic continuation to a neighborhood of the arc (g(sa+S), g(sβ—6))
for each sufficiently small 8, and hence to a neighborhood of the arc
(g(sa), g(sβ)). Thus x z @(sβ, sβ). The assertion for the @(sβ, sβ) may be
proved in just the same way.

Figure (*)
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LEMMA 3.2. Let T be an operator as above, and let <B(sa,sβ), ®(sa9sβ)9

Q(λ sβ,sa+l(J)) and D0(sβ,sa+l(J)) be as the same as in Lemma 3.1. For
any vector x in the Hilbert space, the function f(X) is defined such that

Q(Λ:sβ,sa+l(J))(X-T)-'x

if λ € dD0(se, sa +/(J)) - {g(se), g(sa + l(J))}

0 if X=g(s0) or X = g(sa+l(J)).

If b(z) is any numerical-valued function, analytic in \z\<\ and continuous
on I z I :=§ 1 and if r is the conformed mapping from D0(sβ, sa + l(J)) to the
unit disc, then the contour integral

(5) :y= [ b(z)fir-\z))dz

belongs to the space @(sa,sβ) of (3), where Co is the boundary of the unit
disc. Moreover, unless x belongs to the space @(sα, sβ) of (4), there exists a
function b(z) analytic in \z\ < 1 and continuous on \z\ ^ 1 such that the
vector y defined by (5) is non-zero.

Before proving Lemma 3.2, we notice that it implies our theorem.
Indeed suppose that T were an operator satisfying the hypotheses of Lemma
3.2. By Lemma 3.1, we have only to prove that @(sα, $#) and ®(sα, £#) are
non-trivial. We may assume σ(T) lies on both arcs (g(sa), g(sβ)) and
(ff(sβ)> g(βct+l{J))), because we can choose the pair of points λ« = g(sa) and
λ/3 = g(sβ) arbitrarily on J. This implies @(sΛ, sβ) Φ ξ> and ®(5α, sβ) Φ φ. Thus
we have only to prove that <S(sa,sβ)Φ{0] and ^(s^s^Φ {0}. By Lemma 3.2,
®(sa9sβ)Φξ>, ®(sa,sβ)Φ& imply %(sa,sβ)Φ [0], ®(sa9sβ)Φ{0} respectively.

PROOF OF LEMMA 3.2. Clearly, the function f(τ~\z)) is continuous on
Co. Using the resolvent equation, we have

for μζ p{T) Π Ext D<,(se, sa + l(J)), where Ext Z>0( ) denotes the exterior of
the domain DQ( ), thus

_ f K*)Q(λ = **>sa+l(J))(μ-T)-1 x ,f b(z)f(T-Xz)) d z _ f
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for the vector y of (5). By Cauchy's theorem, the second term is zero. Of
course, we have used the inequality (2) to guarantee the convergence of our
integrals. Therefore, we have

( 6 )

for the vector y of (5). Since the equality (6) is plainly analytic in
the exterior of D0(sβ,sa + l(J)), it follows that y £ &(sa, sβ). Next, we suppose
that the vector y denned by (5) is zero for each b(z) which is analytic in
\z\ < 1 and continuous on \z rg 1, i.e., for all such b(z)

[ b(z)βτ-\z))dz = 0.

Hence the vector-valued function f(τ~\z)) denned on Co must be the
boundary value of a vector-valued function analytic in | z | < 1 and continuous
on | # | ^ g l . Therefore /(λ) must be analytically continuable in the
interior of D0(sβ,sa+l(J)). Thus (λ—T)~ ι x must be continuable onto the
axe (g(sβ), g(sα-\-l(J))). Thus, X€<S(sα,sβ). The proof of Lemma 3.2 is now
completed.

As a immediate consequence of the above theorem and Theorem 9 of [4],
we have the following corollary.

COROLLARY 3.3. If T is the sum of α hyponormαl operator A,
whose spectrum lies on a Jordan curve J, which consists of a fi?ιite number
of a rectifiable smooth arcs, and a compact operator B, which belongs to
one of the classes Cp, for some finite p^l, then the Hilbert space admits
a proper closed subspace which is invariant under T.

In Mathematical Reviews (Vol. 26 (1963), #1759), L. de Branges states
that the method of [3] may be applicable in other cases, for instance when
T*T—I is compact. In this direction, we have the following corollary via
the polar decomposition.

COROLLARY 3.4. // T*T—I is an operator of the class Cm for some
finite p^l, then the Hilbert space admits a proper closed subspace which
is invariant under T.
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