EXCISION THEOREMS ON THE PAIR OF MAPS

Hideo Ando

(Received April 30, 1968)

Introduction. Let $E_{f} \longrightarrow X \xrightarrow{f} Y$ be an extended fibration. Then the 1-1 and onto correspondence $\varepsilon_{f}^{-1}: \pi_{1}(V, f) \rightarrow \pi\left(V, E_{f}\right)$ is defined easily (section 2). Moreover, let Ψ be the pair-map $\left(g_{1}, g_{2}\right): f_{1} \rightarrow f_{2}$ in (1.3); then the 1-1 and onto correspondence $\varepsilon_{\Psi}^{-1}: \pi_{2}(V, \Psi) \rightarrow \pi_{1}\left(V, f_{1,2}\right)$ is defined (section 3). The object of this paper is to establish excision theorems on the pair of maps by applying ε_{f}^{-1} and ε_{Ψ}^{-1}. These excision theorems are described in section 5 .

1. Preliminaries. Throughout this paper we consider the category of spaces of the homotopy type of $C W$-complexes with base points denoted by *, and all maps and homotopies are assumed to preserve base points.
$P X$ is the space of paths in X emanating from $*$, and ΩX is the loop space. If $f: X \rightarrow Y$ is any map, $Y \cup_{f} C X$ is the space obtained by attaching to Y the reduced cone over X by means of $f . \quad X$ is embedded in $C X$ by $x \rightarrow(x, 1)$, and ΣX is the reduced suspension. $X \times Y$ is the Cartesian product and $X \vee Y=X \times * \cup * \times Y$. Then the smash product $X \# Y$ is the quotient space $X \times Y / X \vee Y$.

By applying the mapping track functor, any map $f: X \rightarrow Y$ is converted into a homotopy equivalent fibre map $p: E \rightarrow Y$,

where

$$
\begin{aligned}
& E=\left\{(x, \eta) \in X \times Y^{I} \mid f(x)=\eta(1)\right\}, p(x, \eta)=\eta(0), \\
& E_{f}=\{(x, \eta) \in X \times P Y \mid f(x)=\eta(1)\}, i=\text { the inclusion map, } \\
& j_{f}(x, \eta)=x, h(x)=\left(x, \eta_{x}\right) \text { and } \eta_{x}(t)=f(x) \text { for } t \in I, \\
& \simeq \text { in the left diagram means homotopy commutativity. }
\end{aligned}
$$

Then the sequence $E_{f} \xrightarrow{j_{f}} X \xrightarrow{f} Y$ is called the extended fibration.
Dually, by applying the mapping cylinder functor, any map f is converted into a homotopy equivalent cofibre map $q: X \rightarrow M_{f}$.

$$
\underset{X}{X} \xrightarrow{q} M_{f} \xrightarrow{j} C_{f}
$$

where $\quad M_{f}=$ the mapping cylinder of $f, q(x)=(x, 0)$,

$$
k(x, t)=f(x) \text { for }(x, t) \in X \times I \text { and } k(y)=y \text { for } y \in Y
$$

then the sequence $X \xrightarrow{f} Y \xrightarrow{i_{f}} C_{f}$ is called the extended cofibration.
The join $X * Y$ of X and Y is the quotient space obtained from $X \times I \times Y$ by factoring out the relation: $\left(x, 0, y_{1}\right) \sim\left(x, 0, y_{2}\right)$ for all $y_{1}, y_{2} \in Y$ and $\left(x_{1}, 1, y\right) \sim\left(x_{2}, 1, y\right)$ for all $x_{1}, x_{2} \in X$. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration and let $r: E \cup_{i} C F \rightarrow B$ be given by $r \mid E=p$ and $r(C F)=*$.

Then we obtain
Proposition 1.2. [2; Theorem 1.1]. There exists a weak homotopy equivalence w: $F * \Omega B \rightarrow F_{r}$, where F_{r} is the fibre of r and given by $F_{r}=\{(a, \beta) \in E \times P B \mid p(a)=\beta(1)\} \cup(C F \times \Omega B)$.

We shall denote by j_{0} the composite of w with the projection $F_{r} \rightarrow$ $E \cup_{i} C F$; then the triple $F * \Omega B \xrightarrow{j_{0}} E \cup_{i} C F \xrightarrow{r} B$ may be regarded as a fibration [2]. We consider the diagram

which is homotopy commutative (commutative). Such a pair of maps (g_{1}, g_{2}) is called a transformation of f_{1} to f_{2}. If (1.3) is commutative, $\left(g_{1}, g_{2}\right)$ is called the pair-map and we write it as $\left(g_{1}, g_{2}\right): f_{1} \rightarrow f_{2}$.
2. The correspondence $\varepsilon_{f}^{-1}: \pi_{1}(\boldsymbol{V}, \boldsymbol{f}) \rightarrow \pi\left(\boldsymbol{V}, \boldsymbol{E}_{f}\right)$. Let $\left(g_{1}, g_{2}\right)$ be a transformation of f_{1} to f_{2}, and let $F_{t}: g_{2} \circ f_{1} \simeq f_{2} \circ g_{1}$ be a fixed homotopy. And we consider the following diagram
where $g_{1,2}: E_{f_{1}} \rightarrow E_{f_{2}}$ is defined by $g_{1,2}(a, \beta)=\left(g_{1}(a), \beta^{\prime}\right)$ for $a \in A, \beta \in P B$ with $f_{1}(a)=\beta(1)$, and $\beta^{\prime} \in P Y$ is given by

$$
\beta^{\prime}(s)=\left\{\begin{array}{lll}
g_{2} \beta(2 s) & \text { for } & 0 \leqq s \leqq 1 / 2 \\
F_{2 s-1}(a) & \text { for } & 1 / 2 \leqq s \leqq 1
\end{array}\right.
$$

Then the left diagram in (2.1) is commutative.
Now let $E_{f} \xrightarrow{j_{f}} X \xrightarrow{f} Y$ be an extended fibration. Then we consider the correspondence $\varepsilon_{f}^{-1}: \pi_{1}(V, f) \rightarrow \pi\left(V, E_{f}\right)$ defined as follows :

For any element $\left\{\left(a_{1}, a_{2}\right)\right\} \in \pi_{1}(V, f), \bar{a}_{2}: V \rightarrow P Y$ is defined by $\bar{a}_{2}(v)(s)$ $=a_{2}(v, s)$; then $\varepsilon_{f}^{-1}\left\{\left(a_{1}, a_{2}\right)\right\}=\left\{U_{\left(a_{1}, a_{2}\right)}\right\}, U_{\left(a_{1}, a_{2}\right)}(v)=\left(a_{1}(v), \bar{a}_{2}(v)\right)$. Thus defined ε_{f}^{-1} is well defined, and 1-1 and onto.

PROPOSITION 2.2. Let $\left(g_{1}, g_{2}\right)$ be a transformation of f_{1} to f_{2} with a fixed homotopy F_{t} or a pair-map. If g_{1} and g_{2} are homotopy equivalences then there exists a 1-1 and onto correspondence $\pi_{1}\left(V, f_{1}\right) \rightarrow \pi_{1}\left(V, f_{2}\right)$.

Proof. We consider the sequence

$$
\pi_{1}\left(V, f_{1}\right) \xrightarrow{\varepsilon_{f_{1}}^{-1}} \pi\left(V, E_{f}\right) \xrightarrow{g_{1,2 *}} \pi\left(V, E_{f_{1}}\right) \xrightarrow{\varepsilon_{f_{2}}} \pi_{1}\left(V, f_{2}\right),
$$

where $\varepsilon_{f_{2}}$ is the inverse correspondence of $\varepsilon_{f_{2}}^{-1}$. Since $g_{1,2}$ is the homotopy equivalence by [8; Lemma 6], $g_{1,2 *}$ is $1-1$ and onto. Hence $\varepsilon_{f_{1}} \circ g_{1,2 *} \circ \varepsilon_{f_{1}}^{1}$ is the desired correspondence. If $\left(g_{1}, g_{2}\right)$ is the pair-map then we have $\left(g_{1}, g_{2}\right)_{*}$ $=\varepsilon_{f_{\mathrm{z}}} \circ g_{1,2 *} \circ \varepsilon_{f_{1}}^{1}$.

If we now consider the pair-map $\left(1, g_{2}\right): f_{1} \rightarrow f_{2}=g_{2} \circ f_{1}$ and ($g_{1}, 1$): f_{1} $=f_{2} \circ g_{1} \rightarrow f_{2} ;$
then we have

Corollary 2.3. If $g_{2}: B \rightarrow X$ is a homotopy equivalence, then

$$
\left(1, g_{2}\right)_{*}: \pi_{1}\left(V, f_{1}\right) \rightarrow \pi_{1}\left(V, g_{1} \circ f_{1}\right)
$$

is 1-1 and onto.
Corollary 2.4. If $g_{1}: A \rightarrow X$ is a homotopy equivalence, then

$$
\left(g_{1}, 1\right)_{*}: \pi_{1}\left(V, f_{2} \circ g\right) \rightarrow \pi_{1}\left(V, f_{2}\right)
$$

is $1-1$ and onto.
Corollary 2.5. If $f_{1} \simeq f_{2}: A \rightarrow B$, then there exists a 1-1 and onto correspondence $\pi_{1}\left(V, f_{1}\right) \rightarrow \pi_{1}\left(V, f_{2}\right)$.

Remark. (i) Corollary 2.3 and 2.4 are extensions of Proposition 2.2 and 2.3 in [1], respectively.
(ii) We may define the dual 1-1 and onto correspondence $\varepsilon_{f}^{\prime-1}: \pi_{1}(f, W)$ $\rightarrow \pi\left(C_{f}, W\right)$.
3. The correspondence $\varepsilon_{\Psi}^{-1}: \pi_{2}(V, \Psi) \rightarrow \pi_{1}\left(V, f_{1,2}\right)$. We consider the pair$\operatorname{map} \Psi=\left(g_{1}, g_{2}\right): f_{1} \rightarrow f_{2}$. Then any element $\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\} \in \pi_{2}(V, \Psi)$ is represented by the commutative diagram

where $\iota C: C V \rightarrow C^{2} V$ and $C \iota: C V \rightarrow C^{2} V$ are given by $(v, t) \rightarrow(v, t, 1)$ and $(v, s) \rightarrow(v, 1, s)$, respectively. Maps $\bar{b}_{1}: V \rightarrow P X$ and $\overline{b_{2}}: C V \rightarrow P X$ are defined by $\bar{b}_{1}(v)(s)=b_{1}(v, s)$ and $\bar{b}_{2}(v, t)(s)=b_{2}(v, t, s)$, respectively. The correspondences

$$
\varepsilon_{\Psi}^{-1}: \pi_{2}(V, \Psi) \longrightarrow \pi_{1}\left(V, f_{1,2}\right), \quad f_{1,2}: E_{\sigma_{1}} \longrightarrow E_{0_{1}}
$$

are defined as follows: $\varepsilon_{\Psi}^{-1}\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\}=\left\{\left(U_{\left(a_{1} b_{1}\right)}, U_{\left(a_{1} b_{2}\right)}\right)\right\} \in \pi_{1}\left(V, f_{1,2}\right)$, where $U_{\left(a_{1} b_{1}\right)}(v)$ $=\left(a_{1}(v), \bar{b}_{1}(v)\right), U_{\left(a_{1} b_{v}\right)}(v, t)=\left(a_{2}(v, t), \bar{b}_{2}(v, t)\right)$. Then the definition of ε_{Ψ}^{-1} is
well defined, and if $\binom{a_{1} a_{2}}{b_{1} b_{2}} \simeq\binom{a_{1}^{\prime} a_{2}^{\prime}}{b_{1}^{\prime} b_{2}^{\prime}}$ then $\varepsilon_{\Psi}^{-1}\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\}=\varepsilon_{\bar{\Psi}}^{-1}\left\{\binom{a_{1}^{\prime} a_{2}^{\prime}}{b_{1}^{\prime} b_{2}^{\prime}}\right\}$.
Proposition 3.2. $\quad \varepsilon_{\psi}^{-1}: \pi_{2}(V, \Psi) \rightarrow \pi_{1}\left(V, f_{1,2}\right)$ is 1-1 and onto.
Proof. First we shall prove that ε_{Ψ}^{-1} is onto. For any $\{(f, g)\} \in \pi_{1}\left(V, f_{1,2}\right)$ we consider the commutative diagram

where $i_{\sigma_{1}}(a, \omega)=\omega$ for $a \in A, \omega \in P X$ and $i_{\theta_{2}}(b, \eta)=\eta$ for $b \in B, \eta \in P Y$.
Then maps $a_{1}: V \rightarrow A, a_{2}: C V \rightarrow B, b_{1}: C V \rightarrow X$ and $b_{2}: C^{2} V \rightarrow Y$ are defined as follows:
and

$$
\begin{aligned}
& a_{1}=j_{\sigma_{1}} \circ f, \quad a_{2}=j_{\sigma_{2}} \circ g, \\
& b_{1}(v, s)=\left(i_{\sigma_{1}} \circ f(v)\right)(s) \\
& b_{2}(v, t, s)=\left(i_{\sigma_{2}} \circ g(v, t)\right)(s) .
\end{aligned}
$$

Then we may show that the diagram (3.1) is commutative, and we obtain $\varepsilon_{\Psi}^{-1}\left\{\binom{a a_{1} a_{2}}{b_{1} b_{2}}\right\}=\{(f, g)\}$. Thus ε_{ψ}^{-1} is onto.

Next we shall see easily that $\varepsilon_{\bar{\Psi}}^{-1}$ is $1-1$.
REMARK. Also we may define the dual 1-1 and onto correspondence $\varepsilon_{\Psi}^{\prime \prime}: \pi_{2}(\Psi, W) \rightarrow \pi_{1}\left(f_{1,2}^{\prime}, W\right)$, where $f_{1,2}^{\prime}: C_{0_{1}} \rightarrow C_{v_{2}}$.
4. Transposition. We recall the notation of the transpose of a map [1; p. 291]. In the diagram (1.3), the transpose of the pair-map $\psi=\left(g_{1}, g_{2}\right): f_{1}$ $\rightarrow f_{2}$ is the map $\Psi^{T}=\left(f_{1}, f_{2}\right): g_{1} \rightarrow g_{2}$. Then the 1-1 correspondence between maps $\Phi \rightarrow \Psi$ and maps $\Phi^{T} \rightarrow \Psi^{T}$ is given by the transposition $\binom{a_{1} a_{2}}{b_{1} b_{2}} \rightarrow\binom{a_{1} b_{1}}{a_{2} b_{2}}$, where $\Phi=(\iota, \iota C)$ (c.f. (3.1)).

This correspondence induce a 1-1 and onto correspondence $\tau_{0}: \pi(\Phi, \Psi)$ $\rightarrow \pi\left(\Phi^{T}, \Psi^{\tau}\right)$. Let $u: C^{2} V \rightarrow C^{2} V$ be the homeomorphism given by $u(v, t, s)$ $=(v, s, t)$; then $\left(\begin{array}{ll}1 & 1 \\ 1 & u\end{array}\right)$ induces a 1-1 and onto correspondence $\tau_{1}: \pi(\Phi, \Psi) \rightarrow$ $\pi\left(\Phi^{T}, \Psi\right)$, where $\Phi=(\iota, \iota C)$. And we get the 1-1 and onto correspondence $\tau=\tau_{0} \tau_{1}: \pi_{2}(V, \Psi) \rightarrow \pi_{2}\left(V, \Psi^{\tau}\right)$ given by $\tau\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\}=\left\{\binom{a_{1} b_{1}}{a_{2} b_{2} u}\right\}$ for $\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\}$
$\epsilon \pi_{2}(V, \Psi)$.
Now we consider the following diagram induced from (1.3):

where

$$
\begin{array}{r}
E_{f_{1, s}}=\left\{((a, \omega),(\beta, \rho)) \in E_{\sigma_{1}} \times P E_{g_{2}} \mid g_{1}(a)=\omega(1), f_{1}(a)=\beta(1),\right. \\
f_{\sigma_{1}, 2}=\left\{((a, \beta),(\omega, \bar{\rho})) \in E_{f_{1}} \times P E_{f_{2}} \mid g_{1}(a)=\omega(s) \text { and } \rho(s, 1)=g_{2}(\beta(s))\right\}, f_{1}(a)=\beta(1), \\
\left.f_{2}(\omega(s))=\bar{\rho}(s, 1) \text { and } \bar{\rho}(1, s)=g_{2}(\beta(s))\right\},
\end{array}
$$

$\rho, \bar{\rho}: I \# I \rightarrow Y_{2}$, and maps set as follows:

$$
\begin{aligned}
& f_{1,2}(a, \omega)=\left(f_{1}(a), \omega^{\prime}\right) \text { for } \quad a \in A, \omega \in P X \quad \text { with } \quad \omega^{\prime}(s)=f_{2}(\omega(s)), \\
& g_{1,2}(a, \beta)=\left(g_{1}(a), \beta^{\prime}\right) \text { for } a \in A, \beta \in P B \quad \text { with } \beta(s)=g_{2}(\beta(s)), \\
& j_{f_{1}}(a, \beta)=a, j_{f_{2}}(x, \eta)=x, j_{f_{1,2}}((a, \omega),(\beta, \rho))=(a, \omega), \\
& j_{v_{1}}(a, \omega)=a, j_{g_{2}}(b, \eta)=b, j_{\sigma_{1,2}}((a, \beta),(\omega, \bar{\rho}))=(a, \beta) .
\end{aligned}
$$

Maps $d: E_{f_{1}, .} \rightarrow E_{\sigma_{1,2}}$ and $d^{\prime}: E_{\sigma_{1,2}} \rightarrow E_{f_{1,2}}$ defined by

$$
d((a, \omega),(\beta, \rho))=((a, \beta),(\omega, \rho \sigma)) \text { and } d^{e}((a, \beta),(\omega, \bar{\rho}))=((a, \omega),(B, \bar{\rho} \sigma)),
$$

respectively, are homeomorphisms, where $\sigma: I \# I \rightarrow I \# I$ is defined by $\sigma(s, t)=(t, s)$.

Proposition 4.1. $d_{*}: \pi\left(V, E_{f_{1}, 2}\right) \rightarrow \pi\left(V, E_{0_{1}, 2}\right)$ is equivalent to $\tau: \pi_{2}(V, \Psi)$ $\rightarrow \pi_{2}\left(V, \Psi^{T}\right)$ in the sense that the diagram

is commutative.

PROOF. For any element $\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\} \in \pi_{2}(V, \Psi)$ we see that

$$
\begin{aligned}
\varepsilon_{g_{1,2}}^{-1} \circ \varepsilon_{\psi^{T}}^{-1} \circ \tau \circ\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\} & =\varepsilon_{q_{1}, 2}^{-1} \circ \varepsilon_{\psi^{T}}^{-1}\left\{\binom{a_{1} b_{1}}{a_{2} b_{2} u}\right\} \\
& =\varepsilon_{\varepsilon_{1,2}}^{-1}\left\{\left(U_{\left(a_{1}, a_{2}\right)}, U_{\left(b_{1}, b_{2}\right)}\right)\right. \\
& =\left\{U_{\left.\left(U_{\left(a_{1}, a_{2}\right)}\right), U_{\left(b_{1}, b_{2} u\right)}\right)}\right\}
\end{aligned}
$$

where $U_{\left(U_{\left(a_{1}, a_{2}\right)}, U_{\left(b_{1}, b_{2} u\right)}\right)}(v)=\left(U_{\left(a_{1} a_{2}\right)}(v), \bar{U}_{\left(b_{1} b_{2} u\right)}(v)\right), \bar{U}_{\left(b_{1}, b_{2} u\right)}(v)(s)=\left(b_{1}(v, s), \overline{b_{2} u}(v, s)\right)$, and $\overline{b_{2} u}(v, s)(t)=b_{2}(v, t, s)$.

On the other hand,

$$
\begin{aligned}
d_{*} \circ \varepsilon_{f_{1}, 2}^{-1} \circ \varepsilon_{\Psi}^{-1}\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\} & =d_{*} \circ \varepsilon_{f_{1,2}}^{-1}\left\{\left(U_{\left(a_{1}, b_{1}\right)}, U_{\left(a_{2}, b_{2}\right)}\right)\right\} \\
& =d_{*}\left\{U_{\left(U_{\left(a_{1}, b_{1}\right)}, U_{\left(a_{2}, b_{2}\right)}\right)}\right\} \\
& =\left\{d \circ U_{\left(U_{\left(a_{1}, b_{1}\right)}, U_{\left(a_{2}, b_{2}\right)}\right)}\right\},
\end{aligned}
$$

and $U_{\left(U_{\left(a_{1}, b_{1}\right)}, U_{\left(a_{2}, b_{v}\right)}\right)}(v)=\left(U_{\left(a_{1}, b_{1}\right)}(v), \bar{U}_{\left(a_{2}, b_{2}\right)}(v)\right)=\left(\left(a_{1}(v), \bar{b}_{1}(v)\right),\left(\bar{a}_{2}(v), \overline{\bar{b}}_{2}(v)\right)\right)$ where $\overline{b_{1}}: V \rightarrow P X, \bar{a}_{2}: V \rightarrow P B, \bar{b}_{2}: V \rightarrow P(P Y)$ and $\overline{b_{2}}: C V \rightarrow P Y$ are maps such that $\quad \bar{b}_{1}(v)(s)=b_{1}(v, s), \quad \bar{a}_{2}(v)(t)=a_{2}(v, t), \quad \bar{b}_{2}(v)(t)=\bar{b}_{2}(v, t) \quad$ and $\quad \bar{b}_{2}(v, t)(s)$ $=b_{2}(v, t, s)$.

There exists a homeomorphism $\theta: Y^{I \# I} \approx\left(Y^{I}\right)^{I}$ defined by $\theta(f)(t)(s)=f(t, s)$, and hence $\bar{b}_{2}(v)$ may be replaced by $\theta^{-1} \bar{b}_{2}(v)$ such that $\left(\theta^{-1} \bar{b}_{2}(v)\right)(t, s)=(\bar{b}(v))(t)(s)$. Thus we have

$$
\begin{aligned}
&\left.d \circ U_{\left.\left(U_{\left(a_{1}, b_{1}\right)}\right), U_{\left(a_{2}, b_{v}\right)}\right)}\right) \\
&=\left(\left(a_{1}(v), \bar{a}_{2}(v)\right),\left(\bar{b}_{1}(v), \theta^{-1} \overline{\bar{b}}_{2}(v) \sigma\right)\right) \\
&\left.\left.=\overline{b_{1}}(v), \overline{b_{1}}(v)\right),\left(\bar{a}_{2}(v), \theta^{-1} \overline{\bar{b}_{2}}(v)\right)\right)
\end{aligned}
$$

such that $\left(\theta^{-1} \overline{b_{2}}(v) \sigma\right)(s, t)=\left(\theta^{-1} \overline{\overline{b_{2}}}(v)\right)(t, s)=\overline{\bar{b}_{2}}(v)(t)(s)=\bar{b}_{2}(v, t)(s)=b_{2}(v, t, s)$. Therefore we have the desired result.
5. The excision theorems. In this section we consider the excision theorems on pair of maps. Let Ψ, Ψ^{\prime} be pair-maps

and let $\binom{l_{1} l_{2}}{m_{1} m_{2}}$ be a map from Ψ to Ψ^{\prime}.
PROPOSITION 5.1. If $\Lambda=\left(l_{1}, l_{2}\right): f_{1} \rightarrow f_{1}^{\prime}$ and $\Theta=\left(m_{1}, m_{2}\right): f_{2} \rightarrow f_{2}^{\prime}$, and l_{1}, l_{2}, m_{1} and m_{2} are homotopy equivalences, then $(\Lambda, \Theta)_{*}=\binom{l_{1} l_{2}}{m_{1} m_{2}}_{*}$: $\pi_{2}(V, \Psi) \rightarrow \pi_{2}\left(V, \Psi^{\prime}\right)$ is 1-1 and onto.

Proof. We consider the following commutative diagram

where $f_{1,2}$ and $f_{1,2}^{\prime}$ are defined as before by f_{1}, f_{2} and $f_{1}^{\prime}, f_{2}^{\prime}$, respectively, and n_{1} and n_{2} are defined as follows:

$$
\begin{array}{llll}
n_{1}(a, \omega)=\left(l_{1}(a), \bar{\omega}\right) & \text { for } \quad a \in A, \omega \in P X & \text { with } & \bar{\omega}(s)=m_{1}(\omega(s)), \\
n_{2}(b, \eta)=\left(l_{2}(b), \bar{\eta}\right) & \text { for } & b \in B, \eta \in P Y & \text { with } \\
\bar{\eta}(s)=m_{2}(\eta(s)) .
\end{array}
$$

Then n_{1} and n_{2} are homotopy equivalences by the assumptions and we obtain the commutative diagram

$$
\begin{aligned}
& \pi_{1}\left(V, f_{1,2}\right) \xrightarrow{\left(n_{1}, n_{2}\right)_{*}^{*}} \pi_{1}\left(V, f_{1,2}^{\prime}\right) \\
& \overbrace{\varepsilon_{\Psi^{\prime}}^{-1}} \\
& \pi_{2}(V, \Psi) \xrightarrow{(\Lambda, \Theta)_{*}} \pi_{2}\left(V, \Psi^{\prime}\right),
\end{aligned}
$$

and $\left(n_{1}, n_{2}\right)_{*}$ is $1-1$ and onto by Proposition 2.2; hence $(\Lambda, \Theta)_{*}$ is $1-1$ and onto.
Corollary 5.2. In Proposition 5.1, if l_{1}, l_{2} are the identity maps and m_{1}, m_{2} are homotopy equivalences, then $(1, \Theta)_{*}: \pi_{2}(V, \Psi) \rightarrow \pi_{2}(V, \Theta \circ \Psi)$ is 1-1 and onto.

Similarly we have
Corollary 5.3. In Proposition 5.1, if m_{1}, m_{2} are the identity maps and l_{1}, l_{2} are homotopy equivalences, then $(\Lambda, 1)_{*}: \pi_{2}\left(V, \Psi^{\prime} \circ \Lambda\right) \rightarrow \pi_{2}\left(V, \Psi^{\prime}\right)$ is $1-1$ and onto.

REMARK. Corollary 5.2 and 5.3 are extensions of Proposition 6.2 and 6.3 in [1].

Let Ψ be a weak fibration (i.e., g_{1} and g_{2} are fibrations) with fibre $f_{X, Y}$:

Then there are excision correspondences

$$
\begin{aligned}
& \varepsilon_{1, \Psi}: \pi_{1}\left(V, f_{X, \boldsymbol{Y}}\right) \longrightarrow \pi_{2}(V, \Psi), \\
& \varepsilon_{2, \mathbf{I I}}: \pi_{2}(V, \Pi) \longrightarrow \pi_{2}\left(V, f_{2}\right)
\end{aligned}
$$

defined as follows: Let Π_{*} and Ψ^{*} be pair-maps such that

For any element $\quad\left\{\binom{a a_{1} a_{2}}{*}\right\} \in \pi_{2}\left(V, \Pi_{*}\right)=\pi_{1}\left(V, f_{x, \boldsymbol{r}}\right), \quad \varepsilon_{1, \Psi}\left\{\binom{a_{1} a_{2}}{*}\right\}$ $=\left\{\left(\begin{array}{c}j_{X} a_{1} j_{Y} a_{2} \\ * \\ *\end{array}\right)\right\} \in \pi_{2}(V, \Psi)$, and for any element $\left\{\binom{a_{1} a_{2}}{b_{1} b_{2}}\right\} \in \pi_{2}(V, \Pi), \varepsilon_{2, \Pi}\left\{\left(\begin{array}{l}\left.\left(\begin{array}{l}a_{1} \\ b_{1} b_{2} \\ b_{2}\end{array}\right)\right\}, ~\end{array}\right.\right.$ $=\left\{\left(\begin{array}{cc}* & * \\ g_{1} b_{1} & g_{2} b_{2}\end{array}\right)\right\} \in \pi_{2}\left(V, \Psi^{*}\right)=\pi_{2}\left(V, f_{2}\right)$.

We consider the following diagram

where

$$
\begin{array}{ll}
e_{X}(a)=\left(j_{X}(a), *\right) \text { for } a \in F_{X}, & e_{Y}(b)=\left(j_{Y}(b), *\right) \text { for } b \in F_{Y}, \\
\partial_{g_{1}}(\omega)=(*, \omega) \text { for } \omega \in \Omega X, & \partial_{\partial_{2}}(\eta)=(*, \eta) \text { for } \eta \in \Omega Y,
\end{array}
$$

and e_{X}, e_{Y} are homotopy equivalences [2]. Then we have the commutative diagrams

where $\quad \Lambda=\left(e_{X}, e_{Y}\right): f_{X, Y} \rightarrow f_{1,2}$ and $\Pi^{\prime}=\left(j_{\sigma_{1}}, j_{\sigma_{2}}\right): f_{1,2} \rightarrow f_{1}$.
In the above diagrams, since ε_{Ψ}^{-1} and $\left(e_{X}, e_{r}\right)_{*}$ are 1-1 and onto we get that $\varepsilon_{1, \Psi}$ is $1-1$ and onto, and since Π^{\prime} is a weak fibration with fibre Ωf_{2} the excision correspondence $\varepsilon_{1, \Pi^{\prime}}$ is $1-1$ and onto, and also $(\Lambda, 1)_{*}$ is $1-1$ and onto by Corollary 5.3. Hence $\varepsilon_{2, \mathrm{I}}$ is $1-1$ and onto.

The results obtained above are summarized as follows:
Theorem 1. If Ψ is a weak fibration as before, then the excision correspondences

$$
\begin{aligned}
& \varepsilon_{1, \Psi}: \pi_{1}\left(V, f_{x, Y}\right) \longrightarrow \pi_{2}(V, \Psi), \\
& \varepsilon_{2, \Pi}: \pi_{2}(V, \Pi) \longrightarrow \pi_{2}\left(V, f_{2}\right)
\end{aligned}
$$

are 1-1 and onto.
Remark 1. Theorem 1 is an extension of the dual Theorem 6.5* in [1].
Remark 2. Note that Theorem 1 and results in the preceding sections can be dualized.

Eckmann and Hilton defined homology groups of maps and pair-maps [1], [3]. If f and Ψ are a map and a pair-map, $H_{q}(f)$ and $H_{q}(\Psi)$ are defined and Abelian for all q.

Now let $P \xrightarrow{f} Q \xrightarrow{p} F$ be a cofibration; then the homology excision homomorphism $\varepsilon_{2, f}^{H}: H_{q}(f) \rightarrow H_{q}(F)$ is given by

$$
\varepsilon_{2, r}^{H}(x, y)=p y \quad \text { for } \quad x \in C_{q-1}(P), y \in C_{q}(Q),
$$

hereafter we use the same symbol for a map and the chain map which it
induces. It is well known that $\varepsilon_{2, r}^{H}$ is an isomorphism for all q.
Next let $P \xrightarrow{f} Q \xrightarrow{i_{f}} C_{f}$ be the extended cofibration, where f is any map. Then by (1.1') we obtain the commutative diagram

where each row is homology exact sequence and $k_{\#}$ is an isomorphism and $P \xrightarrow{q_{f}} M_{f} \xrightarrow{j_{q_{f}}} C_{f}$ is the cofibration. By the five lemma we deduce that $(1, k)_{\#}$ is an isomorphism, and we have easily

$$
\overline{\varepsilon_{2, s}^{H}}=\varepsilon_{2, q_{f}}^{H} \circ(1, k)_{\#}^{-1}: H_{q}(f) \cong H_{q}\left(C_{f}\right) \text { for all } q,
$$

where $\bar{\varepsilon}_{2, f}^{H}$ is defined by $\bar{\varepsilon}_{2, f}^{H}(x, z)=i_{f} z$ for $x \in C_{q-1}(P), z \in C_{q}(Q)$.
Particularly, let $P \xrightarrow{f} Q \xrightarrow{p} F$ be the cofibration as before; then $\overline{\varepsilon_{2, \rho}^{\overline{\#}},}$ $=\varepsilon_{2, q_{j}}^{H} \circ(1, k)_{\#}^{-1}=\widetilde{k}_{\#}^{-1} \circ \varepsilon_{2, s}^{H}:$

$$
\begin{gathered}
H_{q}(f) \xrightarrow{\varepsilon_{2, \rho}^{H}} H_{q}(F) \\
\begin{array}{|c}
(1, k)_{\#} \\
H_{q}\left(q_{f}\right)
\end{array} \xrightarrow{\varepsilon_{2, q_{j}}^{H}}
\end{gathered} \begin{aligned}
& \widetilde{k}_{q}\left(C_{f}\right),
\end{aligned}
$$

where \widetilde{k} is determined by 1 and k, and a homotopy equivalence [3; Corollary 3.7'].

Let $\Psi=\left(g_{1}, g_{2}\right): f_{1} \rightarrow f_{2}$ be a weak cofibration with cofibre $\bar{f}_{X, Y}$ or an extended weak cofibration with cofibre f_{c} (Ψ is any pair-map):

where $i_{g_{1}}\left(i_{a_{z}}\right)$ is an inclusion map and f_{c} is given by $f_{c}(x)=f_{2}(x)$ for $x \in X \subset C_{g_{1}}$ and $f_{c}(a, t)=\left(f_{1}(a), t\right)$ for $a \in A$.

If Ψ is the weak cofibration, the homology excision homomorphism

$$
\varepsilon_{2, \psi}^{H}: H_{q}(\Psi) \longrightarrow H_{q}\left(\bar{f}_{X, Y}\right)
$$

is defined by $\varepsilon_{2, \Psi}^{H}(a, b, x, y)=\left(i_{1} x, i_{2} y\right)$ for $a \in C_{q-2}(A), b \in C_{q-1}(B), x \in C_{q-1}(X)$, $y \in C_{Q}(Y)$.

If Ψ is the extended weak cofibration, the excision homomorphism

$$
\bar{\varepsilon}_{2, \Psi}^{H}: H_{q}(\Psi) \longrightarrow H_{q}\left(f_{c}\right)
$$

is defined by $\overline{\varepsilon_{2, \Psi}^{H}}(a, b, x, y)=\left(i_{\sigma_{1}} x, i_{o_{2}} y\right)$ for $a \in C_{q-2}(A), b \in C_{q-1}(B), x \in C_{q-1}(X)$, $\boldsymbol{y} \in C_{q}(Y)$.

THEOREM 2. (i) If $\Psi=\left(g_{1}, g_{2}\right): f_{1} \rightarrow f_{2}$ is the weak cofibration with cofibre $\bar{f}_{X, Y}$ then

$$
\varepsilon_{2, \Psi}^{H}: H_{q}(\Psi) \cong H_{q}\left(\bar{f}_{X, Y}\right) \text { for all } q .
$$

(ii) If Ψ is the weak cofibration with cofibre f_{c} then

$$
\bar{\varepsilon}_{2, \Psi}^{H}: H_{q}(\Psi) \cong H_{q}\left(f_{c}\right) \text { for all } q .
$$

Proof. (i) Consider the commutative diagram
where the upper and lower rows are exact sequences of $\Psi^{\boldsymbol{T}}$ and $\bar{f}_{X, Y}$, respectively, and $\varepsilon_{2, \Psi^{T}}^{H}$ is defined by $\varepsilon_{2, \Psi^{T}}^{H}(a, x, b, y)=\left(i_{1} x, i_{2} y\right)$ for $a \in C_{q-2}(A)$, $x \in C_{q-1}(X), b \in C_{q-1}(B), y \in C_{q}(Y)$. Then by using the five lemma we obtain that $\varepsilon_{2, \psi^{T}}^{H}$ is an isomorphism for all q. The chain map $\tau: C_{q}(\Psi) \rightarrow C_{q}\left(\Psi^{\tau}\right)$ is defined by $\tau(a, b, x, y)=(-a, x, b, y)$ and a chain isomorphism; hence τ induces a homology isomorphism $\tau_{\#}: H_{q}(\Psi) \cong H_{q}\left(\Psi^{T}\right)$ for all q (see [1], [3]). Since $\varepsilon_{2, \Psi}^{H}=\varepsilon_{2, \Psi^{\Psi}}^{H} \circ \tau_{\#}, \varepsilon_{2, \psi}^{H}$ is an isomorphism for all q.
(ii) We consider the commutative diagram

where the upper and lower rows are exact sequences of Ψ^{T} and f_{c}, respectively, and $\bar{\varepsilon}_{2, \Psi^{T}}^{H}$ is defined similarly as $\varepsilon_{2, \Psi^{T}}^{H}$. Then $\bar{\varepsilon}_{2, \sigma_{1}}^{H}$ and $\bar{\varepsilon}_{2, \sigma_{2}}^{H}$ are isomorphisms, and hence by the five lemma $\bar{\varepsilon}_{2, \Psi^{T}}^{H}$ is isomorphism for all q. And since $\bar{\varepsilon}_{2, \Psi}^{H}$ $=\bar{\varepsilon}_{2, \Psi}^{H} \circ \tau_{\#}, \bar{\varepsilon}_{2, \Psi}^{H}$ is an isomorphism for all q.

By Theorem 2 (ii) we have easily
Corollary 5.4. If Ψ is the extended weak cofibration, then the sequence

$$
\longrightarrow H_{q}\left(f_{1}\right) \xrightarrow{\left(g_{1}, g_{2}\right)_{\#}} H_{q}\left(f_{2}\right)^{\prime} \xrightarrow{\left(i_{g_{1}}, i_{g_{2}}\right)_{\#}} H_{q}\left(f_{c}\right) \xrightarrow{\partial_{f c}} H_{q-1}\left(f_{1}\right) \longrightarrow
$$

is exact, where $\partial_{\rho_{c}}=\partial_{\Psi} \circ \overline{\varepsilon_{2, \Psi}{ }^{1}}$.
The Whitehead theorem [5; p. 167] may be rewritten as follows:
LEMMA 5.5 (Whitehead). In the sequence $E_{f} \longrightarrow X \xrightarrow{f} Y \longrightarrow C_{f}$, (i) if X and Y are arcwise connected and E_{f} is $(n-1)$-connected $(n>0)$, then C_{f} is homology n-connected. (ii) If X and Y are simply connected and C_{f} is homology n-connected, then E_{f} is $(n-1)$-connected.

Lemma 5.6 [7; Theorem 2.1]. Let Ψ be the pair-map $\left(g_{1}, g_{2}\right): f_{1} \rightarrow f_{2}$ in (1.3) such that A, B, X and Y are 1-connected, $\pi_{q}\left(g_{1}\right)=0$ for $0<q<m$ $(m>1)$, and $\pi_{q}\left(f_{2}\right)=0$ for $0<q<n(n>1)$. Let (A) and (B) be the following statements:
(A) $H_{q}(\Psi)=0$ for $q \leqq r$,
(B) $\pi_{q}(\Psi)=0$ for $1<q \leqq r$.

Then if $1<r \leqq m+n-2$, (A) implies (B), and if $1<r \leqq m+n-1$, (B) implies (A).

Let Ψ be a weak fibration with fibre $f_{X, r}$ as before, and we assume that A, B, X and Y are 1 -connected, g_{1} is m-connected $(m>1), f_{2}$ is n-connected $(n>1), Y$ is $(r-1)$-connected $(r>1)$, and $\pi_{q}(\Psi)=0$ for $q \leqq l(l>1)$.

Consider the following diagram

where $j_{0}, j_{0}^{\prime}, r_{X}$ and r_{Y} are maps given in section 1 [2], and $\widetilde{f}=f \cup C f_{X, Y}$.
Then the upper diagram is homotopy commutative (c.f. [2; Proposition 1.3]) and the lower diagram is commutative.

PROPOSITION 5.8. $f_{X, \boldsymbol{\Gamma}} * \Omega f_{2}$ is $\operatorname{Min} .(m+n, l+r-1)$-connected.
PROOF. Since $f_{X, \boldsymbol{F}} * \Omega f_{2}=\left(1 * \Omega f_{2}\right) \circ\left(f_{X, \boldsymbol{F}} * 1\right)$, we shall prove that $1 * \Omega f_{2}$ and $f_{X, Y} * 1$ are $(m+n)$-connected and $(l+r-1)$-connected, respectively.

Now we introduce the homotopy commutative diagram
where w's are maps defined in $[9 ; \mathrm{p} .134]$ and these maps are homotopy equivalences by Proposition 1.2, and the lower row in the diagram is the extended cofibration. Then we have

$$
\begin{aligned}
\Sigma\left(F_{x} \# \Omega Y\right) \cup_{\Sigma\left(1 \# \cap f_{2}\right)} C \Sigma\left(F_{x} \# \Omega X\right) & =\Sigma\left(\left(F_{x} \# \Omega Y\right) \cup_{1 \# \Omega f_{1}} C\left(F_{X} \# \Omega X\right)\right) \\
& \left.=\Sigma\left(F_{x} \#\left(\Omega Y \cup \cup_{\delta_{1}} C \Omega X\right)\right) \quad \text { c.f. [10] }\right) \\
& \equiv F_{X} *\left(\Omega Y \cup \cup_{\delta_{1}} C \Omega X\right),
\end{aligned}
$$

where $X \equiv Y$ implies that X and Y have the same homotopy type. Since $\Omega Y \cup_{\Omega f_{1}} C \Omega X$ is homology ($n-1$)-connected (see Lemma 5.5) and simply connected, we see that $\Omega Y \cup_{\Omega f_{8}} C \Omega X$ is ($n-1$)-connected, and also F_{X} is ($m-1$)connected. Hence $F_{X} *\left(\Omega Y \cup_{\Omega f_{2}} C \Omega X\right)$ is $(m+n)$-connected. On the other hand, we get $H_{q}\left(1 * \Omega f_{2}\right) \cong H_{q}\left(\Sigma\left(1 \# \Omega f_{2}\right) \cong H_{q}\left(F_{X} *\left(\Omega Y \cup_{\Omega f_{z}} C \Omega X\right)\right)\right.$ for all q. Hence
$1 * \Omega f_{2}$ is homology $(m+n)$-connected, and the Whitehead theorem [5] we deduce that $1 * \Omega f_{2}$ is $(m+n)$-connected. Similarly, $f_{X, Y} * 1$ is $(l+r-1)$ connected. Therefore we have the desired result.

Now we introduce the commutative diagram
where $\Xi^{T}=\left(\widetilde{f}, f_{2}\right): r_{X} \rightarrow r_{Y}$, and u is determined by \widetilde{f} and f_{2}, and w 's are maps given by section 1 [2]. Then $\varepsilon_{r_{X}}^{-1}, \varepsilon_{r_{Y}}^{-1}, w_{r_{X}}$ and $w_{r_{Y}}$ are isomorphisms, and $f_{X, Y} * \Omega f_{2}$ is Min. $(m+n, l+r-1)$-connected, Ξ^{T} is $\operatorname{Min} .((m+n, l+r-1)+1)$ connected; hence so is $\Xi=\left(r_{X}, r_{Y}\right): \widetilde{f} \rightarrow f_{2}$. Since f_{2} is n-connected and r_{X} is ($m-2$)-connected [2], and $\operatorname{Min} .(m+n, l+r-1)+1<m+n+2$, we may apply Lemma 5.6 to the pair-map Ξ in (5.7), and we have $\Xi_{\#}=\left(r_{x}, r_{Y}\right)_{\#}$: $H_{q}(\widetilde{f}) \rightarrow H_{q}\left(f_{2}\right)$ is monomorphic for $q \leqq \operatorname{Min} .(m+n, l+r-1)$ and epimorphic for $q \leqq \operatorname{Min} .(m+n, l+r-1)+1$.

Now the homology excision homomorphism $\varepsilon_{2, \Pi}^{\prime}$: $: H_{q}(\Pi) \rightarrow H_{q}\left(f_{2}\right)$ defined by $\varepsilon_{2, \mathrm{I}}^{\prime}(x, y, a, b)=\left(g_{1} a, g_{2} b\right)$ for $x \in C_{q-2}\left(F_{x}\right), y \in C_{q-1}\left(F_{Y}\right), a \in C_{q-1}(A), b \in C_{q}(B)$. If we consider the extended weak cofibration Π with cofibre \widetilde{f}, then $\bar{\varepsilon}_{2, \Pi}^{H}$: $H_{q}(\Pi) \rightarrow H_{q}(\widetilde{f})$ is isomorphic for all q, and we have $\varepsilon_{2, \mathrm{II}}^{\prime,}=\Xi_{\#} \circ \bar{\varepsilon}_{2, \mathrm{II}}^{H}$. Thus the results obtained above is described as follows.

THEOREM 3. Let Ψ be a weak fibration with fibre $f_{X, Y}$:

and we assume that
A, B, X and Y are 1-connected, $\quad g_{1}$ is m-connected ($m>1$),
f_{2} is n-connected $(n>1), \quad Y$ is $(r-1)$-connected $(r>1)$, $\pi_{q}(\Psi)=0$ for $q \leqq l(l>1)$.
Then the excision homomorphism

$$
\varepsilon_{2, \Pi}^{\prime}: H_{q}(\Pi) \longrightarrow H_{q}\left(f_{2}\right)
$$

is isomorphic for $q \leqq \operatorname{Min} .(m+n, l+r-1)$ and epimorphic for $q \leqq \operatorname{Min}$. $(m+n, l+r-1)+1$.

Lemma 5.9 [6; Lemma 4.1]. Let $f: X \rightarrow Y$ be a map, and if the induced homomorphism $f_{\#}: H_{q}(X) \rightarrow H_{q}(Y)$ is isomorphic for $q<N$ and epimorphic for $q=N$, then $f^{*}: \pi(Y, W) \rightarrow \pi(X, W)$ is 1-1 for $\pi_{q}(W)=0$, $q \geqq N+1$ and onto for $\pi_{q}(W)=0, q \geqq N$.

Corollary 5.10. Under the assumptions of Theorem 3, the excision correspondence

$$
\varepsilon_{2, \Pi}^{\prime}: \pi_{1}\left(f_{2}, W\right) \longrightarrow \pi_{2}(\Pi, W)
$$

is 1-1 for $\pi_{q}(W)=0, q \geqq \operatorname{Min} .(m+n, l+r-1)+2$ and onto for $\pi_{q}(W)=0$, $q \geqq \operatorname{Min} .(m+n, l+r-1)+1$.

Proof. We consider the following commutative diagram

where $C_{\tilde{f}}=C_{j_{Y}} \cup \tilde{f} C C_{f_{X}}$ and $C_{f_{2}}=Y \cup_{f_{2}} C X$, and $\widetilde{f}=f_{1} \cup C f_{X, Y}$ and $\tilde{r}=r_{Y} \cup C r_{X}$.
Then we obtain the commutative diagram

Since $\bar{\varepsilon}_{2, \mathrm{n}}^{H}, \bar{\varepsilon}_{2, \tilde{f}}^{H}$ and $\bar{\varepsilon}_{2,,_{\mathbf{8}}}^{H}$ are isomorphic we obtain $\widetilde{r}_{\text {\# }}$ is monomorphic for $q \leqq \operatorname{Min} .(m+n, l+r-1)$ and epimorphic for $q \leqq \operatorname{Min} .(m+n, l+r-1)+1$. Hence by Lemma 5.9 we get $r^{*}: \pi\left(C_{f_{\mathfrak{q}}}, W\right) \rightarrow \pi\left(C_{\breve{f}}, W\right)$ is $1-1$ for $\pi_{q}(W)=0$, $q \geqq \operatorname{Min} .(m+n, l+r-1)+2$ and onto for $\pi_{q}(W)=0, q \geqq \operatorname{Min} .(m+n, l+r-1)+1$.

Next if we consider the following commutative diagram

then $\varepsilon_{\Pi}^{\prime-1} \varepsilon_{\vec{f}}^{\prime-1}$ and $\varepsilon_{f_{\mathfrak{l}}^{\prime \prime}}^{\prime \prime}$ are 1-1 and onto (see remarks of section 2 and 3). Therefore we have the desired result.

References

[1] B. Eckmann and P. J. Hilton, Homotopy groups of maps and exact sequence, Comment. Math. Helv., 34(1960), 271-304.
[2] T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv., 39 (1965), 295-322.
[3] P. J. Hilton, Homotopy theory and duality, mimeographed Notes, Cornell University.
[4] P. J. Hilton, On the excision and principal fibration, Comment. Math. Helv., 35(1961), 77-84.
[5] S.T. Hu, Homotopy theory, New York, 1959.
[6] J. P. Meyer, Principal fibration, Trans. Amer. Math. Soc., 107(1963), 177-185.
[7] I. Namioka, Maps of pairs in homotopy theory, Proc. London Math. Soc., 12 (1963), 725-738.
[8] Y. Nomura, On mapping sequence, Nagoya Math. Journ., 17(1960), 111-145.
[9] G. J. Poter, Higher order Whitehead products, Topology 3(1965), 123-135.
[10] D. PUPPE, Homotopiemengen und ihre induzierte Abbildungen 1, Math. Zeit., 69(1958), 299-344.

Mathematical Institute
Akita University
Akita, Japan

