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1. Introduction. In this paper, we shall show some results on the non-
separable cyclic representation of W*-algebras. In [2], Feldman and Fell have
raised the question whether any separable representation of a W*-algebra M
without the direct summand of finite type I is always o-weakly continuous or
not and they have showed that this is affirmative in the case of properly
infinite and finite factor of type II,. Furthermore, M. Takesaki [7] has
showed that this is affirmative in the case of W%*-algebra of type II,.
From Theorem 5 in [5] and the above mentioned facts, we have a question
whether a representation with singular part of a W¥*-algebra is always non-
separable or not, and we have to consider this question for the W*-algebra
with the direct summand of finite type I. We shall give a partial answer for
this question [Theorem IJ.

Furthermore, in the representation theory of W*-algebra, it has not been
showed what abelian W*-algebra admits a non-separable cyclic representation.
We shall consider this problem more generally, and we shall show that every
W*-algebra, not finite dimensional, admits a non-separable cyclic representation
[Theorem II].

Now we shall state two explained results in the following form :

THEOREM L Let M be a W*-algebra such that M = Y ®Me, and Me,

n=1
# {0} for each n where e, is an n-homogeneous central projection for each
n. Let n is a non-trivial representation of M. If wm satisfies the condition
that n~'(0) contains e, for all n where n~'(0) is the kernel of =, then mis a
non-sep arable representation.

THEOREM II. Let M be an arbitrary W%*-algebra which is not finite
dimensional, then M has a non-separable cyclic representation.

Furthermore, we can show the following: Let M be a W*-algebra which
satisfies the assumption of Theorem I, then there exists a cyclic representation
that satisfies the property in Theorem L
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Before going into discussions, the author wishes to express his hearty
thanks to Prof. M. Fukamiya, Prof. M. Takesaki and Mr. K. Sait6 their many
valuable suggestions in the presentation of this paper.

2. Notations and Preliminaries. Let A be a C*-algebra and ¢ a positive
linear functional on A. Putting

I, = {ac A; p(a*a) = 0}

which is called the left kernel of ¢, the quotient space A/I, becomes the pre-
Hilbert space in the usual way canonically induced inner product by @. We
denote the element of A/I, corresponding to a< A by n,(a). Then we get a
Hilbert space H, as the completion of A/I, and a representation =, of A, as
the left multiplication operators on H,, where 7, is called cyclic representation.
If H, is non-separable, then we shall call @ a non-separable positive linear
functional.

Let M be a W*-algebra, M, the Banach space of all bounded normal
functionals on M and Mj the positive part of M, (that is, the set of all
functionals @ in My such that @(a*a)=0 for all a< M). We may consider
the s-topology defined by a family of semi-norms {a,; @ € Mt} where ay(a)
= @(a*a)?. In [4, p.1.64], S.Sakai has showed that whenever M is represented
as a weakly closed algebra of operators on some Hilbert space, the s-topology
coinsides with the strong operator topology on bounded sets of M.

3. Some lemmas. To prove theorems, we shall need some lemmas.

In the proof of Theorem I, we shall also use the following lemma which
has played an essential role in [2] and [7].

LEMMA 1. Let S be the set of all sequences of integers J = {j,js,*++}
such that 1 =j,=2" for each n. Then there exists a subset S, of S having
the power of the continum, such that, for any two distinct sequences J,J
in S,, the set of all n for which j, =j, is finite.

LEMMA II. Let M be a W*-algebra which satisfies the assumption of
Theorem 1. If @ is a non-trivial positive linear functional on M such
that I, contains e, for each n, then @ is a non-separable positive linear
Sunctional.

PROOF. Let Z be the center of M and TI' the spectrum of Z. Since M is
finite, there exists the center valued trace B of M. We define a numerical
trace 7 on M such that 7(a)=¢@(a?) for each a< M. Furthermore, from the
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property of e, for each n, there exists, in Me,, a family {e!}?, of abelian
projections which are mutually orthogonal and mutually equivalent, and

satisfies the equality e,= Y e} for each n.
=1
Next, let A be any fixed maximal abelian subalgebra that contains
{epyozk2:, and p, and p, the Radon-measures on the spectrum Q of A
induced @ and 7, respectively. Furthermore let u be the Radon-measure on T’
induced by @ = 7.

We shall divide the proof into two cases according to the relation between
the measures p, and ..

(Case i). u, is absolutely continuous with respect to u,; In this case, there
exists a compact subset K of Q such that u,(K)+#0, and the restriction of u,
and pu. on K are equivalent each other.

Define a ;, where 0 =<i <%, 0=h =<2%—1, as follows:

= (= 1o

where [7] denotes the largest integer < the real number . For fixed 2 and
i <j, we have:

2k -1 2k—1

3 ahutthe = 3 (= D1y
h=0

h=0

2-4—1 (1+1)2'~1

= T3 (—Dm-pye

1=0  h=l.2

gk-S—1 (+12/~1

INCAD I C

h=1.2!

But (—1)*#7 is positive and negative with equal frequency as A ranges from
2’ to ({ +1)2’ —1, so that '

26—1

z a},»kd)’,,k = 0 .
h=0

Let k(s) be the largest integer £ such that 2* <s. We now define a(z,n)
in Ae,, for any positive integer n, and 2! < n:

2k(7)—1

ali,m)=(/2)* (3 st

h=0
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Then
) ] ) i 0 if i#j5
(alis m*aliym)* = (1/27) (L @hacw Xescn) €0 = { ifi=j.

Furthermore, |a(Z, n)| < (n/28™)Y2 < 2V2 Thus, given any sequence i = {i,,1,,
.-} with 2% < n, the sequence {a(z;,1) + -+ + a(i,, n)};-;, is s-Cauchy and
bounded, so that the above sequence converges to an element a‘ of A with
the s-topology. If 7 and j are two such sequences, and 7,+j, for all n = n,,
then

(a(én, D¥*a(j 1) + « + » + a(in, n)*a(ja, n))?
= (a(i,, )*a(j1, 1) + - =+ + a(iny, 10)*a( fupy M0))*.
Therefore we have :
(a'*a’)=(a(i, D)*a(j1, 1) + -+ + + a(ing n0)*a( juy 10))*

and (a**at) =1.

Furthermore we have:
[ ¢@d @@ =0 and [ 6()|'dulo) = plK) >0,
K K

where a'(-) is the element of C(Q) corresponding to a* and - is the complex
conjugate of - . Therefore {a'(-); 7 €S,}, where S, appeared in Lemma I, is
an orthogonal system in L*K,u.) and the cardinal number of S, is that
of the continum. Therefore L*(K,pu.) is non-separable, so that L*Q,u,) is

non-separable. :
Since L*(Q,p,) is imbedded in H,, H, is non-separable. Therefore @ is a

non-separable positive linear functional.

(Case ii). p, is not absolutely continuous with respect to u.: In this case,
there exists a compact subset K of O such that u,(K)>0 and u.(K)=0.
Furthermore there exists a sequence {P,} of open and closed sets in  such
that

P,>P,, DK and lim p(P,) =0.
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Let p, be the projection of A corresponding to P,, then we have
n_z_Pn-l-lgO and 1%1)1;, %Pnn’ %0-

It follows that the sequence {p}(v)} of functions on I'is convergent to zero
w-almost everywhere. Hence, by Egoroff’'s Theorem, pj(y) is uniformly
convergent to zero on some compact subset F' of I' with u(F)>1 — & for any
&€>0. Therefore, considering a subsequence of {p,}, we may assume p%(v)
<< 1/4"*? for all ye F. Put

Gn = {yel'; pi(v) <1/4™}.

Then G, is open and contains F. We have pf(y)<1/4"*? on the closure G,
of G, which is open and closed. Consider the projection g, of Z corresponding

to open and closed set G,N -+ NG,, and put f, = p.g., then we have

g'nzgn+l,fn ;fn+l a-nd f{f §1/4n+2,
so that f, converges to zero o-weakly. Let U, be the open and closed subset

of Q corresponding to g, and U = n U,, we get
n=1
o) = lim plU) = lim. (g.)
k —
= ggnQanp(F)>(1 -9,

which implies

#e(U NK) = pg(U) + po(K) — po(U N K)
>1— &+ p(K) — p(U N K)
> p(K)—€>0

for sufficiently small € >0.
Now if we consider the space H,, then we have

o fa) Z ol fnr1)

and

“7t¢(f,,)7),,(1)”,,2= 7’(fn) = ¢(Pngn) = I‘?(Uu N Pn) Z[J@(U N K) >0 for all n
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It follows that m,(f,)n,(1) converges to a non-zero vector £ of H, which

belongs to ﬂ o fu) .

n=1
Put h, = f, — fo+1,€1,1 = h, and suppose that orthogonal projections {e,,;}
are constructed for 2=1,---,7—1 and 1 <j < 2* such as

he=e,1~e; for j=1,2,...2¢

and f, is orthogonal to e, ;. Let us put

n-1 2*¢

=Z zek,.i +fn’

k=1 j=1

then we have
n-1 2k
@ =2 et = Z 1/4+2 + 1/4"*2
k=1 j=1
n-1

= 3" (1/16)(1/2%) + 1/4"*2 < 1/8.

k=1

We get (1 — ¢,)? =7/8, so that there exist the orthogonal equivalent projec-
tions e, ; for 1 =j = 2" such that

hn=€,1~€,;=1—gq, for2=j=2".
By the mathematical induction, we conclude that there exists a family of
orthogonal projections {e, ;} above mentioned.
Considering partial isometries #, , such as
Uy ¥Up; =€y =h, and u, u, *=e,,;,
we have
Up, *Unjy = Up, %€y senythny =0 for j+7j'.

Hence, if we put w(J)= Z u,;, for each sequence J of S,, we have w(J)*u(J)
= Z,h,. = f; and f3; (J)*u(J)f;,a— 0 if j,#j, for n=n,. It follows that

n=1
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(ol DIE, molu(J)IE)
= (mlu )*u(D))E, )
= (m(f)E, &) = [£]* >0

and

(molee(D)E, 7ol ) = (moleel J Y*eu(T)]E, E)
= lim (z,( f)mo[u(J V¥ul D)l fo)E, &) = 0.

Therefore {7 [u(J)]JE} is an orthogonal system in FH,, so that H, is non-
separable by Lemma 1. This completes the proof of Lemma II.

REMARK. In Case ii, we have used the method which has been used by
M.Takesaki [7].

To prove Theorem II, we shall set the following lemma.

LEMMA 1. Let I°(Z) be the algebra of all bounded sequence where
Z is the group of all integers. Then [*(Z) has a non-separable cyclic
representation.

PROOF. Let Z be the dual group of Z/? then Z =T where T is the torus
group. Define a function x, on Z where ¢ € (0, 27], as follows: x,(n) = exp(itn).
Then y, is a continuous character of Z, therefore x, is an element of 7 for
each t¢(0,22] and the family {x, = {x(#)}r--w; £<(0,27]} is contained in
1=(2).

For each fel~(Z) with f= {f(k)}7--. and each positive integer n, we
define a sequence {f,}»-, as follows:

fo= 5 S fB.

lkl=n

Furthermore let @ be the linear functional on /=(Z) such that
#(f)=Lim f,

where Lim is a Banach-limit on [~(IN) where N is the set of all positive

n—roo

integers. Then @ is a positive linear functional and @(1)=1. Furthermore, we
have: for each x;, = {x,(n)},, _
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(X + Ez)u = zl_n Z X (k) - m

|k]=n

= > explitklexp(— itk)

lk|=n

1

Let 7, be the canonical mapping from [=(Z)/I, where I, is the left kernel
induced by @. Then we have: for each z¢(0,27],

(me(X)| 1e(X0))o = ¢(Xz . —72;) =1

by the properties of Banach-limit. If ¢ is an element of (0,27), then we have:

. 1
1 sm<n+ ~2—) t

1

— th)y=— — - ——

on ":L;" D= sin (‘1“ t)

2
and
1 sm(n+ o5 t)
lim = S™ exp(itk) = lim — =
n—e 29 e n sin (_1_ t)
2

From the above argument and the properties of Banach-limit, if £ and ¢ are
two distinct elements of (0,2x], then we have:

("lw(Xt)l 779’(70’))9’ = ¢(Xt 1)
= I;B:} (X(t—t’))n

— lim (—21; > exp(it — £)k))

noee |k|=n
=0.
Therefore the family {7,(x.); ¢£<(0,2z]} is a normalized orthogonal system in

H,. Therefore H, is non-separable, so that [~(Z) has a non-separable cyclic
representation, This completes the proof of Lemma III.
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4. Proof of Theorems. In this section, we shall show the proof of
Theorem I and Theorem II.

At first, we shall prove Theorem I by using Lemma I and Lemma II.

PROOF OF THEOREM I. Let H be the representing space of #» and £
an element of H with || = 1. Furthermore, define a positive linear functional
@ in the following form:

@(a) = (m(a)E|E) for all ae M.

Then I,Dz '(0)€e, for all n, and I, = {ac M; n(a)f = 0}. Therefore, from
Lemma II, H, is non-separable where H, is the Hilbert space canonically
induced by ¢.

Let § be a mapping from the quotient space M/I, into H such that
3(ny(a)) = n(a)t where 7, is the canonical mapping from M onto the quotient
space M/I,. Then [|8(54(a))|=|7s(a)|,. Therefore & is isometric from M/I,
into H, so that we have the property that H, is imbedded in H. Therefore
H is non-separable. This completes the proof of Theorem I.

REMARK. Let M be a W#*-algebra which satisfies the condition in
Theorem 1. Let = be a singular representation of M. If there exists an
infinite subsequence {n,};, of {n}y., such that #~'(0) contains e, for all ¢

and >_ e, &n~'(0) where 77%(0) is the kernel of z, then 7 is a non-separable
i=1 . .
representation.

Next we shall show the proof of Theorem II by using Lemma III.

PrOOF OF THEOREM II. Since M is not finite dimensional, there exists
a countable family {e,};=_.. of the orthogonal projections in M. Then a W*-
algebra N generated by {e,}y._.. is abelian. Furthermore, by the function
representation theory, N is *-isomorphic to [*(Z). Therefore, from Lemma
III, there exists a positive linear functional @ such that the canonical cyclic
representation 7, of N induced by @ is non-separable. Let @' be the positive
linear functional on M which is the extension of ¢ by Hahn-Banach extension
theorem. Furthermore, let {a.}.., be a set in N such that {7,(a.)}.cq is a
normalized orthogonal in H, where A is a index set with the continum
cardinal number.; Then, if @ and B are two elements of A,

(np(aa)| mpag))er = ?’I(aﬁ*aa) =@ (aﬁ*aa )
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lifa=28

= (n5(aa) | 16(as))p = .
0if a+8.
Therefore {7,/(@.)}zc4 is a normalized orthogonal system in H,.. Therefore H,
is non-sparable, and M has a non-separable cyclic representation. This completes
the proof of Theorem II.

By using the argument in proof of Theorem II, we can show the
existence of a representation that satisfies the assumption of Theorem I.

PROPOSITION. Let M be a W¥*-algebra which satisfies the assumption
of Theorem 1. Then there exists a cyclic representation that satisfies the
assumption of Theorem 1.

PROOF. We consider {e,} in the proof of Theorem II as the family
{e.} of central projections in the assumption of Theorem I. Then, e,

corrsponds to an element (---,0,-- -,0,1,0,---,0,-- ) €l=(Z) and, by the
definition of 7, e, is contained in #,;X0). Therefore =, is a representation of
M that satisfies the condition in Theorem I. This completes the proof of
Proposition.

REFERENCES

[1]1 J.DIXMIER, Les algébres d’operateurs dans l'espace hilbertien, Paris, 1957.
[2] J.FELDMAN AND J.M.G.FELL, Separable representations of rings of operators, Ann. of
Math., 65(1957), 241-249.
[3] W.RUDIN, Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Math.,
No. 12, 1962.
1 S.SAkAI The theory of W+*-algebras, Lecture Note, Yale University, 1962.
] M. TAKESAKI, On the conjugate spaces of operator algebras, Tohoku Math. J., 10(1958),
194-203.
" [6] M.TAKESAKI, On the singularity of a positive linear functional on operator algebras,
Proc. Japan Acad., 35(1959), 365-366.
[71 M.TAKESAKI, On the non-separability of singular representation of operator algebras,
Kbddai Math. Semi. Rep., 12(1960), 102-108.

MATHEMATICAL INSTITUTE
TOHOKU UNIVERSITY
SENDAI, JAPAN





