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Introduction. In [11] Hu generalized the Whitehead product to the
relative product, moreover in [4] Blaker-Massey defined the mixed Whitehead
product in the relative homotopy groups and the product in the triad
homotopy groups. Recently, Arkowitz [2], Hilton [10] and Porter [12] have
defined the generalized Whitehead product (GWP) [a, β] € TΓ(Σ(A#JB), X), for
a <= 7r(ΣA, X) and β € π(ΣB, X), and studied various properties of the GWP.
In the case when A and B are spheres [cc, β] is essentially the Whitehead
product.

The object of this paper is to investigate operations which are generaliza-
tions of the Whitehead products in the relative homotopy groups and the
triad homotopy groups. We define the following six new products in this
paper:

) for Λ€ΛΊ(2A,A) and βζ

) for a^τt^A,k) and /? €

[cc,β]3zτr2(X(A#B\Φ) for azπ&A.u) and βe

) for azπ2&A,Φ) and βz

) for tf<=;r2(ΣA,Φ) v.\i βe

[α,/9]6€τr2(Σ(A#β),Φ) for <2€τr2(ΣA,Φ) and β e τr2(Σ5, Φ),

where k: X-+Y is a map and φ=(v9v'): u-*u is a pair-map in which u:
w-»Xu v: W^X2, u: X2-+X and v : Xx -> X.

If Ay B are spheres and k is an inclusion map and XίfX2cXf W=XλC\X2

then [a, β]u [cc, β]2 and [a, β]3 are essentially the mixed Whitehead product,
the relative and triad Whitehead product, respectively. In section 2 we define
generalized Whitehead elements and in section 3 we define the above GWP's by
using the generalized Whitehead elements, and basic properties of these
products are mentioned in section 4. The Jacobi identities of these products
are obtained in section 5, In section 6 we define the generalized Hopf
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invariant H* in the generalized homotopy groups by considering the Hopf
invariant described in [1] and we generalize Theorem 1 in [8] .

Throughout this paper we shall assume that all spaces have base points
and all maps (homotopies) are base point preserving and in section 1-5 spaces
A, B and C are countable connected CW-complexes. In particular, in section 6
we shall assume that all spaces are finite CW'-complexes.

1. Preliminaries. A map q: X -> Y is called a cofibration if it has the
homotopy lowering property for all spaces, i.e., if, for each space P and for
all maps f0: Y —> P and homotopies gt: X —> P (0 5g £ fg 1) with g0 = f0 o qy

there exists a homotopy ft: Y —• P with gt = ft o q. If q is an inclusion map,
this is homotopy extension property. The quotient space F=Y/q(X) is called
the cofibre of q. Frequently the cofibration q: X —> Y with cofibre F is

q p
denoted by the sequence X > Y > F, where p is the projection.

The set of all homotopy classes of maps X -* Y is denoted by τr(X, Y),
it contains the distinguished element 0, i.e., the homotopy class of the constant
map #: X—>Y. A pair-map (<7i,<72) iv—*f is by definition a map of maps
such that the diagram

χ

f

is commutative, where ιv is the map V —> CV which embeds V in the cone
CV. Then 7Cx(yyf) is defined as the set of homotopy classes of (^i,^2)> and
if V is a suspension space (a 2-fold suspension space) 7tx(y\f) is a group (an
abelian group). Moreover, if y is an inclusion and V = Sn, n^:l, we get the
ordinary relative homotopy groups. The homotopy class of a pair-map (gu g2) :

6F—>/is denoted by {(<7i,#2)} A map ( L 1 / , 2 ) * (iv,Cιr)

a map of pair-maps such that the diagram

Φz is by definition

is commutative. Then τr2(V,Φz) is defined as the set of homotopy classes of
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I/?1/? /' a n c ^ if ^ is a. suspension space (a 2-fold suspension space) 7t2(y,Φz) is

a group (an abelian group) and a generalization of the triad homotopy groups.

The homotopy class of ( τ S 2 ) is denoted by

The (reduced) suspension ΣX of X is the space obtained from Xxl by
identifying X x / u * x / to a point. The (reduced) cone CX of X is the space
obtained from Xxl by identifying X x O u * x / t o a point. We denote by
X\/Y the subspace X x * u * x Y o f X x Y . The smash product X # Y of X
and Y is the space obtained from X x 7 by identifying X\JY to a point. For
maps / : X-+Y and # : X -> Y', we define a map f\Jg: X\/X'-*Y\JY' by
f\Jg=fxg\X\/X\ and a map / # # : X # X ' -> Y # Y' is defined by the
following commutative diagram

where p's are identification maps.
The following properties are checked easily:

(1.1) (i) Iff~f : X-^ Y and g ~ g : X -* T then

(ii) (J#g)#h=f#{g#h).

Let / and g be representatives of α € τr(X, Y) and β ̂  τr(X', Y') respectively.
Then / # ^ is independent of the choice of f and g by (i) of (1.1) and the
homotopy class is denoted by α#β z π(X#X\ Y#Y). It follows from (1.1)
that

(1.2) {α#β)#Ί = α#(β#Ί).

Next we consider two elements α <= τr(X, Y) and β € 7t(Y, Z) and let
cc={f] and S={g}. Then the composition g°f: X—>Z of f and g represents
an element of τr(X, Z) which is independent of the choice of the representatives
f and g, and the homotopy class of g of is denoted by 8 ° oί <Ξ τr(X, Z) and
is called as the composition of α and β. The formula βocc = f*(β) = g*(cc)
defines maps / * : τt(Y, Z) -+ τr(X, Z) and #* : τr(X, Y)-^ τr(X, Z) induced by
/ a n d g respectively. The join of A and B, A#B is the quotient space
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obtained from AxBxI by factoring out the relation: (α, bλ,0) ~~ (a, b2,0) for
all bu b2€ B and (aί9 b, 1) — (a2, b, 1) for all au a2 € A.

PROPOSITION (1.3) A*J3 zs homotopy equivalent to Q=CAxB\jAxCB
[12].

PROPOSITION (1.4) A*B is homotopy equivalent to Σ(A#£) and there
exists a homotopy equivalence hAjB: Σ(A#£)-*(2 ([10], [12]).

We denote by pΛ>B: Q-*ΣA\/2,B the map which pinches AcCA and
BcCBto*.

2. The generalized Whitehead elements. We consider the following
pair-maps ψ = (lΣΛ VtΣB, 1CΣA \/cΣB): IΣAWIΣB-^IΣΛW^CΣB, ΦI = (IΣA \ZUB,ICΣA V I Σ Λ ) :

iΣA V I Σ J B —• C t Σ ^ \ / 1 Σ £ , ^ 2 = (tΣ^ V I Σ B , tCΣA W ^CΣB) '- *<ΣA V *ΣJB - * C ί Σ A V ίΣ5, ^ 3

= (^Σ^ V I<ΣB, ICΣA V 1-CΣB) '' LΣA V LΣB ~* CiΣA V CiΣB I

1(7Σ4 V LΣB ΣA V lΣ

(2.1)

V 2 V 3

ίCTΣJL V 1 Σ Λ

^ C2ΣAVC2ΣB,

where 1IΛ(1M): 2^(25) -> ΣA(ΣB), W W : CΣA(CΣB) -• CΣA(CΣβ) and
IVZΛ : C2ΣA -»C2Σ5 are identity maps, and ιΣA(ιΣB): ΣA(ΣB) c C2A(CΣi3),

•ICUICLB): CΈAiCZB) c C22A(C22B), G M (Ct M ): CΣA(CΣB) c
Then we have the following commutative diagrams

(2.1.1)

;r2(ΣΛ,Ψ) ^
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(2.1.2)

H.

(2.1.3)

*2(ΣΛ,

*.(2Λ,

(2.1.4)

ι V l » )

in which 3's are the boundary homomorphisms (c.f. [5], [10]) and ΣΛ =
and τr2(ΣΛ, Ψ) and π2(?,A, Ψ t) (i = 1, 2,3) are identified with w2(2A, ΨΓ) and
7r2(ΣΛ, ΛίΓ

t

?τ) respectively, under the isomorphism T defined in [5, p. 291]. Then
we see

PROPOSITION (2.2)(ϊ)dlΣΛWlΣB, d^v^, 3Λ^V.Σ11»
 3^Σ^viΣβ> 3r.

are isomorphisms, (ii) (1Σ^V*ΣΛ)*, ^ N / I Σ Λ ) * , (UAVIΣB, ICΣAVKB)*,

^ V I Σ Λ A C Σ ^ V I Σ B ) * ΛΓ* epimorphisms, (iii) 3iΣjlvιΣβ>
 3iΣJLviΣfi>

a r e monomorphisms.

PROOF, (i) Since τr(%A, CΣA\/CΣB) = 0 in the homotopy exact sequence
of the map IΣΛ\/IΣB, ^tΣ

is a i * isomorphism. Similarly, the other boundary

homomorphisms are isomorphisms, (ii) Let (iΣA, ZCΣA) be a pair-map: ιΣA

-^LΣAVUB, where iΣA: Σ A c Σ A V Σ ΰ and iCΣA: CΣAcCΣAVΣ^ and ιΣ4:
Σ A c C Σ A Then we consider the following commutative diagram
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^IΣAVIΣB) -

a \/t }
ΣA V I'ΣBJ*

τr(ΣΛ,ΣA) Tr^MV^j τr(ΣΛ, ΣA VCΣB) ,

((UA WIΣB) ° i'z^)^ = (XΣA VIΣB)* ° ί ΣA* is an epimorphism if and only if ( 1 ^ \/ιΣB,
ICΣAVIΣB)* ° (tΣA,icΣA)* is an epimorphism, and hence (1 Σ 4 N/ΛΣΛ, UΣA VIΣB)* is
an epimorphism. Also since (1Σ^ VIΣB^ΪΣA* is an epimorphism we deduce
that (1Σ^ VIΣB)* is an epimorphism. Similarly, the other homomorphisms
are epimorphisms. (iii) is obvious.

Next we define the generalized Whitehead elements.

(a) Let ΊiAιB:2(A#B)-*QΛtB=CAxB\jAxCB and ρJtB: QA,B

be the maps defined in section 1 (c.f. [12]). Then we define θ by

(2.3) . θ= {pA.BhA,B} € ;r(Σ(A#£), XB VΣJ5),

where hAiB is the homotopy equivalence described in (1.4).

(b) Consider a commutative diagram

τr(ΣΛ,ΣAVΣ£)

τr(ΣΛ, ΣA x Σ£) v -%* τr(ΣA, CXA x SB),

where the top row sequence is exact, and jΣAs/ΣB : ΣAN/ΣJS c ΣAxΣB,
JCΣAVΣB : CΣA VΣB c CΣA x Σ£. Then we have JCΣAVΣB* ° GΣ^ V IΣJB)* (β)
= (IΣAXUB)*JΣAVΣB*(Θ) = 0 (c.f. [12]) and since J'CΣAVΣB* is isomorphic we
deduce that (LΣA\/1ΣB)# = 0 So there is θx € ^ Ί ( Σ A , iΣ^ VIΣB) such that
3ιΣ4viΣβ(^i) = 0 Since 3.Σ4viΣB is a monomorphism, the element ίx is
determined uniquely. Hence a representative of θx has the form (pA,BhAtB,d):
*-*IΣAVUB, where t : Σ(A#β) -* CΣ(A#β), that is,

(2.4) θ, = {(pAtBhA,B,a)} zτtx

Similarly we define
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(2.4') θ[ = {(pB,A~hB,A, a')} e τr 1 (2(β#A), 1ΣB \JιΣA).

(c) Since 3.^ V . Σ B : 7r,(Σ(A#F), t Σ J i V»M) = » 1 (Σ(A#β), ΣAVΣF) there

exists ^ 6 ^ 1 ( 2 ( A # J B ) , t ^ V t i i ) such that 3.Zil v.M (^0 = θ.

On the other hand we have the commutative diagram

So a representative of 02 is (pA,BhΛ,B, C(pΛιBhAιB)), that is,

(2.5) 02 = {(j°x,X,B, C(ψAιBhA,B)} € nr 1(Σ(A#5

Similarly we define

(2. 5 ) β; = {(pBtA~hB,A, C(ρBtAhBιA)} ^ x^BftA), ιΣB

The homomorphism (1Σ,IV1ΣB,1O T

induced by (1 Σ 4 VIΣB, I^Σ^ V^ΣB) is a monomorphism. Then we have

(2.6) (UAVUB,ICZAViMθi) = θ2.

For, since θ = 3 lΣAviΣJ3(^i) = 9tΣ 4vtΣ j B(lΣ4 V I Σ Λ , I^Σ^ \ΛΣΛ)*(0I) w e

(d) In (2.1.1) we saw that 0 = (lΣ i l VιΣB)*(θ) = (1ΣA V*ΪΛ)* ° 3,ZilviΣΛ(«i)

= 3lΣ^vvΣ5(lΣ4VίΣB,lί7Σ4VtΣBM<9i), and since θ t ^ v i ^ i s a n isomorphism we

have (lΣ i l VtΣjB, I^Σ^ V^ΣBM<9I)=0. Hence there is an element θ3 € τt£Z(A#B), Ψ)

such that dφ(θ3) = θ1. Then since 3 F is a monomorphism, 03 is determined

uniquely. And θ3 has a representative of the form (f^ij1* **£)'- Π->Ψ; that
is,

where α: CΣ(A#£)^CΣAVΣ5, έ: CΣ(A#β)-^ ΣAN/CΣB, c: C*X(A#B)
and Π is the pair-map
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Similarly we define

(2.7) θ'3=

where Ψ'=(

(e) In (2.1.4), we had 0 = Σ i J

= dcιΣΛviΣB(iΣAVUB,lcΣA\/lΣB)*(θi), and since 3^Σ4viΣ5 is an isomorphism we
have (tΣ4 VIΣΛ, I^Σ^ V^)*(fli) = 0. Hence there is an element ΘA € 7T2(2(A#JB), Ψi)
such that 3ψι(βι) = θι. And since 3 F l is a monomorphism ^4 is determined

uniquely. Then the element ΘA has a representative of the form [ iL ^'B I :
\ b c)

Π->Ψι; that is,

(2. 8)

where F: CΣ(A#β) ^CΣAVΣ^, c: C 2 Σ ( A # J B ) - > C 2 Σ A V Σ B .
Similarly we define

(2. 8')

where Ψi=(l Σ l ϊ V^Σ^,1ΣB V^Σ^) : U

(f) From (2.1.3) we see easily that 02 € Ker. (ιΣA \/lΣB, LCΣA

= Im.3 F j . Hence there is an element θδ € τt2(X(A#B)9 Ψ2) such that
= 02, and since 3^f is a monomorphism 05 is determined uniquely. Then the

element θ5 has a representative of the form [PA>BEAB

that is,

(2.9) 05 = { l p ^ * C{pA,BhA,B)

[ ] : Π-> Ψ2

that is,
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where F : CΣ(A#β) -> CΣA VΣ£, 7 : C 2 Σ(A#β) -> C2

Similarly we define

(2.9')

where ψ ; = ( l Σ Λ Vίi.i, lcisVtrai) : tsu V<ΣA -» »IB \/&ΣA.

(g) As we have seen in (2.1.2) dΨ,: πt(Ίl(A#B),Ψ3)^πι(l,(AψB),lΣA\/ιΣB),
so we obtain θa € τr2(Σ(A#β), Ψ3) such that 3y,(0β) = 01} and (9β is determined

uniquely. And we have the map ί ^ ^
\C(pΛ,BhΛ,B)

Hence a representative of 0β is (P*>'%±* C(pA,BhA,B) \ t h a t j
\C(pA,BhA,B) C*(pA,BhAlB)j

(2.10) ίβ = {(jjf^-f . ̂ - i ' ^ S \ ) I « ̂ 2(X(A#B),Ψ.) .
I \C(pA,BhA,B) C2(pA,BhA,B)l)

Similarly we define

(2.10') « = j (^ ̂  £ £ * ' * ? ^ ) } ^ τr2(Σ(β#A), ΨJ),

where Ψ'3 = (ιΣB \JIΣA> I>CΣB V(<CΣA) : IΣBVIΣA-*CιΣB\/CιΣA .

Let <p* : 7Γ2(Σ(A#β),Ψ)-^7r2(Σ(A#β),Ψ3), ̂ 2 > 3^ :
^ 2(Σ(A#B),Ψ 3) and <plf2^: ^ 2 (Σ(A#β), ψ x) -> ^ 2 (Σ(A#£), Ψ f) be natural
homomorphisms induced by φ,φ2,s and <p12y respectively, where φ

yTr _ . -O/ _ _ A Σ Λ V I Σ B ICΣA V lcΣβλ . -O/ __. \I/

and ^ 2 = f ̂  Y/ΐΣ5 ί"^4 ViiBλ . ΛJΓ _> ψ Then we see easily
\±CΣA V J-ΣJ3 ±C2ΣA V t Σ β /

(2.11) φ*(θΛ) = <p2,3*(θ5) = θ6 and φut*(θA) = «5 .

3. The generalized Whitehead products. By using the generelized
Whitehead elements defined in section 2, we may define the various products
in the generalized homotopy groups.

(A) The generalized Whitehead product (GWP) [a, β] s τr(Σ(A#J5), X) of
) and {g}=β € τt($B,X) is defined as follows [2], [12]:
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(3.1) [«,β] = (a,$UΘ), where (a,fl) = Vo(fVj),

that is,

[a, β] = {V ° (fVg) o p^/ΰ,*} e nr(2(A#B), X).

(B) The G W P ^ S μ ^ A p μ ) of {(/,/')}= a € ̂ (SA, A) and
= 5 ί jr(SB, X), £ : X^ Y, is defined by

(3.2) [α, /9], = (a, S),*^), where (Λ, #), = (V ° (Λ/flf), V ° (f\/kg)),

that is,

[a, β], = {(V o (fVg) o pAJiAx,B. V o (/' V^) o a)} € πι(Έ,(A#B), k).

Then [a, β\λ is independent of choice of (f,f) and gr. Similarly we define

(3.2') \β, a\ = (β, a)M, where (/3, Λ)t = (V » (y V/), V ° (kg V/')),

that is,

[β, a], = {(V o (gVf) o p s,^ β,^, V o (AjfV/') o α')} e «,(2(β#A), A).

REMARK. This GWP is a generalization of the relative product in the
sense of M. G. Baratt [9; p. 164].

(C) The GWP [Λ,i8]1€7r1(Σ(il#β),A) of {(/,/')}= a s »,CSA,A) and
ί(ί̂ » ίΌ) = ^ € ΛΊ(2β, A), k : X -> Y, is defined by

(3.3) [a, β]2 = (a, β)M, where (a, 0), = (V ° (/Vflr), V o (

that is,

[a,β]t = {(Vo(fyg)opABhAB, V°(f'Vg)°C(pAϊBhAB)} € »1(2(Λ#β), A).

Then [«, /9]2 is independent of the choice of (/,/') and (#, (/').
Similarly we define

(3.3') [β, a], = (β, Λ)»(βO, where 08, a\ = (V °(^V f), V ° (jr' V/')),

that is,

[β,CC], = {(V o (grV/) o pA.BhB,A\ V o (jf'V/') o C(PBIΛKB,A))} 6 ^rI(



526 H. ANDO

(D) We consider a pair-map Φ = (v, v€)\ u-*u';

L Jiφ L

Hereafter, in this paper Φ denotes the above map. Then the GWP
[a, β]3 € τr2(Σ(A#β), Φ) of {(/,/')} = <* € *i(ΣA, u) and {(g, g)} =βsπ1(
is given by

(3.4) feffl^C^^ί)., where ( β . Λ . ^ ^ V ^ V o ( /'V^? ),
γs7°(vf\/q) \/o(v f\Ju a)/

that is,

Then [tf, /β]3 is independent of the choice of (/,/') and (g,g').
Similarly we define

(3.4') [β9 a]s = 09, Λ)8#(βί), where (/9, Λ) 8 =

that is,

g\/vf)oc

(E) The GWP [tf, £]4 € τr2(S(A#J5), Φ) of I lf fΛJ = Λ € ̂ r2(ΣA, Φ) and

is defined by

(3.5) [a,βλi = (a,β)M, where ( α ^ ) 4 = ( ^ ^
\V(/ V ) V(/ \/ug)J

that is,

/?u- \{ZΎXfoptfA-B lo(fXg> γ
ug)°

Then [tf ?#] 4 is independent pf the choice of ( „ . , „ ) and g.
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Similarly we define

(3.5') \βtdU = O9.«)«(«D, where (β,*)A = t ?
W°(vg\/f )

that is,

-
)oC )

(F) The GWP [a9β]5tτr2(X(A#B),Φ) of j ( ^ , ^ l ) } = *zπt®A,Φ)

and {(̂ , ̂ ')} = β z Tt&B, u) is defined by

(3.6) frβu = <μ,fIWά where (a,β)s =

that is,

If f'\Then [Λ, /β]5 is independent of the choice of I „ „,) and (g, g')

Similarly we define

(3.6') [β, «]5 = 09,aUfo where ( A «), = ( Σ ^ ^ l^X

that is,

(G) The GWP [oi, β]t e τr2(Σ(A#B), Φ) of j ( J

r,t

 J

r,,,} \ = a € n0Λ, Φ) and

g»S»)\ =βe*t@JB,Φ) is defined by

(3.7) [<*,*], = («,β)M where

that is,
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V°(f"Vg")°C(j>A,BhA,B) V°(f'"Vg">C2(pAιBhΛιB\

Then [a, β]a is independent of the choice of I ^ I and I
\f"f"Ί \g" g"

Similarly we define

(3.70 Cβ,*]β = G8,<

that is,

), where (β,a)6 =

4. Properties of the generalized Whitehead products. We consider
properties of the generalized Whitehead products defined in section 3.

Let k : X —> Y be a map and let (m, n) : £ —»k' be a pair-map:

and let be a map

Φ i
-x.

X

Then we obtain easily the following formulas:

PROPOSITION (4.1)

kψ[a, β] = [k**, k*B] for a e *(2A, X), β € , X) ,
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(m, n\ [a, 0], = [(m, «)*«, m*/9], for a e a^SA, k), 8 e π(ΣB, X),

(m, n\ [a, β]2 = [(m, n)*α, (w, n)*β]s for a e ̂ (ΣA, A), /9 e it&B, A) ,

> •

Let 3,,: jr,(2D, A) > π(l,D, X), dk: *,(2A., A) > ^r(2Λ, X ) ,

dv : jr,(SB, v) > »(SB, W) , 3Φ : τr2(2Λ, Φ) > »,(2A,«)

denote boundary homomorphisms, where D = A or B and ΣΛ = 2 ( A # β ) or
2(5#A).

Then we have

P R O P O S I T I O N (4.2)

Θ*[Λ, /5]i = [3«α, ffl, a*[iβ, «]i = CS, 9*«] /or α e πx(SΛ, A), /3 € »(ΣB, X),

3»[α, ffli = [ 3 A 3*5], a t [& at], = [3^/3, dkct] for a e ar^ΣA, A), £ e ̂ ^ Σ S , A),

GJa, β]» = [«. 3./β]i» 9φ[#> «]i = [ 3 A «li for a s jr^ΣA,«), β € ΛΊ(

3Φ[Λ, #] 4 = [3φα, iff],, 3φ[/9, a], = [β, ̂ a^ for a e π 2(ΣA, Φ), /ff e *

3φ[α, /β], = [3ΦΛ, iff],, 3Φ[^, at], = [β, dΦcc]2 for a € τr2(ΣA Φ), /ff € π^B, u),

3Φ[«, /ff], = [3φ<x, 3 ^ ] 2 , 3φ[/9, α], = [dJ3,3Φα]2 /or α e τr2(ΣA, Φ), 8̂ g ̂ 2(ΣS, Φ).

PROOF. We shall prove 3*[α,/3]i = [3Λ/S]. Proofs of the other five
formulas are similar to it. We consider the following commutative diagram

, ιτA V1M) > * 1 (2(A#B), ΣAVΣB)

π(X(A#B),X)

Then we have a»[tf,ίβ]1 = 3*(α,/ff)ι*(β1) =
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We have the following properties for the relations of GWP's defined in
section 3.

P R O P O S I T I O N (4.3)

for a <= ^(2A, k), β € TC^XB, k),

for a € τr2(ΣA, Φ), 0 € π&B, u),

for a € ̂ 2(2A, Φ), £ € τr2(Σ£, Φ) ,

/or Λ € τr2(2A, Φ), /S € τr2(2,B, Φ),

where r : τr2(Σβ, Φ) = 7C2(Σ,B, Φτ) is the natural isomorphism defined in [5
p. 291] and dφτ : 7t2(ΣB, Φτ)—> π^ΣB, v) is the boundary homomorphism.

PROOF. T O prove [tf,£]2 = K 3 Λ , let *={(/",/')} and /S=ί(^,^)}
By (2.6) we have (a,β)t*(θt) = (a,β)t*(lΣΛ W1ΣB, 1CΣA V ^ U ^ O , where

S)2 = (Vo(/V^),Vo(/ /V^ /)) Hence we obtain

B7lA,B)) d {^ β)2(lΣA V I Σ S , 1(7Σ4 V lΣB)(PA,BhAtB> ")

= (Vo(f\Zg)opA>BhAfB, Vo(

= {a, dkβ)ιθ(ρAtBhA)B, a) .

Thus [oc,β]2 = (ct,β)2*(θ2) = (Λ,3 J t0) l ί t(ί 1) = [Λ,3ib/β]i By using the formula
analogous to (2.6) we have similarly [β, oί]2 = [dkβ, a]^

Next we shall prove that [cc,β]6 = [dΦccydφτoT(β)]s. Let a= ] ( „ , „ ) [

and β = ] (^ ^ ) [ , then (^ "̂  I, (g,g") and (/,/ ') are representatives of

I\σ" g'ΊJ W ̂ " V
τ(β), 3φroτ(/S) and 3Φ(Λ), respectively, where w : C2B-^C2B is the homeomorphism
defined by ι<6, 5, f) = (6, ί, s) [5]. By (2.11) (a, β)^φ^θ3) = ( 3 ) ^ )
Heαce we obtain
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,BhΛtB a

,BKA,B) C2(pAtBfiA,B)/ \ b c

PA,B7IA,B a

c

Vg) Vo(f'yg') \ o (1

"Vg") V°(/'"V<7"')/

PA,BIIA,B a

") Vo(v'f'Wg")l \ b c

Thus the desired formula is proved.
The other formulas are proved by using (2.11) and the formulas analogous

to (2.11).

PROPOSITION (4.4) [2 Proposition 3.4]. If A and B are suspensions
then

[a,β1+βt] = [a,β1] + [cc,β2],

where ct, at € π(2A, X) and β, βt ς τt(Έ,B, X), ί = 1,2.

PROPOSITION (4.5) If A and B are suspensions, then

[a, β1+8^ = [a, £,], + [a, &], for a, at <= «Ί(SA, k) and

[a, +a2, β\t = [α,, /ff], + [«,, /S]! /3, A e ̂ r(2β, X), »= 1,2,

[a, iSj+iβ2]2 = [α, /Sila + [a, βt]t for a, at e Λ^XA, k) and

[tf,+Λ,, /3]2 = [rt i f /9]2 + [at,, /S], /S, A e BΊCSB, A), t = 1,2,

[a, βt +β2]3 = [a, βjz + [a, β2]3 for a, at e π-,(SA,«) α«<i

[«! +Λ,, /8], = [Λ,, /8], + [α2, /β]3 β, βt € *!(SB, f), t = 1,2,

[α, βx+β2\ = [at, /βj* + [Λ, A ] 4 /or α, at e ̂ r2(ΣA, Φ) ^n<i

[Λ, + α 2 , /S]4 = [at,, β]t + [α2, /ff]4 A βt e τr(ΣB, W), t = 1,2,

[Λ, A +/S2]5 = [ct, /S,]5 + [Λ, A ] , for a, α, € τr2(ΣA, Φ) αnύ?

[Λ,+α2, β\ = [«„ /8], + [rt2, j8], /S, /84 6 π&B, u), i = 1,2,

[a, β, +β2\ = [a, β1]β + [a, βt]t for a, α ( e 7Γ2(2A, Φ) and

[a,+a,, β]t = [alt β]β + [a2, β]6 β, A e ̂ 2(2B, Φ), ί = 1,2.
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PROOF. We shall prove [a,β1

βι = ίgι] and β2 = {g2), and let iΣA :

VΣJB 2 and zΣ2?2 : ΣB 2 cΣAVΣ£iVΣ£ 2 , B = Bλ

commutative diagram

,β2ii' Let Λ = { ( / 1 , / 2 ) } ,

# 2 , ίΣΛ| : Sf i^ΣAVSBi
B2. Now we consider the

Y ,

where q = V o (IVV) ° (fiVgiVg*) and r = V ° (1VV) o (ftVkgMkgJ. If
7<Ξ ΛΊ(ΣA, ίz^VlzBt V1Σ2?2) is an element represented by a map (VΣ.i, Z'OΣA) :

AΣA-̂ έΣ̂  VIΣB. V1ΣΛ,,^ΣA : C2AcCΣAVΣ£iVΣ£ 2 , then we obtain the following
formulas:

(4.5.1) , i»M.}]i) = ί(q,r)*y,βι]ι

For, the first and second formulas are obtained by (4.1) and the third
formula is proved as follows: In the homotopy exact sequence

, ιΣA Vlχ*. Viz*.)

3 is a monomorphism since j V1Σ^2) is onto, and we have

{HB,} + ίίM,}] (by (4.2)),

(by (4. 2)).

Hence, by using (4.4) and the fact that 3 is a monomorphism, we get
desired formula.

Next, by using (4.5.1) and a = {q,r)¥.y, we have

[a, A
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Similarly we have

[aι+<t%9β\ι = [auβ\γ + [a^ffh.

Next we shall prove \a9βx+β& = [a9βι]i + [Λ,&] S . Let Λ =
βi= {(ffuff'i)} and & = {(#2,#0}> and let iCΣBι : CΣβiCΣAVCΣβiVCΣ£ 2 and
iczB, : CΣβ 2 cΣAVCΣβiVCΣβ 2 , and let Λ be a map such that

V ίΣBr V ^ΣB2 ^ Σ ^ V IΣBX V ^ΣB,

Then we consider the map f̂ 1 ^ 2 ) : Λ —• Φ, where qι — V°(1VV)°
VI r2 /

gά g2 = V o (IV V) o (Jtyugxyugt)9 rx = V o (IV V) o (vfiVgΊVgύ
and r, = Vo(lVV)(v'/,V«VίVα'flί) Now if 7 l f 7, € ^ ( Σ B , lΣ i l V^ΣB, Vt2B,)
and δ^ TT^ΣA, ΛS.IVIΣS, VIΣB.) are the elements represented by maps (iΣBi9

Σ 5 l - * 1 Σ ^ V ^ S t VlΣBi9 (tΣB,9icΣBi) - <>ΣBt ~* ^ΣA V^ΣS, V*<ΣBt a n d (^ΣA, ^ Σ ^ ) '

VIΣB, V1ΣB2, respectively then we have the following formulas :

(4.5.2) ([8,TM, + [8,7,],) - +

= [8, 7,], + [8, 7,]$

We shall prove only the third formula, the other fomulas are obvious.
The boundary homomorphism 3 Λ : τr 2(Σ(A#β), Λ)-» τr1(2(A#.B), LZ

ΣS.VIIS,) is a monomorphism, and we have

3A[δ,71 + Ύ2]s = [8,37,4-37,],,

3A([S, 7,], + [S, 7,],) = [8, 37,], 4- [8, 37,], .

Hence we get [δ,7χ4Ύ2]3 = [8,7,], + [8,7,],.
By using (4. 5.2) we obtain the desired formula [αt,/Si+ iβ2]3 = [<2>/3i]
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If we choose appropriate universal examples, the case [ , ] 4 is proved
similarly, and the other formulas are proved easily by (4. 3).

Next by using Hardie's method [6] we may define the GWP [cc, β]λ as
follows: Let f: ΣA—>X and g: 2JB-»X be maps, if we use Hardie's
notation w(f,g) is the composition map V°(/V g)°pA,BhA,B: Σ ( A # J B ) —> X.

Consider the commutative diagram

CS(A#5)

CAxBuAxCB

CAxCB B

X

X ,

where ρB : 2A x ~ZB —> 1,B is the projection, and pΛίB, hA,n are maps defined
in [12], and ~KΛ(SI)=g^pB°?A BhΛ B Let /: tt,A^>X be a map. Then we define

i-x, g)y, 1/2 ^ t ^ 1,

g)(y, t) =

whexe σ^i: Έ,A—>C'ΣA is defined by σ#-i(x) = (x,It—1) for Λ: S SA.
Let ί : I - > y b e a map. And if {(f,f)} = ct € π&A, k) and {g}

= β € τr(ΣB, X), then tΣ)(/', ^ ) : CΈ{A#B) -• 7 is given by

, 1/2 ^ ί ^ 1.

And the diagram

XA(kg)(y,2t),

w(f o ;t_!,

2(A#5) " ^ ^ X

CZ(A#B)

is commutative.

THEOREM (4.6) {w(/^),w{f\kg)} = [Λ,/S]1 ^7r1 ,*).
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PROOF. Let iΣA: ΣAcΣAVΣ5, iΣB : Σ J B C Σ A V Σ B and iCΣA :

cCΣAVΣ£. If we choose {(w(iΣΛ,iΣB),w(iczA>(iΣAVhA)iΣB)} € ̂ ( Σ ( A # β ) , ιΣA

\J1ΣB) we have dlΣAyiΣB{(zv(iΣA, iΣB), w(iCΣA, (I-ΣA WlΣB)iΣB)} = {^(HA,^B)} = 0.

Since 3. is a monomorphism we obtain {(w(iΣA, iΣB),

^hB^ = θι = {(pA,BhA,B,a)}, thus we deduce (a9β)ι¥r(w(iΣA\JiΣB\w(iCΣA,

VUB)IZB)} = (ocβ^θO = [a9β]1.

Hence we now proceed to prove

(a, ',kg)} .

The left hand side of the above formula is {(V ° (f\/g) ° ]>A,B7IA,B,

V°(/'V£#) ° wiicΣA, (IΣAVIΣB) HB) and

V°(f'Vkg)z

) w(iCΣA σ 'u-u (IΣA VIΣ^) tΣB)y 9 1/2 rg ί ^ 1,

*A(kg)(y,2t), 0 ^ ί ^ l / 2 ,

w(/ ' σi_!, ^ ) 3^, 1/2 ̂  ί ^ 1,

Therefore we have the desired result.

LEMMA (4. 7). [2 Proposition 3.3].

[β, a] = - (Scr)*[Λ, /3], / o r a € τr(ΣA, X) and β € τr(Σ£, X) ,

where σ: B#A-+ A#B is induced by a map BxA->AxB defined by
(y, x) -> (x9y) for x^A and yzB.

Consider maps (Σ<r, CΣo*) : ιB)A -> ιAiB,

CΈ,{A#B),CZ{B#A),
B,A IJ
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Then we have

T H E O R E M (4.8).

[β, ΛL = - (Σo , CΣO )*[Λ, β}1 for a € ̂ (ΣA, A) αrcJ 5 <= ^ ( Σ B , X) ,

[/?, a\ = - (Σo , CΣo )*[α, β]2 for a € ̂ (ΣA, A) αrcJ B € ̂ χ(SB, k) ,

, rt]s = - fe ^ f [Λ, β]3 for a z Tt^A, u) and β e ̂ (ΣB, v) ,

^Y[ayβ]5 for aeπ^AΦ) arid

for Λ€τr2(ΣA,Φ) and

PROOF. We shall prove the first formula. Let tf ={(/,/')} and
and let

iltΣA: ΣAcΣAVΣΰ, iljΣB : ΣBcΣAVΣB, i1%CΣA :

i2f Σ^ : ΣAc Σ 5 V ΣA, z2> Σ 5 : Σ S c XB VΣA, £J|ί7Σil : CΣAc ΣB VCΣA .

Consider maps

Pi = Vo(/V<7): ΣAVΣB >X, ? 1 = Vo(f'ykg): CΣAVΣJ3 >Y,

> Y.

Let OVXF : y x [ / - > ί / x V ' be the map by (i;, u) —> (w, t;) and let
= ^ X F |V r VC/: VWU-^UyVy where [/ and V are any spaces. Then

: 1ΣB \/ίΣA —> IΣA VIΣB is a map of pair as follows:

Let 7 i = {(/i,Σil,z1|CfΣil)} € τri(ΣA,£Σil V I Σ B ) a n d γ 2 = { ( H Σ A , H

Then we have
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(4. 8.

This is proved as follows:

= 0 (by (4.7)).

Since 3. w, H is monomorphic we obtain the desired formula.
Then we have

= EΛ{*Va» 1»(Λ, «2)*72]i (by (4.1))

On the other hand

(Σσ,

(Σσ, Mϊa). P

Hence, by (4.8.1) we have [/9,Λ], = -(2β ,CΣ<r)«[Λ,/8]1.
Next we shall prove the third formula. Let a = {(/,/)} and β= {(g, g'),

and let ί1>ras : CΣBcΣAVCSβ and i I i C I J : CΣβcCΣBVΣA. We consider

the map ( £' j ) : ΨA|Λ -> Φ, where ^ = V » (/V^), ?, = V° if'Vug), rx

= V°(vf\/gr) and s1 = V°(v'f\/ug'),ΨΛ,B='Φ. Similarly we set p2 =
gi = Vo(ug\/f'), rt = \7°{g'Vvf) and 52 = V°(«Wf'/).

Let Θ^.B, ΘB,Λ be the maps of pair (Έ,(1Λ\/IB\^(ICAVIB)) :

2(CB\/CA) .
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Then Θ^ s and Θ ^ are identified with ΨA,B and ΨB,A respectively, in the

obvious way, where ΨBjA=Ψ'. Consider a map of pair of pair j Σ σ ^ v s **CAVB \.
\Σσ^VCβ Σ&CAVCB/

ΦB,A = ®B,A -> ®A,B = ΨA,B, and let γ x = {(ilιΣA,ii,cΣA)} * *i(SA,ι Σ i l V1Σ*)>
), Ύ[ = {(**2, ΣS , ̂ 2,^5)} € ^i(ΣB, ^ s V1Σ^) and

Ύ2 = { ( H Σ 4 , H C Σ A ) } ^7TI(ΣA, 1ΣB V^Σ^). Then we have

(4.8.2) v [ Ύ Ύ j +[Ύi,Ύj

This is proved as follows:

dψA B (the left hand side of (4. 8. 2))

= /dψAB\_&0AvB, Σσ^vciϊMΎi

. ' + (2σ,

B> S C Γ ^ V C B M Ύ I ) ,

+ (Σσ,

}, (2σ 4 V 5 ,

+ (Sσ,C

s* 2β (7^ιvB)*(yί)]i + (2cr,

= 0.

Since 3 ^ 5 : τt2{Σ(B#A\ΨAίB) -> Tt^BfiiA), LΣA\/1ΣB) is monomorphic
we obtain the desired formula.

Next we have

C2z,σ/
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while we deduce

/Plgλ

Hence we have [β9a]3 = . - ( * * ^ )*[^ffl, by (4.8.2).

If we choose appropriate universal examples, then other formulas are proved
in the same way.

LEMMA (4.9) [10; Lemma 16.5']. Let f: X-+A\/B be a map, and let
PA(PB)' A\JB->A(B) be projection. If pAof~* and pBf~*y then Σ / : r * .

Let {/} s *WA#B),X), {(g,g')} s *i(2(A#B), k ) and

€ π 2(Σ(-^-#-β)» Φ) Then suspension homomorphisms

V) — > 7t2(Z2(A#B), ΣΦ)

are defined by Σχ{/} = {Σ/}, Σk{(g9 g')} = {(S^, Σ<7')} and Σφ

THEOREM (4.10). All GWPs [a, β] and [a, β\u i = 1, 2, 3,4, 5, 6 are
annihilated by suspension homomorphisms.

PROOF. We now shall prove 2*[Λ, /3]=0 for a z τr(2A, X) and β e τr(2β, X).

We consider the commutative diagram

P A > ΣA

-> ΣA ,
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where j is the inclusion map, and pA and nA are projections. Since CΣ(A#J3)
is contractible we have 7tAo(pABhA^B)

o(> = pA°(pA,BhA,B)~* Similarly we have
pB°(PA,βhA,B)~* . Thus we obtain Σ(pA,BhA,B)—* by Lemma (4.9).

Let a={f] and β—{g}. We consider the commutative diagram

τr(ΣΛ.ΣAVΣB) '*> ?r(ΣΛ,X)

where (flt,|9) = Vo(/Vί) and Σ(tf,/3) = V°(Σ/VΣ#), and ΣΛ=Σ(A#£) . Then

Next we shall prove Sit[Λ,/8]1=0 for tf = {(/,/')} € ^(ΣA, 4) and # =
ίr(SB,X) and ΣΦ[tf,/3]3 = 0 for a = {(/,/')} ^ *i(ΣA,κ) and 8̂ = {(^,
TΓ^Σ-B, ̂ ). We consider the commutative diagram

Then 3t2MviΣi?>3Σ( lΣ4viΣ5), 3^ and dΣψ are monomorphisms by ((2.2) (iii)).
From the commutativity of the above diagram and Σ(0) = 0 we deduce
Σ ^ v i M W i = 0 and •2Ψ(θ,) = 09 and we have Ztfafa =?,ko(a,β)1*(θι)

£ ) S ) » ( Σ * 0 , ) = 0,

where Σ(^, β)MV°&fV2g), Vo(Σ/'VΣ^oΣ^)) and

The other cases are proved similarly.

5. The Jacobi identity. In [2], Arkowitz described that it is possible to
prove the appropriate Jacobi identity for GWP of elements a € τr(ΣA, X),
β e π(Έ,B, X) and γ € 7r(ΣC, X), when A, B and C are suspensions.

In this section we represent the Jacobi identity in the explicit form and
we consider the appropriate Jacobi identities for other GWP's.

First, we recall the concept mentioned in [3], Let pA: ΣAxΣB-*ΣA
and pB : ΣA x ΣJS -» XB be projections, and let pA{p%): τr(ΣA, ί2X)(;r(Σ£, OX))
-* τr(ΣA x ΣS, ί2X) be the homomorphism induced by PA(PB) And if we choose



ON THE GENERALIZED WHITEHEAD PRODUCTS 541

a n Λ ζ τr(ΣA,ΩX) and a β<Ξ τr(Σ5,ΩX) then these determine p%ά)9 p%(β)
€ τr(2Ax2J5,ΩX). We consider the commutator (pl(ct)9 ρl(β)) = OSO*)"1

pB(β)~ι)<P*(μ) ρ%(β)) in τr(ΣA x Σ5, ΩX), and for the cofibration ΣAVΣB
—* ΣA x ΣB —> Σ A # Σ 5 there exists an exact sequence

τr(2A#2B,ΩX) - ^ — * τr(ΣAxΣB,ΩX) -^—» ;r(ΣAVΣB,ΩX),

where g is the projection. Then /*(/>*(<£), p%(β)) = 0 and g* is a monomorphism
[3], and the commutator product of a e τr(ΣA, ΩX) and β <= τr(Σβ, ΩX) is the
element «x,β> 6 ar(2A'#2JB,ΏX) uniquely defined by

Let />!-. ΣAxΣBxΣC->ΣA, />2: Σ A x Σ B x Σ C ^ Σ β and / > 3 : Σ A x Σ £
x ΣC -• ΣC be projections. Now let {/) =a z ττ(ΣA, ΩX), {g} =β € ^r(Σ5, ΩX)
and {A} = γ ^ πr(ΣC, ΩX). Then we obtain maps fop1 — f\ gop2 = g\ hopz—K\
ΣAxΣBxΣC->ΩX. We consider the map a = (f\(g\h)): XAxZBxXC
—• ΩX, where (g\ K) = g'~ι h"x g' h' and the products and inverse in the com-
mutator come from the loop space structure of ΩX. Then we see a \ T ~ * :
T->ΩX since α | Σ A x Σ 5 x * : r * , α | Σ A x * x Σ C ^ * and α | * x Σ £ x Σ C ^ * ,
where T = ΣA x ΣB x * U ΣA x * x ΣC u * x %B x ΣC. For the cofibration

T Jτ > ΣA x Σ £ x ΣC >2>3> ΈA#2,B#ΣC there exists an exact sequence

τr(ΣA#Σ£#ΣC,ΩX) - ^ ^ > ;r(ΣA x Σ 5 x ΣC, ΩX)

where j Γ is the inclusion map and pίi2,3 is the projection. Then pfi2t3 is a
monomorphism [3: Proposition 8] and j*{α} = 0. By using the method
analogous to that in [14], we have

PROPOSITION (5.1). <a, <β, γ » = KMCA* ^, (pt#i Pti)),

Let PB,C.A: Σ A X Σ 5 X Σ C - > Σ 5 X Σ C X Σ A and Pc?,^: ΣA x ΣJ3 x ΣC
->ΣCxΣAxΣ£ be the maps given by pB,c,A^,y, z) = (y,z,x) and pcA^fay**)
= (z>x>y) for ^c^ΣA, 3; € Σ 5 and ^ ^ Σ C , respectively. Then ρB,c,A and Pc.^.s
induce

pB,c,A :

And we may prove the following propositions [14]:
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PROPOSITION (5.2) pB*c.A<β, <y, a » = PtUp?(β\ (ρϊ(y), ρt(a)),

p'c*A,B<y, <ct, β » = PZUPtty), (Pf(*)> Pt{β)).

PROPOSITION (5.3) If a s τr(ΣA, aX), β € ?r(Σβ, OX) α ^ y € τr(ΣC, OX),

p'B*c,A<β, <Ύ, CL» + Pc% ) S <7, <Λ, / 9 > > == 0 .

REMARK. Note that (X#Y)#Z and X#(J#Z) are identified and denoted
simply X#Y#Z.

We consider the well-known natural isomorphism £# : τr(P, ΩQ)—^(ΣP, Q),
defined by K*{f} = {K(f)}9 K(f)(x,t) =f(x)(t) for xzP and / : P^ίlQ.
Then it easily follows that K*<a, β> = [K*(ct), K*(β)] € τr(Σ(ΣA#Σβ), X),
and hence from this fact and (5.3) we obtain the Jacobi identity for the
absolute GWP:

THEOREM (5.4). If az τr(ΣA, X), β <= π($B, X) and y € τr(ΣC, X) αwrf A,
C are suspensions then

,n)*[Ύ, K/3]] = 0 .

Now we shall consider the Jacobi identies for the various GWP's defined
in section 3. We put p—ρB,ctA and τ=pciAtB, and we consider the commutative
diagrams

ΣGB#C#A)

I B.O.Λ Λ.B.C ^

C2(C#A#β).

THEOREM (5.5). If a € JΓ,(ΣA, ̂ ), /9 e π($B, X) and v € τr(ΣC, X),
A, B and C are suspensions, then

[a, [β, γ]], + (Σp, CΣpf\β, [γ, Λ],], + (Sr, CΣτ)*[γ, [α, iβ]1]1 - 0.

PROOF. Let

£ t: ΣAcΣAVΣBVΣC, i2: SβcSAVSBVΣC,

*,: ΣCcΣAVΣSVΣC, A,σ: CΣAcCΣAVΣBVΣC,

» : ΣAVΣβVΣCcCΣAVΣBVΣC,
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and let ^ = { ^ } , *2={/8}, h={π}, #={(/>/')}> β={g] and y={h}.
We now consider the commutative diagram

+ X

CZAVΣBVΣC

k

where p = V ° (1VV) o (f\Jg\Jh) and g = V o (1VV) ° (f\Jkg\/kh). If we
choose 6 = {(z'i, ίliCr)} € ̂ (SA, ί) then [Λ, [ί2, t3]]! € τr 1(2(A#β#C), £), [*2, Us, ^ J i
ζτr 1(S(5#C#A),z) and [*„ [t, 4 J 1 ] 1 € ^ ( Σ ( C # A # β ) , i).

Now we shall prove the following formula

8, [., eJJt = 0 .(5.5.1) [ι, U2, .3]]! + (2/>, CΣ/>)*[*2, [cβ, J J , + (Sr,

In the homotopy exact sequence

0 ^

where Σ Λ = Σ ( A # 5 # C ) , since ί# is onto, 3 ( is a monomorphism. Hence we
obtain

2> [t,, t],], + (ΣT, CΣr)*[ί3, [», ^IJO

= [dth Ut, h]] + (2p)*3t[t«, [*., tlili + (2r)*3iUι, [», t»]ili

t2) 3 t[ t 3, *],] + (Στ)*[ t3,3 f[i, t,],]

t2, [»„ t l ] ] + (Στ)*[t3, k , t 2 ]]

= 0 (by (5.4)).

Since 34 is a monomorphism we obtain (5. 5.1).
Next we have

(P, ?)»([». [*». '3]]! + (Σp, C2P)*[i2, [ιt,»],], + ( Σ T , CΣτ)*[ t 3, [t,»,],],)

ι. * ]]i

, /»**s]]i + (Σp,

(ΣT,
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= [«, \β,y]]ι + (Σp, CSp)*\β, [7,Λ]IL + C&r, CΣτ)*[γ, [«,£],],

= 0 (by (5.5.1)).

Thus we deduce the desired result.

If p and r denote as before we have the maps I ^ 2 ) : ^ABC ~* ΉB.C.A*

( 'V ί^1^1 \
sZ* ^ol ) :

 HA,B,C->I1C,A,B, where ΠAB,c, ^C,A,B are maps
CXT C22,τ/

^^> C Σ ( A # β # C ) X(C#A#B) - ^ 4 CX(C#A#B)

CZ(A#B#C)

COROLLARY (5.6). Let A, B and C be suspensions.

( a ) // a e jr,(XA, *), /β € *,(2B, *) and y e π(ZC, X), then

[a, \β,yU, + (Σp,CΣp)*[0, [y,α],], + (ΣT, CΣr)*[γ, [«,ffl,], - 0.

( b) If a € 7r,(ΣA, £), /9 e π&B, k) and y & TΓ^ΣC, k), then

[a, [β,y],]2 + (Σp, CΣp)*[/S, [γ, α]2]2 + (Σr, CΣr)*[γ, [Λ,/β]Jt - 0 .

( c ) If a € TΓ^ΣA «), /9 € π^ZB, v) and y € τr(ΣC,

( d ) // α e π ,(2A, M), /9 e πΊ(Σβ,«) αn<ί γ 6 π&C, v), then

\CΣp C2Σp/ \CΣτ C2Στ

( e ) Ifaζ *,(SA, Φ), /β € τr(Σβ, W) αnίί γ e

\CΣp C2Σp/ \CΣτ C2Στ/

( f ) // Λ e π-2(ΣA, Φ), β s jr,(SB,«) and y € τr(ΣC, W), then

]. = o
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( g ) If ae τr2(2A, Φ), β z ΛΊ(2J5, U) and γ € ΛΊ(2C, M),

( h ) // α e *t(SA, Φ), £ € jrt(SB, Φ) α«ί y e τr(ΣC, W),

( i ) 7/ a e τr2(SA, Φ), /9 e π-2(SB, Φ) and y z *,0SC,«),

\CΣτ C 2 /

( j ) // a € ΛΓ2(ΣA, Φ), /3 e JT.CSS, Φ) αnJ γ € ̂ r2(ΣC, Φ),

PROOF. We shall prove only (e), then the other formulas may be proved
similarly when we consider the appropriate universal examples.

Let

, it: Σ S C Σ A V Σ J B V Σ C , *,: ΣCcΣAVΣ-BVΣC,

ίΊ.σ: CΣAcCΣAVΣβVΣC and ίli<7.: C2ΣAcC2ΣAVΣBVΣC,

and let a = j \J „ J \ \, β={g] and y={h}.

Let Λ' be a map of pair (ιΣΛ V IΣB V IΣC , ICZA V IΣB '

Σ A V Σ B V Σ C Σ Λ V Σ a v ΣC ) C Σ A V Σ B V Σ C

Λ '
1>CΣA

C S A V Σ B V Σ C • ' " ' X / Ί - X / "Λ

Consider the map : ( P q) : Λ' -> Φ, where /> = V ° (1VV) ° (fVg\/h),
\r si

and 5 =

V)°(f"Vvugyuvg). Let t2 = {*,•},*, = {»,} and t = iί*1 *1><7 )} € *2(ΣA,Λ'),
i Vx.σ ii.cΊ I



546 H. ANDO

then [t,[ι l,ι,]]4€*,CS(A#β#O>A'), [«„ [<„ t]J« e xt($B#C#A), Λ'), [«»,[»,
4^ 2 (Σ(C#A#β),Λ')
We now shall prove the following formula

(5. 6.1) [ι, [<2, ι j ] 4 4- fe ^ ) \ , [ι,, <]4]4 + ( ^ ^ f j ) [ , „ [i, * J 4 ] 4 = 0

In the homotopy sequence

> ;r2(ΣΛ,Λ') - ^ >

/ V A n w 1 w 1 v

> τTi(ΣΛ, C42^ V UB V IΣC) ,

where ΣΛ = Σ ( A # J B # C ) , 3A> is an isomorphism since τrn(ΣΛ,
= 0, w ̂  1. Then we obtain

A'([ί,[ί2,t3]L+ [ί2) [ts, ] L + L
\C2o C2Σ

= [3A- i, t«ι, 'a]], + (Σo , CSr) aA.[ ι,, [*„ *]«]« + G&r, CΣτ)*aA«[ ί3) [», t 2 ] 4 ] 4

= [3Λ-«, [*,, *J], + (Sσ, CΣσ)*[ t2, [ t |, 3 A , t ] I ] 1 + (Sr, C Σ T ) * ^ , [θA-t, . J J ,

= 0 (by (5.5)).

Since 3 A ' is the isomorphism we obtain (5.6.1).
By using (5. 6.1) we have

r si Γ [t2' ̂ ^ + (car CT&r) [t2'[t3'

CΣσ

Σr
ΣτC2Στ/ \r

4 + fc 2Γ )
\CΣσ C2Σσ/
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= 0 .

Thus we deduce the desired formula.

6. The generalized Hopf invariant of a composition element. In this
section, we generalize [8 Theorem 1] to the form of Theorem (6. 3).

Throughout this section, we assume that all spaces are finite CW-complexes.
We recall that

τr(ΣA, ΣXX VΣX2) = *(ΣA, ΣXO + τr(ΣA, SX2)

where A is a suspension space and jx: XXλVΣX2cΣXiXΣX2, X=Xi = X2.
Then ττ(ΣA, XXχ)9 λ = l,2, is embedded in 7t(XA9 XX1VΣX2) by the injection,
and τr1(ΣA,yx)> is embedded in 7r(ΣA, SXi VΣX2) by the boundary monomorphism
djχ: TT^XAJX) -> τr(ΣA, ΣXX VΣX2).

Let φ*: τr(ΣA, ΣX)—> τr(ΣA, ΣXiVΣX2) be the homomorphism induced by
the structure map φ: ΣX—>ΣXVΣX. If iχ is the class of the identity map
Σ X ^ Σ X , tλ^τr(ΣX,ΣX), regarded as embedded in *(ΣX,XXiVSXi), λ = l,2,
and if cc € π-(ΣA, ΣX) then we have easily

(6.1) Φ*(<*) = (*i + ι,)otf,

where o is the composite operator.
Let {fλ}=βλ€τt(XA,X), λ = l,2, and let (fr,/?,) be the class of maps

ΣAiVΣAa—>X (Aχ=A, λ = l,2) which agree on ΣAλ with a representative of
βλ9 i.e., (β»βt)= {V

LEMMA (6.2). JΓ/ 7 € τr(XA, XB) and βλ z τt(XB, XD), then

where ω: 7t(XA,XB\/XB)-> 7tx(%AJB) is the homomorphism such that

(*>djB = 1 [1], and A is a suspension:

Proof is analogous to the proof of Lemma 2 in [8].
Now we consider the generalized Hopf invariant defined by H* = €j&φχ:

τt(XA9 XB) > τr(ΣA, XB\/XB) > τtι(XA,jB) > τtx{XA, XB#XB),

where A is a suspension, and €s is the excision homomorphism (c.f. [1]).
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In this section, we have the following theorem:

THEOREM (6.3). Let β e π(ΣB, ΣZ)) and γ € τt(ZA, ΣB). If A and B are
suspensions then

H*(β°y) = H*(β) o Σy + (β#β)

PROOF. By using Lemma (6.2) as in [8] we have

djβωφ*(/3oγ) = a i e < ^ 8 ) oγ + ( t l o0, t2o/β) o aίsα>£

o f t t2 o^) o

Since H*=€jωφχ we obtain

H*(/9oγ) = £}D-dyϊ(diBωφ*φ) o γ) +

(a) We shall prove €J]}d7J(djDωφ*(β) °τ) = H*(β) ° Σγ.

Let γ = {/} e ΛT(ΣA, ΣB), and we consider the commutative diagram

/

Cf I
CΣA J—+ CΣB

Σ2A V

where pΣA and pΣB are projections. Then we have the following diagram

»ι(Σβ, ~ZD#-ΣD)
; ΣZ)#ΣD)



ON THE GENERALIZED WHITEHEAD PRODUCTS 549

where each djj} is a monomorphism and ω is an epimorphism. For
βtπ(ΣB,Έ,D) we have &f)*H*(β) = (Σ/)*(^ωφ*(/9)) = €jJ}{f,Cf)*{ωφ^β))
= S)DdJlf*d)D(ωφ*(β)). Hence we obtain H*(β)°Σγ = S^J^vfatft)oγ).

°β,ιι°β)° dJBωφ*(y)) = (β#β) °(b) We shall prove fi^a

Let £ = {#} € τr(ΣB,ΣD), then (t, oβ,ltc/S) = βyβ = {g\fg}
Έ,D\fZD), and we consider the commutative diagram

Σ-BVΣB

gXg

> ΣDVΣD

> ΣDxΣD

We have the following diagram

*.(ΣA,
ff)*

τr(ΣA,Σβ) τr(ΣA, ΣB V ΣB) τr(ΣA ΣD V ΣD) .

For γeτr(ΣAΣB) we obtain ε}Dd
= (g#9)*§D"4>*kf) = (g#g)*H*(y). Thus we deduce £ , B a £ ( ( t l o £ , i 2 o/9)

Finally we shall prove that

(c) + t, o β, d}j)ωφ*(β)) o dJBωφ*(y)) = 0 .

It is sufficient to prove that S^d^iβ, + β2,dJDωφ*(β))*(dJBωφ*(y)) = 0,

where β1 = π°β, βt = ι*°β. We set ξ=β,+β2, η = djDωφ*(β) and ξ=djBωφ*(y)
and again we denote by ξ, η and ζ these representatives. Since η = djDωφ*(β)
e π(ZB, ΣDVΣD) for # e π($B, ΣD) we have jw(»;) = 0 and hence jDη~*,

and we obtain the following diagram
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(Σ£>VΣZ))V(ΣZ)VΣD)

JD

-ΣDxΣZ)

ΣDxΣD ,

the upper diagram is homotopy commutative and the low diagram is
commutative, where & is defined by £Cr,3>) = J D C ^ ^ X ^ V ^ ) f° r x,y *ΣB.
Then ^(f, 77) ~ kjB, and since j s is a coίibration there exists k': XBx Σ.B
->ΣZ)xΣD such that jjβj,η) = k'jB, and we have the following commutative
diagram

" "

where X is determined by (£,»?) and £'. Then we obtain the diagram

(6.3.1)

Consider the commutative diagram
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(6.3.2) |3,β

, ΣB x ΣB) ^* > 7t(llB#B), ΣDx ΣZ)) .

If we choose {#Ϊ,/>Λ)} € τr1(Σ(β#β), ; B ) then δ,,{(^, pΛ)} = {ί} € n
where ί: Σ 2 ( β # β ) -> ΣB#ΣB is a homotopy equivalence (c.f. [1]),

and 3^{(pΛ,ίΛ)} = [ph\ = ^ Since jB*(β) = 0 ([12; Theorem 2.2]) we have
0 = k\jB*(β) = jm(ξ, η)*(θ) =jj»A.ξ, η], and hence there exists a 6 τr,(2(β#β),
j Λ ) such that djΏa = [ξ, ηl

Next we consider the GWP [ξ, ωφ^β)^ € n1(^B#B\j^ of ξzn&B,
ΣDVΣD) and ωφ^ϊTt^BJ,,), then 3,Jf, «0»GS)L = [f, 3j2>«ψ*09)] = [ξ,η]
= 3^Λ. Since 3^ is a monomorphism we have

(6.3.3) a = [

By the commutativity of (6. 3. 2)

εiD((ξ, η), k'*{(ph,Ph)} = εJDdj£ξ, η)*-diB{(ph, ph)}

= €iJLξ,ωφ1β]ι (by (6.3.3)).

While

£jB((£, n), k\{(ph, ph)} = %εiB{ph, ph)}

thus we have ^jD[ζ9 ωφ^β\λ = k*{t}. The excision homomorphism Sjj}:
is represented as follows:
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CΣ(β#B)

Hence £,J£, ωφ*(β)]ι = (*, pj)*[ξ, ωφ*(β)] ι = [*, (*, pj)*ωφ*(β)] t = 0. Therefore

!*{*} = 0. For any element {/} <= τr(ΣA, Σ J B # Σ B ) , since / ^ : ί^"1/) we have

\{f] = {(kf)} = {(1 t)(r\f)} = 0. Hence, by the commutativity of (6. 3.1),

Therefore by (a), (b) and (c) we deduce

H*(β o γ) = H*(β) o Σγ + (β#0) o H*(y).

In [1] we defined the generalized Hopf invariant as follows: Assume that
is (n — l)-connected and A is a suspension space. Then

(i) If dim. ΣA ̂  3n - 3, then

H = h*τd(py PΪΪωφ*: τr(ΣA,ΣX) > ττ(ΣA, ΣXVΣX) •

(ii) 7/dim.ΣAfg2(2;z-2),

1, ΣX#ΣX) — > *,CSA, Σ2(X#X)) — > ?r(ΣA, Σ(X#X)).

If dimΣA 5g 3^ — 3, // in (ii) equal to H in (i) (c.f. [1]), and hence if we
identify π^XA, ΣX#ΣX) with TT^ΣA, Σ 2(X#X)) under the isomorphism tϊ\
the Hopf invariant H is denoted Έl~

16jωφ* and ϋ"* = Σiί .
The following properties are shown easily from (6.3), where A and B

are suspensions, and /3 <= π(Έ,B, ΣX), γ ^ τr(ΣA,

(6.4) //* Σ 5 is (n — ϊ) connected, ΣX /5 (s — V)-connected, and if d i m Σ £
^ 3/2-3,35-3, dim ΣA ̂  35-3 and H(y) = 0, then
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(6.5) If B is (7i-2)-connected, X is {s-^-connected, and if dim ΣA ̂  35-3
^ 3/ί-3 £/κ?tf /or /?' ^ τr(J3, X) ze e

(6.6) IfyzXπ(A,B), then

(6.7) If Σ5 *s (n-ΐ)-connected, ΣX is {s-V)-connected, and
dim Σ J 5 ^ 45-4,

= ΣH(/3)oΣγ

(6.8) If β*ΐn(B9X), then
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