ON THE TYPE OF AN ASSOCIATIVE H-SPACE OF RANK TWO

Larry Smith

(Received April 19, 1968)

An associative H-space is a space X equipped with a continuous map $\mu: X \times X \rightarrow X$ providing X with the structure of a monoid. If X is an associative H-space and $H_{*}(X ; \boldsymbol{Z})$ is finitely generated as an abelian group, then by a classical theorem of Hopf [4], [5], $H^{*}(X, \boldsymbol{Q})$ is an exterior algebra on a finite number of odd dimensional generators. The number of such generators is called the rank of X; this is consistent with the standard usage when X is a Lie group. The dimensions in which the generators occur is called the type of X.

For example $S U(3)$ has rank 2 and type $(3,5)$.
Theorem. Let X be a connected associative H-space with $H_{*}(X, \boldsymbol{Z})$ finitely generated as an abelian group. If the rank of X is 2 then the type of X is either $(1,1),(1,3),(3,3),(3,5),(3,7)$ or $(3,11)$.

Indeed, each of the above types does occur, examples being given by the compact Lie groups, $S^{1} \times S^{1}, S^{1} \times S^{3}, S^{3} \times S^{3}, S U(3), S p(2)$ and G_{2} respectively.

The proof of the above theorem will be accomplished by applying a result of A. Clark [1] and some number theoretic considerations.

I am greatly indebted to Shōji Ochiai for bringing this problem to my attention.

1. Unstable Polyalgebras over $\mathcal{A}^{*}(\boldsymbol{p})$.

Notation. Let p be a prime. We denote by $\mathcal{A}^{*}(p)$ the mod- p Steenrod algebra [8]. The reduced $p^{\text {th }}$-powers are denoted by P_{p}^{j}, and the Bockstein by β. When $p=2$ we set $\beta=S q^{1}$ and $P_{2}^{j}=S q^{2 j}$.

DEFinition. An unstable algebra over the Steenrod algebra is an algebra B that is a left $\mathcal{A}^{*}(p)$-module satisfying

$$
\begin{align*}
& P_{p}^{n} x=0 \quad \text { if } \quad 2 n>\operatorname{deg} x \tag{1}\\
& P_{p}^{n} x=x^{p} \quad \text { if } \quad 2 n=\operatorname{deg} x \tag{2}\\
& P_{p}^{n}(x y)=\Sigma_{i+j=n} P_{p}^{i} x P_{p}^{j} y \quad\left(P_{p}^{0}=1\right) \tag{3}
\end{align*}
$$

$$
\beta(x y)=(\beta x) y+(-1)^{\operatorname{deg} x} x(\beta y) .
$$

If the underlying algebra of B is a polynomial algebra we say that B is an unstable polyalgebra over $\mathcal{A}^{*}(p)$.

The proof of the following theorem may be found in [1].
Theorem 1.1 (A. Clark). Let p be a prime and let B be an unstable polyalgebra over $\mathcal{A}^{*}(p)$. If B has a generator of degree $2 m, m \neq 0 \bmod p$, then B has a generator of degree $2 n$, for some integer n with $n \equiv 1-p$ $\bmod m$.

Corollary 1.2. Let p be an odd prime and let B be an unstable polyalgebra over $\mathcal{A}^{*}(p)$ on two generators x, y with $\operatorname{deg} x=4, \operatorname{deg} y=2 n$, and $p>n>1$. Then either

$$
\begin{aligned}
& n \mid p-1 \text { or } \\
& n \mid p+1 .
\end{aligned}
$$

Proof. Since $n \neq 0 \bmod p$ it follows from Theorem 1.1 that either

$$
\begin{aligned}
& 2 \equiv 1-p \bmod n \quad \text { or } \\
& n \equiv 1-p \bmod n
\end{aligned}
$$

In the first case $p+1=p-1+2 \equiv 0 \bmod n$, i.e., $n \mid p+1$. In the second case $p-1 \equiv-n \equiv 0 \bmod n$, and hence $n \mid p-1$.

Acknowledgement. I am indebted to Shōji Ochiai for bringing Corollary 1.2 to my attention [7, Theorem 1a].

Theorem 1.1 has the following useful application to associative H-spaces. Again we refer the reader to [1] for the proof.

Theorem 1.2 (A. Clark). Let X be a simply connected associative H-space with $H_{*}(X ; \boldsymbol{Z})$ finitely generated as an abelian group. Then $H_{*}(X ; \boldsymbol{Z})$ has a generator of degree 3.

2. Some Number Theory.

Proposition 2.1. Let n be a positive integer. If for all sufficiently large primes p either

$$
\begin{aligned}
& n \mid p-1 \quad \text { or } \\
& n \mid p+1,
\end{aligned}
$$

then $n=1,2,3,4$ or 6 .
Before turning to the proof of Proposition 2.1 we recall the following classical result of Dirichlet [2].

Theorem 2.2 (Dirichlet). Every arithmetic series whose initial term and difference are relatively prime contains an infinite number of primes.

Proof of Proposition 2.1. We say an integer n has property (*) if for all sufficiently large primes p, either

$$
\begin{aligned}
& n \mid p-1, \text { or } \\
& n \mid p+1 .
\end{aligned}
$$

Suppose q is a prime. If $q \neq 2,3$, then q and $q-2$ are relatively prime. Consider the arithmetic series $\left\{a_{j} \mid a_{j}=q-2+j \cdot q\right\}$. By Dirichlet's theorem this series contains infinitely many primes. If p is such a prime then

$$
p \equiv q-2 \bmod q
$$

Hence since $q>3$,

$$
\begin{aligned}
& p+1 \equiv q-1 \not \equiv 0 \quad \bmod q \\
& p-1 \equiv q-3 \equiv 0 \quad \bmod q .
\end{aligned}
$$

Therefore q cannot have property (${ }^{*}$).
If n has property (*) then so does any divisor of n. Hence if n has property (*) then $n=2^{r} 3^{s}$.

Suppose $n=2^{r} 3^{s}>6$. Then n and $n-5$ are relatively prime. Consider the arithmetic series $\left\{b_{j} \mid b_{j}=n-5+j \cdot n\right\}$. By Dirichlet's theorem this series contains infinitely many primes. If p is such a prime, then

$$
p \equiv n-5 \bmod n
$$

Hence since $n>6$

$$
\begin{aligned}
& p-1 \equiv n-6 \text { 三三 } 0
\end{aligned} \quad \bmod n .
$$

Therefore the only possible integers with property (*) are $1,2,3,4$ or 6. That these actually occur may be seen by a simple case check as follows :

1,2: trivial.
3: If $3 \mid p-1$ there is nothing to prove. So suppose $3 \nmid p-1$. Then either

$$
\begin{aligned}
& p-1 \equiv 1 \quad \bmod 3 \quad \text { or } \\
& p-1 \equiv 2 \quad \bmod 3
\end{aligned}
$$

If $p-1 \equiv 1 \bmod 3$, then $p+1=p-1+2 \equiv 1+2 \equiv 0 \bmod 3$, i.e., $3 \mid p+1$. On the other hand the case $p-1 \equiv 2 \bmod 3$ cannot occur. For if $p-1 \equiv 2$ $\bmod 3$ then $p=p-1+1 \equiv 2+1 \equiv 0 \bmod 3$, contrary to the assumption that p is a large prime.

4: If $4 \mid p-1$ there is nothing to prove. So suppose $4 \nmid p-1$. Then either

$$
p-1 \equiv 1,2 \quad \text { or } 3 \bmod 4
$$

However since $p-1 \equiv 0 \bmod 2$ it follows that

$$
p-1 \equiv 2 \bmod 4
$$

Hence $p+1=p-1+2 \equiv 2+2 \equiv 0 \bmod 4$, i.e., $4 \mid p+1$.
6: If $6 \mid p-1$ there is nothing to prove. So suppose $6 \nmid p-1$. Then

$$
p-1 \equiv 1,2,3,4 \quad \text { or } 5 \bmod 6
$$

Since $p-1 \equiv 0 \bmod 2$ it follows that

$$
p-1 \equiv 2,4 \quad \bmod 6
$$

If $p-1 \equiv 4 \bmod 6$ then $p+1=p-1+2 \equiv 4+2 \equiv 0 \bmod 6$, i.e., $6 \mid p+1$. Finally we must show that the case $p-1 \equiv 2 \bmod 6$ cannot occur. For suppose it does. Then $p-1=6 t+2$. Therefore $p-1 \equiv 2 \bmod 3$ and hence $p=p-1+1$ $\equiv 2+1 \equiv 0 \bmod 3$ contrary to the assumption that p is a large prime.
3. Associative \boldsymbol{H}-Spaces of Rank 2. We turn now to the proof of the theorem announced in the introduction.

Let X be a connected simply connected H-space of rank 2 with $H_{*}(X ; \boldsymbol{Z})$ finitely generated as an abelian group. It follows from the theorems of Hopf [4] and Clark (Theorem 1.3) that

$$
H^{*}(X ; \boldsymbol{Q})=E[x, y]
$$

where $\operatorname{deg} x=3, \operatorname{deg} y=2 n-1$.

Let $B X$ be the classifying space of X [3]. $H_{*}(X ; \boldsymbol{Z})$ is finitely generated and therefore has p-torsion for only a finite number of primes. It therefore follows (essentially) from the Borel transgression theorem [6] that for all sufficiently large primes p

$$
H^{*}\left(B X ; Z_{p}\right) \cong P[u, v]
$$

where $\operatorname{deg} u=4, \operatorname{deg} v=2 n$.
From Corollary 1.2 it follows that for all sufficiently large primes p either

$$
\begin{aligned}
& n \mid p-1 \text { or } \\
& n \mid p+1 .
\end{aligned}
$$

Hence from Proposition $2.1 n=1,3,4,6$. The case $n=1$ is excluded since we assumed X simply connected. Thus the type of X is either $(3,3),(3,5),(3,7)$ or $(3,11)$.

If X is not simply connected and does not have type $(1,1)$ then applying Clark's theorem to the universal covering of X, we readily deduce that X has type (1,3).

Thus the only possible types of an associative H-space of rank 2 with finitely generated integral homology are $(1,1),(1,3),(3,3),(3,5),(3,7)$ or $(3,11)$, as was to be shown.

References

[1] A. Clark, On π_{3} of Finite Dimensional H-Spaces, Ann. of Math., 78(1963), 193-196.
[2] P. Dirichlet, Werke, Band 1, XXI, 313-342.
[3] A. Dold and R. K. Lashof, Principal Quasifibrations and Fibre Homotopy Equivalence of Bundles, Illinois Journ. of Math., 3(1959), 285-305.
[4] H. Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihren Verallegmeinerungen, Ann. of Math., 42(1941), 22-52.
[5] J. Milnor and J. C. Moore, The Structure of Hopf Algebras, Ann. of Math., 81 (1965), 211-264.
[6] J. C. Moore, Algèbre Homologique et des Espaces Classifiants, Seminar Cartan et Moore, 1959/1960, Exposé 7.
[7] R. Nakagawa and S. Ochiai, On the Dimension of Generators of a Polynomial Algebra over the Mod p Steenrod Algebra, Proc. Japan Acad., 43(1967), 932-936.
[8] N. E. Steenrod and D. B. A. Epstein, Cohomology Operations, Ann. of Math. Study, No. 50, Princeton, N. J.

