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This paper is a development of [4], and gives a more detailed treatment
of the topic named in the title. It includes in particular the birational
equivalence with affine space, over the groundfield, of the variety of Cartan
subgroups of a k-group G, the splitting of G over a separable extension of %
if G is reductive, some results on unipotent groups operated upon by tori,
and on the existence of subgroups of G whose Lie algebra contains a given
nilpotent element of the Lie algebra g of G.

Discussing as it does a number of known results (due mostly to Rosenlicht
and Grothendieck), this paper is to be viewed as partly expository. In fact,
besides proving some new results, our main goal is to provide a rather com-
prehensive, albeit not exhaustive, account of our topic, from the point of view
sketched in [4].

Our basic tools are some rationality properties of transversal intersections
and of separable mappings, the Jordan decomposition in g, and purely
inseparable isogenies of height one. They are reviewed or discussed in section
1.13, §3 and §5 respectively. Thus Lie algebras of algebraic groups play an
important role in this paper and, for the sake of completeness, we have
collected in §1 a number of definitions and facts pertaining to them.

§2 reproves a result of Grothendieck ([12], Exp. XIV) stating that g is
the union of the subalgebras of its Borel subgroups. Its main use for us is
to reduce to Lie algebras of solvable groups the existence proof of the Jordan
decomposition.

84 discusses subalgebras 8 of g consisting of semi-simple elements, to be
called “toral subalgebras” of g. They are tangent to maximal tori, and have
several properties similar to that of tori in G, in particular: the centralizer
Z(8)={geG, Adg(X)=X(Xe8)} of 38 in G is defined over & if 3 is, (see 4.3
for Z(8)°, 6.14 for Z(8)), its Lie algebra is 3(8) = {X €g,[3,X]=0}. If 8 is
spanned by one element X, the conjugacy class of X is isomorphic to G/Z(3).
This paragraph also gives some conditions under which a subalgebra of g is
algebraic, and reproves some results of Chevalley [8] in characteristic zero.

86 introduces regular elements, Cartan subalgebras in g, and the subgroups
of type (C) of ([12], Exp. XIII) in G. By definition here, a Cartan subalgebra
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of g is the centralizer in g, and a subgroup of type (C) is the identity
component of the centralizer in G, of a maximal toral subalgebra t of g;
subgroups of type (C) always contain Cartan subgroups of G, but may be
bigger. The map which associates to a closed subgroup of G its Lie algebra
yields a one-one correspondence between subgroups of type (C) and Cartan
subalgebras, preserving fields of definition (6.6). The existence of Cartan
subalgebras defined over %, which is an easy fact, yields then, as a first step
to rationality properties, the existence of subgroups of type (C) defined over
k. In fact, G is separably generated by such subgroups (6.10). Moreover, if
k is separably closed, two Cartan subgroups or two Cartan subalgebras defined
over k are conjugate under G(k), (6.13).

§7 gives first some conditions under which the field of definition of a
homogeneous space of G can be brought down to % (7.6). They apply in
particular to the set of Cartan subgroups or of Cartan subalgebras of G (7.7).
We then show that both are rational varieties over k£ (7.9). The proof is
to a large extent an adaptation in our framework of the one given by
Grothendieck ([12], Exp. XIV) for the former variety. Some consequences
are derived. §8 is devoted to the splitting of a reductive k-group over a
separable extension of k.

In characteristic p+ 0, a nilpotent element X € g(k£) need not be tangent
to a one-dimensional subgroup, even if X™=0 (9.2). §9 is mainly concerned
with the finding of subgroups to which X is tangent, assuming X to be an
eigenvector of a subtorus T of G, corresponding to a non-trivial character &
of T. If G is reductive or solvable, X is tangent to a unipotent k-subgroup
stable under 77, in which the weights of 7T are certain multiples of b.
Sufficient conditions under which H may be chosen to be commutative, or
isomorphic to G,, are given (9.8, 9.16). As an application, some properties
of unipotent groups operated upon by tori are derived.

0. Notations and conventions. Throughout the paper, k is a com-
mutative field, p its characteristic, K an algebraically closed extension of
k, k the algebraic closure of k in K, and k, the separable closure of k in k.
G is an affine k-group, g its Lie algebra.

The notation is basically that of [3], with which familiarity is assumed,
with the following additions or modifications.

0.1. Our varieties are those of “classical” algebraic geometry, although
not necessarily irreducible, and are all affine or quasi-projective. Algebraic
variety defined over k and k-variety will be used synonymously. In order to
avoid any ambiguity, let us briefly define that notion in the quasi-projective
case: An algebraic subset V of affine (resp. projective) space is defined over
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% if the ideal of polynomials (resp. homogeneous polynomials) vanishing on V,
with coefficients in %, is generated by polynomials with coefficients in 2. A
k-variety is, in this paper, either an affine or projective algebraic set defined
over k, or the complement of a k-closed subset in a projective k-variety.
For a quasi-projective variety V, the following conditions are equivalent :
(i) V is defined over k; (ii) the irreducible components of V are defined over
k, and are permuted by the Galois group of %k, over £k, acting by conjugation ;
(iii) the cycle sum of the irreducible components of V, with coefficients one,
is rational over k£ in the sense of ([27], Chap. VII, §1). This follows
immediately from ([27], Lemma 2, p.209). Our notion of k-variety is also
equivalent to that of absolutely reduced quasi-projective scheme over k. If V
is defined over %, the points of V rational over k2, are dense in V (see e.g.
S.Lang, Introduction to Algebraic Geometry, Interscience Publ., Prop. 10,
p. 76).

02. Let V be a k-variety. Then k[V] denotes the k-algebra of regular
functions defined over 2 on V, or, as we shall say, of k-morphic functions
on V. The fact that V is defined over % implies that for any extension
field 2 of 2, we have E[V] =FEkV]® k. I V is irreducible, AV) is the
field of rational functions on V, defined over %, on V.

The set of points of V rational over an extension field £ of £ will be
denoted V(%'), (and not V., as in [3]). Often, we let V stand for V(k), ie.,
we identify V with its set of points over 2. The tangent space to V'at a
simple point z is denoted 7(V),. If x<V(k), the space T(V), carries a
canonical k-structure. Let W be a k-variety and f: W —V a k-morphism.
If xeW() and f{x) are simple points, f induces a linear map
T(W), = T(V)rezy, defined over %, to be denoted df, and to be called the
differential of f at x. The map f induces a homomorphism f°: 2[V] — E[W],
the “comorphism” associated to f. Similarly, if V, W are irreducible, and
f(W) is dominant in V, then f induces an injective homomorphism of (V)
into W), also to be denoted f°. We recall that f: W —V is dominant if
A(W) is dense in V. In that case it contains an open everywhere dense
subset of V.

03. If A, B are two subsets of a group H, we let Tr(A, B) or Try(A,B)
be the set of he H such that Inth(A)c B. If A=B, then Tr(A, B) is the
normalizer Ng(A) or N(A) of A in H.

04. Let h be a Lie algebra over 2. We let ad X denote the map
Y —[X,Y] of § into itself. Let p+ 0. We recall that § is restricted if it is
endowed with a map [p]: X 1— X into itself, having the following properties :

(a) (ad X)? = ad X
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(b) (@-X)P=g?. X" (Xeb, ack)
(c) X +X)P =X+ XIP + ot e 5:(X ), X)
where 5,(X,, X,) is the coefficient of A*™' in (ad(AX,+X,))P"/(X,). I sisa

positive integer and ¢q = p*, we write [g]: X — X'@ for the s-th power of [p].
By convention, if p=0, any Lie algebra over k is restricted.

0.5. Let a, b be subsets of g. We put
3(a) = 3(a) = {X e g,[X,a] =0},
Z(0) = Z(a) = {g< G, Ad g(X) = X(X < o)} ,
n(a) = ny(a) = {Xeg,[X,alca}
Ny(a) = Ma) = {g <G, Ad g(a) = a}
tr(a,b) = {Xeg,[X,a] C B}
Tre(a, b) = Tr(a, b) = {g< G, Ad g(a) C b} .

Z(a) and Ma) are the centralizer and the normalizer of a in G. (The
definition of g and of the adjoint representation will be recalled in §1.)

0.6. Let H (resp. H') be a group and A (resp. A") a set on which it
operates, Let f: H— H' be a homomorphism. A map uz: A— A is
JSequivariant if u(h-a) = f(h)-u(a)he Hyaec A). If H=H' and f = id., then
u is said to be equivariant or H-equivariant.

1. The Lie algebra of a linear group.

1.1. In this paragraph, we let A stand for the algebra k[G] of k-morphic
functions on G. We have k[GXG]=A® A, hence the comorphism associated
to the product map v: GXG—G is a homomorphism u: A —>ARA. We
let « be the inverse map x> x7! of G and & the homomorphism ai— a(e) of
A into % defined by the neutral element ¢ of G. We have

(1) EQ@id)op=id=(d® & op.

The existence of the group law on G is equivalent to a number of properties
of u, & ¢ which can be found, e.g., in [14, 0.8.2].

12. The Lie algebra of G. The group G operates by left and right
translations on £[G] = AQ k. For ge G, let Ay p,: E[G] — E[G] be defined
by
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Ma(x) = a(g™t-x), pea(x) = a(x-g).

Then A: gi— A, (resp. p: gi—p,) is a representation of G into %[G], called
the left (resp. right) regular representation of G in k[G]. The latter space
is the union of finite dimensional subspaces, defined over k, stable under A
and p. The restriction of A (resp. p) to such a subspace is a rational
representation defined over 2. The representations A and p commute with
each other. ,

A k-derivation X of A is left- (vesp. right-) invariant if its natural
extension to A ® %k commutes with the left (resp. right) translations. Left-
invariance can also be described by the relation

(1) poX=30d® X)ou.

We denote by L(G)(k) the k-vector space of all left invariant k-derivations
of A. Endowed with the bracket operation [X,Y]=X:Y—Y-X and the p-th
power operation X™=XP it is readily seen to be a restricted Lie algebra
over k. If k' is an extension of %, then L(G)(k) = L(G)(k)® k. We shall

also write L(G) for L(G)(k) and call L(G) the Lie algebra of G. We shall
soon identify L(G) and T(G),. Until then, we let g stand for T(G),. Since
e is the identity, it is clear that

dll(e’e)(X, 0) = dll(e,e)(o, X) =X > (X € g) ’
whence

(2) dveo(X,Y) =X +7Y, X,Yeg).

Since the composition of the map G — GxG defined by xi— (7!, ), with »
is the constant map, it follows that

(3) d)(X)=-X (Xeg).

Furthermore, using induction and the composition law of differentials, we
deduce from (2)

1.3. PROPOSITION. Let V,---,V, be k-varieties, u;cV,, and f,:V,—G
a k-morphism which maps u; onto e. Let u=(u,,+++,u,) and let f: V, X
eooe X V,u— G be the k-morphism defined by f(vy, -, vn)=f1(0)++- Jn(Um).
Then df (X, -+, Xn) =dfi(X)) + - +df(Xn) Xi €TV Du i =1,4++,m).

14. In this section and the following, g stands for 7(G),. We recall
that g(k) may be viewed as the k-vector space of k-derivations of A into &,
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where £ is made into an A-module by means of & Let now X e L(G)(k).
We associate to X a k-linear map o{X) of A into £ by

(1) o(X)a) = &-Xa = Xa(e), (acA).

X is in fact a k-derivation of A into %, hence o is a k-linear map of L(G)(k)
into g(k), obviously compatible with field extensions.
On the other hand,

(2) TY)=>d®Y)opn, (Yegk),
is a derivation of A into A. The obvious equality
(3) ll'°7\'a=(7\la®id)°llu

shows at once that id®7(Y) and A,(g € G) commute. Therefore = is a k-linear
map of g(k) into L(G)(k).

15. PROPOSITION. We keep the previous notation. o and T are
isomorphisms, inverse of each other. In particular, dim, L(G)(k) = dim G,

and L(G) = L(G").

To prove 1.5, we may assume k=£k. It suffices to show that ¢ is injective
and that oor=id. Let ¢{X)=0. Then, by 1.4(1), applied to A\.a, (g€ G,ac A),
we get Xa(g)=0, whence X=0. Let X ¢ g(k). Then, in view of 1.1(1), 1.2(1):

com(X)=(1d®E-(MdRXX)op=>1dREopoX=X.
From now on, we identify L(G)Yk) and g(k) via o: Thus g(k) is
canonically endowed with a structure of restricted Lie algebra over 2. An
explicit description of this structure is as follows: for a positive integer s,

let u®: A— ®*A be the comorphism defined by the product map G*— G.
For ac A, let us write

(1) pPa=3a,,Q QR a;;.

Then, for s=3, we have

(2) [X,Y]a = 3(Xa;, - Ya,, — Ya, - Xag)a(e), (X,Y eg(k)),
and, if p>0, for s=p+1

(3) XWg =3 (Xayooe-- Xay)-agp(e), (Xegk),
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as follows from 1.4(2).

16. Let H be a k-group and f: H—G a k-morphism. Then
df,: H(k) —g(k) is a homomorphism of restricted Lie algebras over &, as
follows from 1.5 (2),(3), and it is then clear that Gi—L(G)(#) is a functor from
the category of k-groups and k-morphisms to the category of restricted Lie
algebras over .. We write also L(f) or df for df,. If f is the inclusion
of a subgroup, then L(f) identifies L(H) with a restricted subalgebra of
L(G)(k).

1.7. Examples. (a) G = G,, the additive group of the one-dimensional
vector space. We have A=k[T'] and w(T) = TQR1+1Q7,&T) =0. An easy
computation, based on 1.5(2), (3), shows that g is one-dimensional and g =0.

(b) G=GL,. Then A =T, T, +*+,Tu,D*], where D = det(T}),),
(1=+4, j=n). The comorphism u: A— A®A is given by

( 1 ) ,“(th) = zk Tuc ® Tk} ’
and
(2) E(TU):SH’ I=i5=n).

X e g(k) is determined by the elements a;; = X7, of k2, hence by a matrix
(a;;) e M (k). In the notation of 1.4, we have, by 1.4(2):

(3) HX)YT'i;) = ZuTix - ar; -

It follows from (3) that Xi— (XT,;) identifies g(k) with M,(k), endowed with
the usual commutator [X,Y] = XY—YX, and the ordinary p-th power as

[p]-operation.
(c) G=T is a torus and p>0. Then g is commutative, [p] is a bijective

F,-linear map of g(k) onto itself, where F, is the Frobenius automorphism
xl—>z? of 2. The set g, of fixed elements of [p] is a vector space over the
prime field F, with p elements, such that g(k) =g,®@%. If T splits over %,
then g,c g(k) and g(k) = g,®*% (the tensor products being over F),).

Let X, bz the group of morphisms of GL, into 7. It is a free abelian
group of rank equal to dim7. Let us associate to xe Xy the element
dx(1)e g(k). This is a homomorphism, which induces a surjective homo-
morphism f: Xy®% —g(k). The image of Xy is pointwise fixed under [p],
and contains a basis of g over .. If T splits over &, then AXx®1)=g,. All
these facts follow readily from (b), since 7T splits over %, and a k-split torus
is a direct product over £ of some copies of GL,.
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1.8. The adjoint representation. Let X ¢ L(G). Since left translations
commute with right translations

AdgX)=rgoXoNt (geG)

is again an element of L(G). From the definition of the bracket and p-th
power operations in L(G), it is clear that Ad g is an automorphism of L(G).
The map g+— Ad g is a representation of G into L(G), to be called the
adjoint representation of G. If we identify g(k) and L(G) by =, we see
immediately that Ad g is the differential at e of the inner automorphism
Intg: x1>g-x-9g'. If f: H— G is a k-morphism, then

(1) LXAdAX) = AdFRXL(FXX) (X< LH), h<H).

1.9. PROPOSITION. The adjoint representation of G is a k-morphism
of G into GL(g). The differential of Ad is the homomorphism ad:
X 1—ad X defined by ad X(Y) = [X, Y] (X,Y €g).

In view of 1.8(1), it suffices to prove that if H is a k-subgroup of GL,
and m a subspace defined over %2 of gl, stable under Ad g (g< H), (where
Ad is the adjoint representation of GL,), then the representation A— AdA|,
of i into m is defined over k, and its differential is ad X|,. This follows
readily from the formula

(1) AdgX)=g-X-g" (9eGL, X<gly)
which in turn is a simple consequence of 1.7(3).

1.10. Applications. (a) We identify 7(G), to g by means of the left
translation /,: x— g +x. Then, by definition (dl,),=id. The right translation
ro: x1—>x+ g can be written as [, oInt g7'. Thercfore (dr,).=Adg™. As
a consequence the differential at ¢ of the map g—g-a-g' is (Ada™*—1d).

(b) Let X eg. Identify the tangent space to g at X in the usual manner
to g. Then the differential at ¢ of gi— Ad g(X) is —ad X. This follows,
e.g., from 1.9(1).

1.11. PROPOSITION. Let L, M be two connected k-subgroups of G and
Q=(L, M) be the group generated by the commutators (x,y)=x-y-x'-y!
(xeL, ye M). Then the Lie algebra q of Q contains all elements of the
form Adx(X)—X (xeL, Xem) or (xeM, Xel) and all commutators
[X,Y], (Xel, Yem),
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(We recall that Q is a connected k-group, see, e.g., ([1], Lemme 4.3).)
Let xeL. Then y—zx-y.x'-y?' (yeM), may be viewed as the
composition of the two morphisms (of varieties) y—>x-y-x' and y—y™!
of M into Q, with the product in Q. By 1.2, its differential at (e, e) is the
sum of the differential of Int x, which is Adz, and of the differential —Id
of yi—y! (see 1.2(3)). Thus Adx(X) — X eqif Xem. Similarly, Ad z(X)
—Xeqif xeM, Xel.

Let Xem. Then z+— Adxz(X)—X is a morphism of L into g, whose
differential at e is Y1—ad Y(X)=[Y, X], (Y «l), whence the second assertion.

112. COROLLARY. (i) If G is solvable (resp. nilpotent, resp. com-
mutative), then § is solvable (resp. nilpotent, resp. commautative). (i) The
Lie algebra 3 of the center Z of G belongs to the center of g.

REMARK. If p> 0, the converse to (i) or (ii) is well known to be false.
To mention one example, 3l, is solvable with one-dimensional center if p=2,
while SL, is simple.

1.13. Separable morphisms. Let X, Y be irreducible k-varieties and
f: X—>Y a dominant k-morphism. The comorphism f° defines a mono-
morphism of A(Y) into k(X). f is said to be separable if k(X) is a separable
extension of k(Y). It is then so for every extension %" of k. We recall that
the following conditions on f are equivalent :

(i) f is dominant, separable.

(ii) f is dominant. There exists a simple point a € X whose image b is
simple and such that df, : T(X), —» T(Y), is surjective.

(iii) There exists an open dense subset U of X, consisting of simple
points, whose image consists of simple points, and such that df, is surjective
for all xeU.

Let F, = f'(f{zx)) be the fibre through xe€X. Let m be a positive
integer. It is well kown that the set of poiats for which dim F,=m is closed,
and that mindim F, =dim X —dim f{X), and so dim F,=dim X —dim f{(X)
for  in an open dense subset of X. Also the set of points for which
dim ker df, = m is closed. If x is simple on X and F,, then 7(F,),Cker df,.
It follows then that the minimum of dim ker df, is attained on a non-empty
open set, and is = dim X —dim f{X).

(ii) —> (iii). We have dim ker df,=dim X —dim f{X), hence by the above,
there is an open set U in X such that dim ker df, = dimkerdf, for xeU,
whence (iii).

(iii) =—> (ii). We have dim Im df, = dim {X) for all simple x ¢ X, hence
df, cannot be surjective if [dim f{X)<dimY, which implies that f is
dominant. For the equivalence (i) & (iii), see, e.g,, ([27], Prop. 15, p. 12,
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and Chap. IV, §6). :

We shall be mainly concerned with the case where X, Y are smooth
over k, X is affine, f is surjective, and df, is surjective for every x € X. In
this case, if Z is a closed subvariety defined over 2 of Y, then f(Z) is
defined over 2. In fact, f~(Z) is obviously k-closed. By (0.1), it suffices to
show that its irreducible components are defined over k. We may therefore
assume Z to be irreducible. The assumptions imply that XXZ c XxY
cuts the graph of f transversally, therefore the cycle sum of the irreducible
components of f1(Z), each affected with coefficient one, is rational over &
(127], Thm. 6, p. 200, Thm. 4, p. 223). But (0.1) this is equivalent to f~!(Z)
being defined over %k as an algebraic set. In particular f-Y(Z)k,)+ 0. If we
apply this to the k,-points of Y, we see that f{X(%,)) = Y(%,).

1.14. Separable actions. Let G act k-morphically on the k-variety X.
We say that G acts separably if, for each x < X, the map @,: g—g-zx is a
separable map of G onto the orbit G(x) of x. In view of 1.13, this is the
case if and only if the kernel of (dp.). is the Lie algebra of the stability
group G, of x. It suffices of course to check this condition for one point of
each orbit.

1.15. Generation by subgroups. Assume G to bz connected. Let
M=(H})<i=m be a family of connected k-subgroups of G. We say that .}
spans G (separably) if the product morphism f: H, X +-- X H,—G is
surjective (and separable). Assume now that 9 generates G, ie., that no
proper closed subgroup of G contains all the H,’s. It is then known that
there exists a family H = (H,)i<j=n, such that each H; is one of the H’s,
which spans G. We say that M generates G separably if there exists such
an M which spans G separably.

1.16. PROPOSITION. Let G be connected, and (H )izizm a family of
connected k-subgroups of G.

(i) If the Lie algebras Y, span @, then (H;) generates G separably.

(i) If (H,) generates G separably, then § is spanned by the subalgebras
Ad g(bi), (i=1: eee,mM, g€ G)

(i) Let H be the subgroup generated by the H,. It is a connected
k-subgroup whose Lie algebra contains the §);, hence is equal to g. Therefore
(1.5), dimH =dim G, and H = G. Thus the H; generate G. If (H)) is a
family consisting of elements of (H,), which spans G, then the differential
of the product morphism at e is surjective, whence the separability (1.13).

(i) Let (Hj)i<j=n span G separably, where each H; is one of the H,’s.
There exists then a point A=(h,,*++,h,) (h; € H;) such that df, is surjective.
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After having made a translation by f{(h)™' we may assume that f{h) =e. Put
now

v, =hyeechy, H =Intv(H;) (1=i=n).
Let ¢ be the isomorphism
Intov, X «+« XIntv,: H{X eee XH,—>H{X ++« xH,,

and r the product morphism: H; X --.- XxH, —-G. Then rogq is the map
(@, ooy xp)—hyoxy oo hy-2,-v;'. Therefore, d(roq), is surjective. But
(1.3) the image of dr, is 47+ -+« +0,.. Since §; = Ad v,(§;), this proves our
contention.

- 117. Example. Let G=SL,. Then g=38{, is the Lie algebra of 2x2
matrices with trace zero. Let 7" be the torus of G consisting of the diagonal
matrices of determinant one. Its Lie algebra t is the Lie algebra of diagonal
2X2 matrices with trace zero. Let now p=2. Then t consists of scalar
matrices and is pointwise fixed under the adjoint representation. Since the
1-dimensional tori of G are conjugate by inner automorphisms it follows
that t is the Lie algebra of any such torus. Thus g is not generated by the
Lie algebras of the tori of G, although G is generated by its tori, in fact, by
two suitably chosen tori.

1.18. PROPOSITION. Let G be a k-group and f: G— G a surjective
k-morphism. Let H' be a k-subgroup of G' and H = f~(H’). Assume that
g =9 +df(g). Then G acts separably on G'/H' via f, the group H is
defined over k, and f induces an f-equivariant k-isomorphism of G/H onto
G/H'.

Let #: G —>G'/H' be the canonical projection. Then d=, is surjective
with kernel Y, therefore d(wof), is surjective, and wof is surjective,
separable. Then, H=f"'(z(H’)) is defined over 2 (1.13), and f induces a
bijective f-equivariant k-morphism f of G/H onto G'/H'. In view of the
assumption df is surjective at the origin, hence f is an isomorphism.

2. Solvable subgroups. The following lemma is a Lie algebra analogue
of [1, Prop. 17.1]. Mcrz general results may be found in [12, Exp. XIII, §1].

21. LEMMA. Let H be a closed subgroup of G. Assume that there
exists XeY such that the set Tr(X,9) of g G for which Ad g(X)e)
consists of finitely many left classes mod H. Then Ny (%) = H°, and
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V = U,ceAd g(B) contains an open non-empty subset of §. If G/H is
complete, then V =g.

N;(9) is a closed subgroup of G contained in Tr(X,}), hence its identity
component is equal to H°.

Let M be the set of pairs (¢H,Y) in G/Hxg such that Ad g '(Y¥)eh.
We claim that M is a closed subvariety of G/H xg. To see this, we consider
the morphisms

a

b
GxY Gxg G/H xg,

where a(g,Y) = (g,Ad g(Y)) and & is the canonical projection on the first
factor, the identity on the second factor. The morphism a is a closed
immersion, hence Im a is closed. Clearly, (¢,Y)<Ima implies (¢-H,Y)<cIma,
hence Ima = b"'(b(Ima)) and Im(boa) is closed. But Im(boa)= M. The
morphism p,: M—G/H induced by the projection of G/H X g onto its
first factor is surjective, and its fibres are isomorphic to §, hence dim M
=dimG/H+dimh=dimG. Let now p,: M —g be the morphism induced
by the projection on the second factor. By definition V =Imp, By
assumption, at-least one fibre of p, consists of finitely many points, hence
dim V=dim M = dim g, which implies our first assertion. If G/H is moreover
complete, then p, is a closed morphism, and V is also closed, which yields
the last part of the lemma.

2.2. A Borel subalgebra b of g is a subalgebra which is the Lie algebra
of a Borel subgroup of G. The conjugacy of Borel subgroups by inner auto-
morphisms of G° implies the conjugacy of Borel subalgebras under Ad G°.
The main result on Borel subalgebras is 2.3, due to A. Grothendieck ([12],
Exp. X1V, Thm. 411, p. 33). The proof presented here is somewhat different
from that of Grothendieck’s. It was sketched in [4].

23. PROPOSITION. The Lie algebra g is the wunion of  its Borel
subalgebras.

Let R be the radical of G (ie., the greatest connected solvable normal
subgroup of G). It is contained in every Borel subgroup and its Lie algebra
is contained in all Borel subalgebras of g. We may therefore replace G by
G/R and assume G to be semi-simple.

Let B be a Borel subgroup of G, T a maximal torus of B and ® the
set of roots of G with respect to 7. We let A denote the set of simple
roots for the ordering defined by B. We have
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(1) g:t@2a<¢ga 5:t+2a>0gu
where
(2) 8, = {Xeg, Ade(X) =¢*- X} .

Furthermore, given b < ®, there is an isomorphism 6, of G, onto a unipotent
subgroup U, of G such that

(3) 08 -x) =t -6,(x)- ¢t (xe@G,, teT),

and g, is the Lie algebra of U,. Since G/B is complete, 2.3 will follow from
2.1 and the following lemma

24. LEMMA. We keep the notation of 2.3. Let X, be a non-zero
element of g, (acA) and X=3,..X,. Then {g<G, Ad g(X)cb} = B.

Let U be the unipotent radical of B, and W the Weyl group NT)/T.
For we W, let n, be a representative of w in MT). Let geTr(X,b). By
the Bruhat decomposition [10, Exp. 13], we have g = b"-n,-b (b,b < B), with
beU, b’ e B. Since Ad; B(b)=b, we may assume b'=e. By 1.11, Ads(X)—X
lies in the Lie algebra of the commutator subgroup (U,U) of U. But (U,U)
is contained in the subgroup of U generated by the U,(c >0, c& A) (see, e.g.,
[3], Prop. 2.5, p. 66), hence

Ad b(X) —X e 2c>0.c(Agc .
We conclude that
Ad g(X) = Eaupfan(u)

with £,#0 if a< A. Since the w(a) are distinct roots, the X, are linearly
independent, and Ad g(X)eb implies that w(a) >0 for acA. As is well
known, we have then w=e, hence g < B.

25. PROPOSITION. Assume G to be connected. Let U be the unipotent
radical and T a maximal torus of G. There exist two Borel subgroups
B, B of G, which generate G separably, such that BNB =T-U and
g="b+0, bNnb =t+u.

It suffices to prove this for the reductive group G/U. For the latter take
two opposed Borel subgroups containing 7" (see [3], 2.3, p. 64).

2.6. PROPOSITION. Assume G to be connected. Let P be a parabolic
subgroup of G. Then P = Ny(p).
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Let B be a Borel subgroup of G contained in P and let Q = Ny(p). The
Borel subalgebras of g are the conjugates of b, hence are contained in p.
We have then p=gq by either 2.3 or 25. Since parabolic subgroups of a
connected group are connected, it follows that P = Q.

27. For the sake of reference we recall here some facts about groups
over finite fields.

Let % be finite. Then G has a Cartan subgroup (resp. maximal torus,
resp. Borel subgroup) defined over .. Any two Borel subgroups defined
over k are conjugate by an element of G(k). Let H be a k-group and f:
G — H a surjective k-morphism. Then a Cartan subgroup (resp. maximal
torus, resp. Borel subgroup) defined over %2 of H is the image of such a
subgroup of G.

For the existence, see [17, p.45], or apply Lang’s theorem [16] to the
variety of maximal tori or of Borel subgroups (see §7). The conjugacy
follows from Lang’s theorem, too.

28. Let k£ be finite, G be connected reductive. Let B and T'C B be a
Borel subgroup and a maximal torus of G defined over .. Then the Borel
subgroup B’ opposed to B and containing 7" is defined over k. Since the
unipotent radical of a k-group is defined over 2 when £ is perfect, it follows
from 2.7 that if % is finite, we may choose B, B' and T in 2.5 to be defined
over k. We want to use this remark to prove 2.9, which answers a question
raised in ([12], Exp. XIV, p.46). A proof has also been given by Steinberg
(unpublished).

2.9. PROPOSITION. Let k be finite and G be connected. Then G is
generated by its Cartan subgroups which are defined over k.

Let B, B, T as in 2.8. Since the Cartan subgroups defined over %2 of a
k-group are the centralizers of its maximal tori defined over %, we see that
the Cartan subgroups defined over £ of B or B’ are contained in Cartan
subgroups defined over 2 of G. Consequently, it is enough to consider the
case where G is solvable, where we proceed by induction on dimG. If G is
nilpotent, in particular if dim G=1, our assertion is obvious. Let U be the
unipotent part of G and N a non-trivial connected normal k-subgroup of G
contained in the center of U, of minimal dimension. Let H be the subgroup
of G generated by the Cartan subgroups of G defined over k. If we apply
the induction assumption to G/N, and use 2.7, we see that G=H-N. Let T"
be a maximal torus of G/N defined over £ and L its inverse image in G.
By 2.7, the maximal tori of L are maximal tori in G, hence the Cartan
subgroups defined over % of L are contained in Cartan subgroups defined over
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k of G. If L+G, then, by induction, L is generated by Cartan subgroups
defined over k. Since Nc L, this proves our assertion in this case.

There remains to consider the case where G/N=T". Then 2.7), G=T-N
where T is a maximal torus defined over £ of G. Furthermore, the
assumptions made on N imply that N has no proper non-trivial connected
subgroup normalized by 7". In particular, if HNN=+# N, then (HNN)° = {e}
and H=T, and since Z(T) is connected [1, §13], we have either Z(T)N N=N,
and then G = Z(T) is its own Cartan subgroup, or Z(T)N N= {e}. So assume
Z(T)NN={e}. In view of the minimality assumption on N, we have N?= {e},
hence ([18], Prop. 1,2, p. 688), N is isomorphic over k2 to a product of groups
G,. In particular N(k) has at least two elements. Let x e N(%k), x#e. Then
x+T-x7' is defined over 2 Since Z(T)NN={e} and since in a connected
solvable group, the centralizer and the normalizer of a torus coincide ([1],
Prop. 10.2 p. 52), we have x-T -2 '+T, hence H+T, HN N+ {e} and finally
H>N, G=H.

210. Let H be a k-group. As in [3,04], we say that it acts k-
morphically on G if it acts 2-morphically on the underlying variety of G and
if, for each h € H, the map @,: gi—oh-g is an automorphism of G. Then
h— (d@;). is a k-morphism of H into the group Aut(g) of automorphisms
of the restricted Lie algebra g.

2.11. PROPOSITION. Assume G to be connected. Let S be a k-torus
which acts k-morphically on G. Then S acts trivially on G if and only if
it acts trivially on g.

The necessity of the condition is obvious.

The set of s<.S whose centralizer in g is equal to that of S is a non-
empty open subset A (consisting of the elements which do not annihilate the
non-trivial weights of S in g). Similarly the set B of s < S whose centralizer
in G is equal to Z(S) contains an open non-empty set [3,1.10, p. 62]. The
sufficiency then follows from [3, 10.1] applied to an element of AN B.

3. Jordan decomposition in the Lie algebra of an algebraic group.

31. An element X eg is semi-simple (resp. nilpotent) if it belongs to
the Lie algebra of a subtorus (resp. unipotent subgroup) of G.

(a) Any element X c¢g can be written uniquely as X = X, + X, where
X, is semi-simple, X, is nilpotent and [X,, X,1=0. If f: G>H is a
morphism _then df(X,)= (df(X)),, df(X,)=@f(X).. If G=GL, then
X=X,+X, is the Jordan decomposition of the linear transformation X.

For the proof see [4]. The decomposition X = X,+X, is called the
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Jordan decomposition of X, and X, (resp. X,) is the semi-simple (resp.
nilpotent) part of X. We state some consequences of (a).

(b) If k is perfect, and X € §(k), then X,, X, € g(k).

To see this we may identify G to a k-subgroup of GL, and then we
use the corresponding fact for the Jordan decomposition of a linear trans-
formation over a perfect field.

(¢c) Let G be connected, solvable. Then X €g is nilpotent if and only
if it is tangent to the unipotent part of G.
This follows from the fact that the unipotent radical of G contains all

unipotent elements of G [1, Prop. 10.1, p. 52].

(d) Let G be connected. It is a torus (resp. a unipotent group) if and
only if its Lie algebra consists of semi-simple (resp. nilpotent) elements.

The necessity of the condition is obvious. Let geG. It belongs to a
Borel subgroup B of G, which, in view of (c) is a torus (resp. unipotent
group). Thus g is semi-simple (resp. unipotent). We then use the fact that
a connected group consisting of semi-simple (resp. unipotent) elements is a
torus (resp. unipotent group) [1, §19].

3.2. PROPOSITION. Let p>0. Then the p-th power operation [p] is
a k-morphism of @ into itself, which maps the set of semi-simple (resp.
nilpotent) elements onto (resp. into) itself. There exists a power q of p
such that X' = X9 for all X eg. The image of [q] is the set of semi-
simple elements of g.

We may assume gcgl,. Then (1.7(b)), X = X?, which proves that [p]
is a k-morphism of g into itself leaving the set of semi-simple (resp. nilpotent)
elements stable. Moreover, X@ =0 if g>n and X is nilpotent. For such
a ¢ we have then, since [X,, X,] =0,

X9 = (X, +X,)® = X@ 4 Xo = X,

which shows that Im[g] consists of semi-simple elements. On the other
hand, [p] is surjective on g if G is a torus (1.7(c)), hence Im[p*] contains
the set of semi-simple elements of g for every s=1.

3.3. Let X be a non-zero nilpotent element of g(k). If p=0, then it is
well known that X is tangent to a unique one-dimensional unipotent
k-subgroup U of G. If GC GL,, then U is the set of elements

exps-X = S,an!)tesm . X7
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(see, e.g., [8], Prop. 1, p. 159).

However, if p>0, there is not always a one-dimensional unipotent
subgroup U of G whose Lie algebra is spanned by X. We shall come back
to this question in §9.

4. Toral subalgebras.

4.1. PROPOSITION. Let X € g(k) be semi-simple. Then 3(X) is the Lie
algebra of Z(X), and Z(X) is defined over k. The conjugacy class Ad G(X)
of X in g is closed, and the map g— Ad g(X) induces a k-isomorphism of
G/Z(X) onto Ad G(X).

By ([4], 1.5, 1.6, p. 28), Ad G(X) is closed in g, and 3(X) is the Lie algebra
of Z(X). Since ad X is semi-simple, we have g=3(X)+[X,g]. On the other
hand (1.10), the differential of f: gi>Ad g(X) at e is —ad X. Therefore f
is a separable map of G onto Ad G(X), which implies the other assertions of
the proposition.

4.2. DEFINITION. A subalgebra 8 of g is called a toral subalgebra if
it consists of semi-simple elements.

4.3. PROPOSITION. Let 8 be a toral subalgebra of g which is defined _
over k. Then 38) is the Lie algebra of Z(8). The group Z(8) is defined
over k, contains maximal tori of G, and 3 belongs to the Lie algebra of
every maximal torus of Z(8). The group Z(8)° is equal to N(3)°.

We show first that 8 is commutative. Assume it is not. Since ad X
(X €8) is a semi-simple linear transformation of g, there exist then X, Y ¢ 8,
not zero, such that [X,Y]=Y. But then adY leaves the two-dimensional
space m spanned by X,Y stable, and its restriction to m is non-zero, nilpotent,
a contradiction.

Let X €8(k). Assume first that [X, g]=0. Let 7 be a maximal torus of
G whose Lie algebra contains X. Since G°c Z(X), by 4.1, X belongs to the
Lie algebra of the group ¢g-T-¢7! (9 €G’), which runs through all maximal
tori of G as g runs through G°. Thus, if 8 is central in g, then 8 belongs
to the Lie algebra of all maximal tori of G, and Z(8)D>G°. Since 8 is defined
over k, Z(8) is defined over a purely inseparable extension of 2. But any
subgroup of G containing G° is defined over a separable extension of %, hence
Z(8) is defined over % if [8, g]=0.

Let now 8 not be central in g. There exists then X € 3(k) such that
[X,8]#0. We have then dim Z(X)#dim G by 4.1. The group Z(X) is defined
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over k, contains a maximal torus 7" whose Lie algebra contains X. We may
then prove the second assertion by induction on dimG.

Let T be a maximal torus of Z(8)°. Then Z(T)c Z(8)°. Using the
conjugacy of maximal tori in Z(8)°, we see that N(8) = (N(T)n N(8))- Z(3)".
Since Z(T)c Z(8)° and NMT')° = Z(T), it follows that N(8)°'=Z(T)- Z(8)°=Z(s)".

44. COROLLARY. Let G be a k-group and f: G—G a separable
surjective morphism. Then f(Z(8)") = Z(df(8))".

We have f(Z(8)°)c Z(df(8))’. To prove surjectivity, it is enough, in view
of 4.3, to show that 3(df(8))=df{(3(8)), which follows from the full reducibility
of ad, 3.

45. COROLLARY. The maximal toral subalgebras are the Lie algebras
of the maximal tori of G, and are conjugate under G°.

REMARK. Toral subalgebras have also been introduced by Humphreys
in [15, §13]. 4.5 is also proved there.

We shall have to use frequently the known global analogues of the
previous results. For the ease of references, we collect them, and sharpen
them slightly, in the following proposition.

4.6. PROPOSITION. Let H be a k-subgroup of G, S a k-torus of G and
seG(k) a semi-simple element which normalizes H. Then Z(S)NH and
Z(s)NH are defined over k, the orbit M = Inty H(s) is closed in G, and the
map h—h-s-h™' induces a k-isomorphism of H/(Z(s)NH) onto M. The
Lie algebra of Z(S)NH (resp. Z(s)NH) is 3(S)NY (resp. 3(s)NY). If G is
connected, G’ is a k-group and f: G—G a surjective k-morphism, then

SZS) = Z(f(S)) and fTZ(s)") = AZ(s))".

For the part pertaining to s of the first assertion, see ([3], 10.2, p. 128
and 10.3, p. 129), taking into account that the connectedness restrictions made
in 10.3 are superfluous, in view of the facts recalled in 0.1. For the second
assertion about s, see ([3], 10.1, p. 128).

The group S(k,) contains an element ¢ such that Z(¢) = Z(S) ([3], 1.10,
p. 62); consequently, Z(S)N H is defined over k,. Since it is purely inseparable
over k, it is then defined over k. If G is connected, Z(S) is connected by
([1], Prop. 184, p. 72).

We now prove the last assertion. Clearly AZ(S)) c Z(f(S)). Since both
groups are connected, it suffices to show that they have the same dimension.
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Let N be the kernel of £ By the above, the Lie algebras of Z(S) and
Z(S) NN are 3(S) and 3(S)Nn, hence

dim AZ(S)) = dim Z(S) — dim (Z(S)" N) = dim dA(S)).

But Ad;S is fully reducible, whence df(3(S)) = 3(AS)) and dimdf(3(S))
= dim 3(AS)) = dim Z(A(S)). The proof of the equality AZ(s)°) = Z(f(s))® is
quite similar.

47 PROPOSITION. Let G be connected, solvable, and 8 a toral sub-
algebra of §. Then N(8) and Z(8) are equal, and connected.

Let T be a maximal torus of Z(8). Then 8ct, hence Z(T)c Z(8). Let
xeNB8). Then zx-T-x' is a maximal torus of Z(8)°, and there exists
y e Z(8)" such that y-xe MT), which shows that N(8)c MT)-Z(3)’. But Z(T)
is equal to MT) ([1], Prop. 10.2, p.52), and is connected ([1], Thm. 13.2,
p. 60), whence MT)c Z(8)°, and N(8)cC Z(3)".

48. A Lie subalgebra of g is algebraic if it is the Lie algebra of an
algebraic subgroup. In the remaining part of this paragraph, we reprove some
known results on algebraic Lie algebras.

Let p=0. Then the Lie algebra of the intersection of two algebraic
subgroups is the intersection of the Lie algebras of the two subgroups.
Therefore, if M is a subset of g, there is a unique smallest algebraic subgroup,
to be denoted A(M), whose Lie algebra contains M, namely the intersection
of all algebraic subgroups whose Lie algebras contain M. If M is a subspace
of g, defined over %, then (M) is defined over 2. If X is a non-zero nilpotent
element of g, then (X) is the one-dimensional group constructed in 3.3.

If p#0, then the opening statement of the preceding paragraph may be
false, as is already shown by the example (1.17) of the tori in SL, in
characteristic two.

49. PROPOSITION. Let 8 be a toral subalgebra of g.

(i) If p=0, then A3B) is a torus.

(i) ([13], Prop. 2, p. 5y If p>0, then 8 is algebraic if and only if
8 c 8.

8 belongs to the Lie algebra of a torus, whence (i).

To prove (ii), we may assume that G is a torus (4.3), and, by going
over to an extension of k, that G splits over %.

If 8 is algebraic, then 8"! = 3, Assume conversely that 3" c3. We have
then 8"=8. It is elementary that this implies
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gzgo@p,k, (go———-gngo),

where g, is the fixed point set of [p] (see 1.7(c)). There exists then a direct
summand Y of Xy = Xy(G), of rank equal to dim 8, such that AY®%)=3, in
the notation of 1.7(c). But then the images in G of the elements of Y
generate a subtorus of G whose Lie algebra is 8.

410. LEMMA. Let p=0. Let X € g be either semi-simple or nilpotent.
Let V be a finite dimensional vector space over k and f: G—GL(V) be a
morphism. Let W be a subspace of V stable under dfiX). Then f(g)(W)
cW for all ge AX).

Let X be nilpotent. Then it follows from 3.3 that f{g) (g€ A(X)) is a
polynomial in df(X), hence f(g) leaves W stable.

Let now X be semi-simple. We may assume % to be algebraically closed.
Then df(X) is diagonalizable over %k, and it suffices to consider the case
where W is spanned by one element, say Y. Since A(X) is a torus, f{A(X))
is also diagonalizable. Let then (X;) (1 =7 =n) be a basis of V and a; be
characters of A(X) such that f{(#)-X;=t%-X, (i =1,---,n). We have then
df{U)-X, = da,(U)- X, for U in the Lie algebra of A(X) (i=1,---,n).
Write df(X)-Y=a-Y and Y=3¢; X,; let J be the set of indices for which
¢;#0. Then ¢; = day(X) (i €J). Since A(X) is the smallest torus whose Lie
algebra contains X, this implies that the a;’s (z € J) are equal to one another,
hence Y is an eigenvector of A(X).

4.11. PROPOSITION. Let p=0. A subalgebra Y of ¢ is algebraic if
and only if it satisfies the following conditions:

(1) XeY implies X,, X, €}

(i) if XeY is semi-simple, then the Lie algebra of A(X) belongs to Y.

The necessity of these conditions is obvious. Let us assume conversely
that they are fulfilled. Let L be the algebraic subgroup of G generated by
the groups A(X), (X € §(k), X semi-simple or nilpotent). Then, by 4.10, § is
stable under Ady L. It follows then from 1.16 that the Lie algebra [ of L is
spanned by the elements Adx(X) (xeL; Xeb; X semi-simple or nilpotent).
Therefore [c ). But [D§ in view of (i); hence [=Y, and Y is algebraic.

4.12. COROLLARY. Let V be a finite dimensional vector space over
k and G—GL(V) a morphism. Let Y be a subalgebra of g, and W a
subspace of V such that dfH)(W)c W. Then f{A®H))- (W)cW.

Let 1= {Xeg, JAXYW)cW}. Since the semi-simple and the nilpotent
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parts of a linear transformation Y are polynomials in Y, it follows from 3.1(a)
that | verifies the condition (i) of 4.9. By 4.10, it also fulfills condition (ii)
of 4.11, hence [ is algebraic. The connected algebraic group L with Lie
algebra [ is generated by the subgroups A(X) (Xel, X semi-simple or
nilpotent), hence L leaves W stable (4.10). Moreover, since [D), we have
Lo A(b).

413. COROLLARY. Let Y be a subalgebra of g. Assume Y to be
spanned by algebraic subalgebras. Then Y) is algebraic.

We may write =9, + --. +1,, with §, algebraic 1 =7=¢q). Let H, be
the connected group with Lie algebra Y);,, and L the group generated by the
Hys. We have [0;,,0]c ) whence Ad;H(§) =Y by 4.12, and therefore
Ad;L(h) =Y. But [ is generated by subalgebras of the form Ad g(¥,) (g <L,
1=1i=¢q) by 1.16, therefore (c¥, and finally (=Y.

REMARK. 4.11 to 4.13 are known results of Chevalley [8].

5. Inseparable isogenies.

5.1. In this paragraph, we assume p=# 0. An inseparable k-isogeny of
height 1 w: G— H of k-groups is a k-isogeny such that the image of k[H]
under the comorphism #° contains ([G])®. The next result is known (see [21],
Theorem 1 or [7], §3). It is a very special result about the existence of
quotients in group schemes (for which we refer to [12], exp. V). For the
convenience of the reader a sketch of a proof is given below.

5.2. PROPOSITION. Let m be an ideal in §, which is stable under the
p-th power operation and under Ad(G), and which is defined over k. Then
there exists a k-group G/m and a purely inseparable k-isogeny m of height
1, which has the following properties:

(i) Kerdm =m,

(i) if n" G—G is a purely inseparable k-isogeny with Ker n' Dm, then

there exists a unique k-isogeny 6: G/m— G’ such that ="' =60omn.
The pair (G/m, ) is unique up to k-isomorphism.

The proof of uniqueness is standard and will be left to the reader. Let
A=Fk[G]. By 81, g(k) is an algebra of derivations of A and so is m(k). Let

B be the ring of invariants of m in A:

B={acA,Xa=0 for all Xem(k)}.
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Since BDk[A?], a well-known argument shows that B is finitely generated
over k (see, e.g., [22], p. 50, Lemma 10). Moreover if [ is an extension of k&,
then BR ./ is canonically imbedded in A®,/, which is a reduced ring (i.e., a
ring without nilpotents # 0), because G is defined over k. It follows that
B®,l is reduced.

We conclude that B is the k-algebra of a variety G/m which is defined
over k. The injection B — A induces a morphism of k-varieties z: G—G/m
which is bijective on G() (since BDE[A?]). We next prove that G/m is an
algebraic group and that = is a homomorphism. It will follow that = is a
k-isogeny.

Let u: A—> AR, A define the group law on G. It suffices to prove that
uB is contained in the subring B® B of AQ A. Let Xem(k). Then the
right invariance of X implies by 1.2(1) that (X® id)ud =0 for be B. The
invariance of m under Ad(G) implies that (id® X)ub =0 for b B. From
these two facts it follows that uBCc B® B. To finish the existence proof it
remains to be shown that Kerdn=m. Let Xeg(k). The canonical image Y
of X in the Lie algebra of G/m is obtained as follows (see 1.5). Let b< B,
ub=3,b,0 b;, then Yb =3, Xb,(e)b;. From this it is clear that mc Kerdn.
Next let X eKerdn. Then 3,Xb,(e)b;=0. Taking (as we may) the b; to be
linearly independent, we get Xb,(¢) =0. Clearly Kerdr is invariant under
Ad(G), which implies that Xb;, = 0. Since b = 3,bi(e)b;, we see, finally, that
Xb=0 for beB, XecKerdnng(k). The proof will be finished if we show:
if % is algebraically closed and if X eg, Xb=0 for all < B, then X em.

We may then take G to be connected. Let L (resp. M) be the quotient
field of the integral domain A (resp. B). L is a purely inseparable extension
of M of height 1, n=m® , M is an algebra of deriviations of L/M and M is
exactly the field of invariants of n. We can now apply the Galois theory of
purely inseparable extensions of height 1, due to Jacobson, to get the desired
result (see [6], Prop. 6, p. 194). To prove (ii), let f: C— A be the L-algebra
homomorphism defining . Then Kerdz Dm implies that f{C)c B, whence
the result.

5.3. PROPOSITION. Let S be a subtorus of G which is not contained
in the center of G and whose Lie algebra 8 is central in §. Then there
exists an algebraic group G and a purely inseparable isogeny n: G—G,
whose differential dn has kernel 3 and such that the Lie algebra 38" of
S’ =7(S) is non-central in §'. The algebra § is the direct sum of dn(g)
and 8. ‘

Let ®=®(S, G) be the set of roots of G with respect to S. By 2.11,
d(S,G)+#~ ¢. ¢ is the direct sum of the Lie algebra 3(S) of Z(S) (see (4.6))
and of the root spaces
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g, = {X eg|Ad(s) X = 5°X for se S},

where a € ®.

The differential of a: S— GL, can be identified with a linear form on 8
and we have [Y,X]=da(Y)X for Ye8, Xeg,. The form da is zero if and
only if a is divisible by p in the character group X*(S) of S.

Let ¢ be the smallest positive integer such that ®¢ p*' X*(S). 8 is
central in g if and only if ¢=1. We prove the first statement of 5.3 by
induction on c.

From 4.3 it follows that 52 is applicable with m =38 Let G, = G/38,
let 7;: G—G, be the isogeny of 52. Let S; = #,(S). From d=,(8) =0 it
follows that the transposed homomorphism ‘z,: X*(S,) — X*(S) maps X*(S))
into pX*(S). If ¢, has the same meaning for S, as ¢ for S we have ¢, <c.
If ¢,=0, we can take G'=G,, #=m,, if ¢, >0 we can apply induction to get
the required pair (G, #).

To prove the last assertion, it suffices, by dimensions, to show that
dn(@)N8 =0. Let Xeg, dn(X)e8. Write X = X,+X, according to 3.1(a).
Then dz(X,) + dz(X,) is in 8, hence semi-simple. By 3.1 this means that
X.<cKerdr =3. But 3 consists of semi-simple elements, hence X, =0. So
X is semi-simple. By 4.2, X and 8 are contained in the Lie algebra t of a
maximal torus 7" of G. Replacing G by T, we are reduced to prove the
assertion for the case that G is a torus. 4.9 (ii) then shows that 8 is the Lie
algebra of a subtorus of G. We may then assume S =(GL,)", G=(GL,",
with the imbedding (zy,+-+,z.)—>(xy,+*,Zpn 1,---,1). The isogeny
7: G— G can then be described as follows, identifying G’ with (GL,)":

”(xly"',xn) = (xfl"'°,x:hm> xm+1"">xn)’

where the a; are p-powers > 1. Identifying g and g with n-dimensional
space, we have

dn(xla"°7xn)=(0,"',0, xm+19"°,xn):

and 8 consists of the elements (z,,+++,x,, 0,---,0) of g". This shows that
dn(g)N 8 =0, as had to be proved.

6. Regular elements, Cartan subalgebras, subgroups of type (C).

6.1. Regular elements. For X <g, the nilspace of X is the space of
elements in g annihilated by some power of ad X, and nil (X) denotes the
dimension of the nilspace of X, ie., the multiplicity of the eigenvalue zero
of ad X. If X is semi-simple, the nilspace of X is then 3(X).
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We may write
detad X—T) =T™+(P(X) + P(X)-T + «++ + P,_n(X)-T"™™),

(n=dimg), where T is an indeterminate, and the P;s are non-identically
vanishing polynomial functions on g, defined over .. Then X is regular if
and only if P,(X)#0. The set R(g) of regular elements of g is therefore
open, non-empty.

6.2. LEMMA. Let Xeg and X=X,+X, its Jordan decomposition.

(i) X is regular if and only if X, is regular.

(ii) Let p>0. Then X is regular if and only if X'?! is regular.

(iii) Let k be infinite. Then R(g)Ng(k) is Zariski-dense in §. The space
a(k) contains regular semi-simple elements.

(i) Since ad X =ad X, +ad X, is the Jordan decomposition of ad X
(3.1), ad X has the same eigenvalues as ad X,, hence nil (X)=nil (X,).

(ii) Since g is restricted, ad X1=(ad X)?, hence nil (X)=nil (X).

(iii) The set of regular elements is open non-empty, and g(k) is Zariski-
dense in g, whence the first part of (iii). Let X <g(k) be regular. If p=0,
then X, eg(k), and is regular by (i). If p>0, there is a power ¢ of p such
that X'@ = X[9 (32). But then X'9 is regular (by (ii)), semi-simple, and
rational over k.

6.3. LEMMA. Let S be a torus in G. Let ®=®(S, G) be the set of roots
of G with respect to S, and ¥ the set of a<® whose differential da is
zero. The set Ry of X €8 such that da(X)#0 (aec ®—D') is the set of
elements X € 8 for which ¥X)=3(8), and is non-empty open in 8. If X € R,,
then Z(XY=Z8Y. If S is a maximal torus, then R, consists of regular
elements of §. If k is infinite and 3 is defined over k, then 8(k)NRy# (.

(In this statement, the differential db of a morphism &b: S— GL, is
identified to a linear form on 3.)
For a character & of S, let

(1) g9 =g,={Xeg,Ads- X =5"-X, (seS)}.
We have then

(2) 8=20,DZ0coba-

Moreover,

(3) X, Y]=dbX)-Y, (Xe8, Yeg);
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consequently :
(4) 3(8) = 8o D S Ba
(5) 3(X) =8, D Zaca dax=18a

from which our first assertion follows. The second one is then a consequence
of 43. Since R; is open and non-empty, its intersection with 8(k) is not
empty if % is infinite. Let finally S be a maximal torus. By 6.2, g has a
regular semi-simple element Y, which belongs necessarily to a maximal toral
subalgebra of g. By conjugacy, 3 then contains regular semi-simple elements
of g. But, clearly, nil(X) = minnil(Y) (Y €8), if X< R;, which implies our
last assertion.

If % is finite, g(k) does not always contain regular elements. It was shown
however by Chevalley that this is the case if G is the adjoint group of a
semi-simple group (see [12] Exp. XIV, Appendix by J.-P.Serre). We outline
briefly how the same method can be used for any reductive group.

6.4. PROPOSITION. Let k be finite and G be reductive. Then g(k)
contains regular elements.

One shows first (loc. cit. lemme 1) that it suffices to consider the case
where G is quasi-simple over k2. Let T be a maximal torus of G which is
defined over %, and ®=®(T',G). Let @  be the set of a € ® whose differential
is identically zero. By 6.3, X eg is regular if and only if da(X)+#0 for all
bed-@.

The Galois group T = Gal(%/k) operates on T(%k), on ®, and leaves @’
stable. It is proved in loc. cit. Lemme 3, that one can choose 7" in such a
way that there are r=dim7T roots a,,---,a,, which form a basis of the
lattice spanned by the roots, and such that & = U,;I['-a;. It suffices then to
exhibit X e t(k) such that da,(X)+# 0 whenever q, e ®—®’, i =1,---,7. Such
an element exists by lemme 4, of loc. cit.

6.5. DEFINITION. A Cartan subalgebra of g is the centralizer in g of
the Lie algebra of a maximal torus of G. A subgroup of type (C) of G is
the identity component of the centralizer in G of the Lie algebra of a
maximal torus of G.

In view of 6.6, 6.7 below, these notions are equivalent to those introduced
in ([12], Exp. XIII) under the same terminology. A subgroup of type (C)
always contains a Cartan subgroup, but it may be bigger; for example, in
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characteristic two, SL, is its own subgroup of type (C), while its Cartan
subgroups are its maximal tori.

6.6. PROPOSITION. (i) Two Cartan subalgebras of g (resp. subgroups
of type (C) of G) are conjugate.

(ii) The transform of a subgroup of type (C) of G (resp. Cartan
subalgebra of §) by an automorphism of G (resp. the differential of an
automorphism of G) is a subgroup of type (C) (resp. a Cartan subalgebra).

(iii) The Cartan subalgebras defined over k of § are the Lie algebras
of the subgroups of type (C) defined over k of G.

(i) and (i) follow from the definitions and the conjugacy of maximal tori,
(iii) from the definitions and 4.3.

6.7. PROPOSITION. Let Y) be a subalgebra (not necessarily restricted)
of . The following conditions are equivalent :

(i) 9 is a Cartan subalgebra of g;

(ii) Y is the nilspace of a regular element

(iii) 9 ¢s the centralizer of a regular semi-simple element ;

(iv) Y is nilpotent, equal to its normalizer.
If those conditions are fulfilled, Y is maximal nilpotent, contains one and
only one maximal toral subalgebra t of g, and t is the set of all semi-simple
elements of Y.

The equivalence of (i), (ii), (iii) follows from 6.2, 6.3 and from the fact
that the nilspace of X is equal to the centralizer of X,.

We now prove that (i) implies (iv) and the last assertion. By assumption
H=3(t), where t is a maximal toral subalgebra of g. Let X<t be such that
9=3(X); such an X exists and is regular by 6.3. Let n be the normalizer of
h. It is stable under Ads; 7, hence, in the notation of 6.3:

=g, + SscettNG,.
On the other hand

[) =g + 2aeq>,da(X)=oga‘

Let Yenng, Then [X,Y]=da(X)-Y €Y, hence da(X)=0, and Y €Y. Thus
h=n. The algebra § is algebraic (6.6), therefore Z <Y implies Z,, Z, €}, and,
by 4.3, Z,et, which shows that t contains all semi-simple elements of §.
This also proves that [Z,U]=[Z,, U] (U<Y). Consequently, ad Z, restricted
to § is nilpotent. B is then nilpotent by Engel’s theorem. Let finally m be
a nilpotent algebra containing §. If § == m, then the normalizer of § in m is
not equal to B, a contradiction with what has already bsen proved.



RATIONALITY PROPERTIES OF LINEAR ALGEBRAIC GROUPS 469

(iv)—>(1). Let X e¢}. By 3.1 and standard facts on linear transformations,
ad X, and ad X, are polynomials in ad X, hence X,, X, normalize ¥, and
therefore belong to ). But the restriction of ad X, to § is nilpotent, since §
is nilpotent, and semi-simple since X, is semi-simple. Therefore X, is in the
center of §, and the set 8 of all semi-simple elements of % is a toral
subalgebra, central in §). We want to prove that 3 is maximal. Let t be a
maximal toral subalgebra containing 8. If 34t, then the fixed point set V'
of 8 in g/f is not zero. The image of § in gl(V) consists of nilpotent
transformations, hence, by Engel’s theorem, §) has a non-trivial fixed point set
in V; but this contradicts the assumption § = n(f). Thus 8 =t, and § c 3(t).
By the first part of the proof, 3(t) is nilpotent, and therefore §=3(t).

6.8. PROPOSITION. (a) Let C be a subgroup of type (C) of G, and t
the maximal toral subalgebra of its Lie algebra ¢. The following conditions
are equivalent: (1) C is defined over k, (ii) ¢ is defined over k, (iii) t is
defined over k.

(b) Let k be infinite. A subgroup H of G (resp. subalgebra Y of g)
is of type (C), defined over k (resp. a Cartan subalgebra defined over k)
if and only if it is the identity component of the centralizer in G (resp.
the centralizer in §) of a regular semi-simple element of § contained

in g(k).

(a) Clearly i) =>(ii). Let ¢ be defined over k.. By 6.7, t is the set of
all semi-simple elements of ¢, hence is defined over %2 (3.2). This proves that
(i))=—>(iii)). We have C=Z(t)° by definition, hence (iii)=—> (i) follows from
4.3

- (b) follows from (a), 4.3 and 6.3.

69. LEMMA. Let H be a closed connected subgroup of G whose Lie
algebra contains a Cartan subalgebra ¢ of §. Then H = N9)°, has finite
index in its normalizer, and is the only closed connected subgroup of G
with Lie algebra Y.

Obviously, Hc N(§)°. Let now ge< NJY). Then, (6.6) ¢ and Ad g(c) are
both Cartan subalgebras of §, and we may find therefore A< H such that
h7'-ge Nc), whence N))c H-N(c). By 6.7, ¢ is equal to its normalizer in
g; therefore, if C is a subgroup of type (C) of H with Lie algebra ¢, we have
C = N()°. From this we get (H-N(c))>=H-C=H, and N$)°c H. Since
NH)c N(Y), it follows that H has finite index in its normalizer. Finally, the
equality H=N())° shows the uniqueness of H.

6.10. PROPOSITION. (a) Let H be a closed connected subgroup of G,
whose Lie algebra Y is defined over k, and contains a Cartan subalgebra
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of . Then H is defined over k and is separably generated by its subgroups
of type (C) defined over k.

(b) Let G be a k-group and f: G°—>G a surjective separable k-
morphism. Then [ (resp. df) maps the set of k-subgroups of type (C) of
G (resp. of Cartan subalgebras of @) defined over k onto the set of subgroups
of type (C) of G (resp. of Cartan subalgebras of §') defined over k.

(i) We prove first (a) when % is infinite. In view of 6.6 (iii), 1.16, it
suffices to show that g is spanned by its Cartan subalgebras which are defined
over k. Let Xeg(k). We let Y be equal to X, if p=0, to X9 if p+#0
where g is a power of p big enough so that Z@ =0 for all nilpotent Zeg
(3.2). We have [X,Y]=0 and Y eg(k). If X is regular, so is Y (6.2) and
3(Y) is a Cartan subalgebra of g, defined over £ (6.8). Thus X belongs to a
Cartan subalgebra defined over 2. Since R(g)Ng(k) is dense in g (6.2), this
proves our assertion.

(il) We now prove (b). In view of 6.6, it suffices to prove the part of
(b) pertaining to df. Let n=kerdf. Let ¢ be a Cartan subalgebra defined
over k and t its maximal toral subalgebra. t is defined over k2 (6.8). Let T
be a maximal torus of G whose Lie algebra is t. Since f is separable, df is
surjective, and df{(t) =t  is the Lie algebra of 7" = f{T), which is a maximal
torus of G’ ([1], §22). adyt is a commutative algebra of semi-simple trans-
formations, which leaves n stable. There exists then a subspace acg stable
under adyt and such that g=a@®n. We have 3(t) =3{t)na + 3t)nn. This
implies immediately that

df(c) = dfa(t)) = 3(df(t) = 3(t),

hence df{c) is a Cartan subalgebra defined over k.

Let now C be a subgroup of type (C) of G’ defined over %2 and
H=fYC). The group H is defined over % (since f is separable), and
contains a maximal torus of G ([1], §22). Let us show that a subgroup C of
type (C) of H is also of type (C) in G. Let T be a maximal torus of C. It
is maximal in H, hence in G, and maps onto a maximal torus 7” of C.
Then ¢ = 3(t"). Let b be a subspace of g, supplementary to Y, and stable
under Adg 7. Then df maps b isomorphically onto a supplement of ¢’ in ¢,
hence 3(t)Ndf(b) =0. It follows that 3(t)Nb=0. Since 3(t) is sum of its
intersections with § and b, we see that ¢ is the centralizer of t in g.

Let now % be infinite. Then, by (i), § has a Cartan subalgebra defined
over k. By what has already been proved, ¢ is a Cartan subalgebra of g and
df(c) is a Cartan subalgebra of ¢’, hence is equal to ¢

Let %2 be finite. Then H has a maximal torus 7" defined over & (2.7),
¢c=3(t) is a Cartan subalgebra of ¢ defined over %, contained in ¥, and

df(c)y =7
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(iii) There remains to prove (a) for % finite. Let B, B, T be as in 2.8.
Since the maximal tori of B, B’ are maximal in G, the Cartan subalgebras
defined over & of b or 0" are contained in Cartan subalgebras defined over k
of g. In view of 2.8, we are reduced to the case where G is solvable. We
proceed by induction on dim G. There is nothing to prove if G is nilpotent,
in particular if dim G=1. Let N be a non-trivial normal closed connected
subgroup of G, contained in the center of the unipotent radical of G, minimal
for these properties. Let f: G—G = G/N be the canonical projection. Let
a be the subspace of g spanned by the Cartan subalgebras defined over % of
g. In view of (ii) and of the induction assumption, applied to G’, we have
g=a+1n. Let 7" be a maximal torus defined over 2 of G' and H = fY(T").
Let T be a maximal torus defined over & of H. We have H =T -N (semi-
direct). If T'#G’, then H+#G, and, by induction assumption, ¥ is spanned
by its Cartan subalgebras defined over k.. But T is a maximal torus of G,
too, hence the Cartan subalgebras defined over £ of Y) are contained in Cartan
subalgebras defined over 2 of g. Since ncY, we have g=a in this case. So
assume G=H =T-N. The subgroup C = Z(t)* of G is of type (C), defined
over %k, and contains 7. Then CNN is normal connected in G. By the
minimality assumption on N, we have either CNN= N, and G=C, in which
case our assertion is proved, or CN N= {e}. So assume T =C. Then t is
not central in g, and there exists Xet(k) not central in g. Then (4.3),
Z(X)°#G whence again Z(X)° =T and 3 X)=t. We claim that Z=X+Y is
semisimple for any Y en. In fact, since Z,<t, we see, by considering the
projection of G onto G/N==T, and using 3.1, that Z, = X+U (U en). Since
n is commutative, we have then

0=1[Z,Z]=[X,Z.l,

hence Z,=0, U=Y. We see also that 3(X+Y)Nn=0. Thus X+Y is regular,
and, if Y en(k), 3(X+Y) is a Cartan subalgebra defined over k. It follows
that the space a spanned by the Cartan subalgebras defined over %2 of g
contains t and X+u(k). It is then elementary that a=g.

6.11. COROLLARY. Let H, K be closed subgroups of G. Assume that
H is connected and that Y contains a Cartan subalgebra of §. Then HC K
if and only if Hct.

This follows from 6.10, with % standing for a common field of definition
for G, H, K.

6.12. LEMMA. Let G be connected, and T be a maximal torus of G.
Then T is defined over k if and only if Z(T) is.
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- If T is defined over &, then so is Z(T) by (4.6). The group Z(T) being
connected, nilpotent, the converse follows from the fact that if a connected
nilpotent group H is defined over %, then the unique maximal torus S of H
is defined over k. This was noticed first in ([17], Prop. 9, p. 37), and follows
from the fact that, for a suitable power ¢ of p, the map xi— x? is k-morphism
of varieties of H onto S.

6.13. PROPOSITION. Let H, K be two subgroups of type (C) (resp.
Cartan subgroups, resp. maximal tori) of G and a,b two Cartan subalgebras
(resp. maximal toral subalgebras) of §. If H, K (resp. a,b) are defined
over k, then Tr(H, K) (resp. Tr(a, b)) is defined over k, and H, K (resp. a,b)
are conjugate under G(k,). The group N{H) (resp. N(a)) is defined over k
if and only if H (resp. a) is so.

The Lie algebra of N(a) is a if a is a Cartan subalgebra, 3(a) if a is a
maximal toral subalgebra (4.3). Taking 6.8 into account, it follows that a is
defined over £ if Ma) is so. If H is of type (C) or is a Cartan subgroup, it
is the identity component of N(H). If H is a maximal torus, then it is the
unique maximal torus of the Cartan subgroups Z(H)’ = N(H)° of G°. Using
6.12 in the latter case, we see that H is defined over & if N(H) is so.

To prove the remaining part of the proposition, we may assume H, K, a,b
to be defined over 2 Then Tr(H,K) and Tr(a,b) are defined over purely
inseparable extensions of %, and it suffices to prove that they are defined over
k,. For the rest of the proof we may (and shall) assume % to be separably
closed.

Let a be a Cartan subalgebra, t its maximal toral subalgebra. Since % is
infinite, there exists X € a(), regular, semi-simple, and we have Z(X)° = Z(t)°
by 6.3. Let M =AdG(X). Then M is closed and f: gi—>Adg(X) is a
surjective separable k-morphism of G onto M (4.1). Let us show that M
and a intersect transversally. Let g <G be such that Y = Ad g(X)ca. Then
Y et and 3(Y)=aq, hence g€ Nla). But Ma)’ = Z(X)° by 6.9; therefore MNa
is zero-dimensional and the intersection is proper. Since MNa is an orbit of
Na), it suffices to check transversality at X. The space T(M)y is the translate
by X of [X, g] (see 1.10). Since X is semi-simple, g = 3(X)B[X, gl=a+[X,g],
which yields our assertion. By conjugacy, M is transversal to any Cartan
subalgebra. In particular MNb is defined over 2 (1.13) and its points are
rational over £ (recall that 2=k, here). A simple application of 1.13 shows
then that Tr(a,b) = f~'(MNDb) is defined over £ and has points rational over
k. Also, M) = Tr(a, a) is defined over k. This settles the proposition for
Cartan subalgebras, hence also, in view of 6.8 and 4.3, for maximal toral
subalgebras and for subgroups of type (C).

The argument for Cartan subgroups is quite similar, but proceeds in the
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group rather than in the Lie algebra, and we outline it briefly. Let T be
the unique maximal torus of H. It is defined over £ (6.12) and we may find
x € T(k) such that Z(x)°=H. The conjugacy class M = Int G(x) is closed and
g\—g-x-g~'is a surjective separable k-morphism of G onto M (4.6). Using
1.13 and the conjugacy of Cartan subgroups we see exactly as above that it
suffices to check that M and H intersect transversally. If g-z-g~' < H, then
x is a regular semi-simple element of H, Z(g-xz-97')° = H, and g < N{H).
Thus MNH is zero dimensional, hence the intersection is proper. Since
MnN H is an orbit of N(H), there remains to check transversality at z. By
1.10, (M), is the translate by x of (1—Adx)(g). Since x is semi-simple,
g =3(x)+(1—Adx)g) =9+ (1 —Adx)g), whence the result. By 6.12 this also

implies the corresponding assertion for maximal tori.

6.14. COROLLARY. Let 8 be a toral subalgebra of G defined over k.
Then Z(8) is defined over k.

In fact, Z(8) consists of finitely many components of MN8), hence is defined
over k,, and on the other hand, Z(8) is purely inseparable over %.

7. Varieties of subgroups. In §87,8, for an extension k' of k in K,
C. denotes the category of extension fields of k¥ in K, where the morphisms

are the inclusion homomorphisms. For k' e Cy, k is the algebraic closure of

E in K, k, the separable closure of k' in k', and T(k) the Galois group of
k; over E'.

71. A (G,k)set M is a set with the following properties:

(i) G(K) operates on M. For each m e M, the isotropy group of m is
the set of K-points of an algebraic subgroup of G, to be denoted G,,.

(ii) There is given an inclusion preserving map & — M(X") from C; to
subsets of M, such that M = M(K) and M(k’) is stable under G(%').

(iii) For & <C, I'(k) operates on M(k;) continuously, (['(k() being
endowed with the usual pro-finite topology, and M(k;) with the discrete
topology, (see [2])). We have

(1) (g-m)="1g-'m, (g<Gk), meMk), s<T(k)),
and for kc k' ck’c K, the following diagram
L&) x M(k;) —— M(k)

j i i
(&) x M(ky) —— M%)
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where 7 is the inclusion map, and j the natural restriction homomorphism, is
commutative.

The (G, k)-set is homogeneous if G(K) acts transitively on M.

We can view M as a functor from C, to sets. Our conditions mean that
the functors G: ¥ —G(%k) and I': £ —T(k) operate on M, and verify a
compatibility relation (1).

A (G, k)-set defines in an obvious way a (G, k’)- set for every % <C,.

If G’ is a k-group, and f: G'—>G is a k-morphism, then G'(K) operates
on M, and M is a (G, k)set. It is homogeneous if M is so and f is
surjective.

72. Examples. (a) Let X be a k-variety on which G acts k-morphically,
transitively and separably. Then M = X(K), with M(%") = X(k), (¥ €C,), is
a homogeneous (G, &)-set.

(b) Let V be a k-variety. We recall that to a k;-subvariety W of V
(¥ €C,), and to seT'(E) there is associated a conjugate k;-subvariety, to be
denoted *W. In this way I'(k) operates on the set of k;-subvarieties of V.
Assume that G operates k-morphically on V. Then G(K) operates on the
set M of K-subvarieties of V, which is easily seen to be a (G, k)-set, M(k")
being by definition the set of elements of M(K) which are defined over %’
(F €Cp). An orbit Q of G(K) in M such that Q(%;) is stable under (k") for
every k' €C, is then a homogeneous (G,k)-set. In this case, Q(%) is the

fixed point set of I'(k") in M(k;).

In this paper, we shall be interested only in two special cases of this
situation, namely :

(i) V =G, operated upon by inner automorphisms, M is a conjugacy
class of closed subgroups;

(i) V =g, operated upon by the adjoint representation, and M is a
conjugacy class of subalgebras.

In both cases G,, is the normalizer of m in G.

7.3. Let M be a homogeneous (G, k)-set. Then M=G(K)/G,(K), which
_allows one to identify M with the set of K-points of a K-variety X on which
G operates separably and transitively. We want to give conditions under
which the field of definition of X can be brought down to k. More precisely,
let X be a k-variety and @ a map from X(K) to M(K). We shall say that
(X, @), or simply X, is the (G, k)-variety of elements of M, or that M is
defined over k, or that the functor M is representable, and represented by X,
if it satisfies the following conditions:

(A) G operates k-morphically, transitively and separably on X, and ¢
is a G(K)-equivariant bijection of X(K) onto M which induces an iso-
morphism of (G, k)-sets.
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Clearly (X, ) is also the (G, k')-variety of elements in M for k' ¢C,. It
is immediate, and will follow from 7.5 (i), that (X, ) is determined up to a
unique k-isomorphism by (A), which justifies calling X “the” k-variety of
elements in M. Note that in order to show that ¢ is compatible with 7.1
(ii), (iii) it is enough to check:

(B) M) is the set of fixed points of T'(R) in M(k)). The map @ is
a G(K)-equivariant bijection of X(K) onto M(K) which, for every k' cC,,
induces a T(k')-equivariant bijection of X(k;) onto M(k;).

In fact, since the fixed point set of I'(%") in X(%;) is X(k'), ¢ induces then
a G(k')-equivariant bijection of X(&) onto M(%"), for every £ < C,, and all our
conditions are fulfilled.

74. LEMMA. Let M be a homogeneous (G,k)-set and (X, p) the (G,k)-
variety of elements in M. Let G be a k-group and f: G —G a surjective
k-morphism. Assume that § is spanned by df(q) and by the Lie algebra
of some isotropy group G,(me M). Then (X,p), acted upon by G wvia f,
is the (G, k)-variety of elements in M, viewed as a (G, k)-set.

Let a ¢ X(K). By assumption 7T(X), is the image of g under the
differential of the morphism gi—g-a. By the condition imposed on df, it
follows that T(X), is the image of g" under the differential of the morphism
g1—f(g)-a of G onto X, hence G’ acts on X transitively and separably.
It is then clear that the other conditions in 7.3 are fulfilled for G'.

75. LEMMA. Let G be a k-group, and f: G —G a surjective k-
morphism. Let M (resp. M) be a homogeneous (G, k)-set (resp. (G, k)-set).
Assume that § is spanned by df(g’) and the Lie algebra of G, (me M).
Let (X',9") and (X,p) be (G, k)- and (G,k)-variety structures on M’  and
M respectively. Let n: M'— M be an f-equivariant map which, for each
extension k¥ of k in K, induces a T(k')-equivariant map of M'(k;) into
M(ks;).

(i) There exists a unique f-equivariant k-morphism : X — X which
coincides with @ 'oho@’ on X(K). The map ¥ is surjective, separable.

(ii) Let k' be an extension of k in K. Let m < M(k'), and a=¢ '(m).
Then vy~'(a) is the k'-variety of elements in N"'(m), acted upon in the natural

way by f7(G)(K).

In view of 7.4, we may assume that G=G and f is the identity.
(i) Let a' € X'(k,), m'=¢'(@’), m=N(m"), a=¢ '(m). The groups G,=G,
and G, =G, are defined over k;; moreover, G, C G,, since A is a G-morphism.
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Let u: G/G,, — G/G, be the canonical projection. It is a surjective separable

ky-morphism. The maps gi—g-a and gi— g-a define k,-isomorphisms a:
G/G,=3 X and a': G/Gy 3 X such that

(1) Aopod” =ptonog,

on X' (K). Let yr=aopuoa™ It is a separable surjective k,-morphism of X’
onto X. The assumption implies that it commutes with I'(k), hence + is
defined over k. Since ¢ is given on X'(K) it is clearly unique.

(i) The variety Y=+ "'(a) is defined over %, since 4 is separable. The
group G, is also defined over %, being the inverse image of a under the
k’-morphism gi—g-a of G onto X, which is separable. It is then readily
checked that 7.3 (A), with % replaced by £ is fulfilled by Y, @|Y and M '(m).

The following proposition extends, for homogeneous M, 49 of [2] to
non-necessarily perfect groundfields. More general results on representability
of such functors may be found in ([12], Exp. XIII).

7.6. PROPOSITION. Let M be a homogeneous (G, k)-set. Assume:

(@) for every extension k of k in k, the set M(k) is a non-empty orbit
of G(k;) stable under T(E'), the set of fixed points of T(k) in M(k;) is
M(k"), and m € M belongs to M(k;) if and only if G, is defined over k;.

Then M is representable by a (G,k)-variety (7.3).

We first show the existence of (X, ) verifying 7.3 (B) for £ = k. The
proof is the same as that of an analogous result in [2, 4.10], where & was
assumed to be perfect, and we sketch it briefly.

Let %, be a finite Galois extension of %2 in k, such that M(k)=# ¢ and

let m < M(k,). Let Y=G/G,. The map gi—>g-m induces a G(k)-equivariant
bijection & of Y(%) onto M and a G(k,)-equivariant bijection of Y(%,) onto
M(k,). The latter allows one to define an action of I'(2) on Y(%,) by

(1) y—=s(y) =a’((ay), eY(k), seT(k).
It follows from 7.1 (1) that
(2) s(g-y)="9-5(y), (yeY(k), g<G(k)).

Since G(k,) is transitive on M(k,) we can, given s e I'(k), choose u, < G(k,)
such that sm=wu,-m. We have then

(3) a-s(y)=°g-alu,-m) (y=g-a(m); geGk,)).
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It follows from 7.1 (1) that °G,=G;,, whence *Y = G/°G,, = G/G,,, and
(4) #,-Gpoui' =G,

The latter relation shows that gi— g-u, induces a k,-isomorphism F; of Y
onto Y. Let f;: *Y(k,) —Y(k,) be the bijection characterized by

LiCy)y=s(y) (yeY(k)).

It follows immediately from (3) that f, is the restriction of F, to *Y(k,).
Thus condition (a) of ([2], lemma 2.12, p. 132) is fulfilled. Conditions (b), (c)
of that lemma are checked to hold true exactly in the same way as in ([2],
p- 143). The lemma yields then the existence of a k-variety X and of a
k,-isomorphism B: X —Y which commutes with (%), where I'(k) acts on X
in the natural way, on Y by (1). We let G act on X in the obvious way
via B, i.e.,

g-x=BYgBx)) (9eG, zcX).

This action is transitive, separable, defined over k,. For seI'(k), g € G(%,),
x € X(k,), we have, using (2)

'g-'x = B'(g9(8(x))) = ﬂf‘(’g -s(B(x))) = B~ (s(g - B(x))) = *(B~'(g - B(x)))
hence
g-fx="g-x),

which implies that the %,-morphism G XX — X defining the action of G on
X commutes with I'(%), hence is defined over 2. It is then clear that (X, @),
where @=a o B, verifies the condition 7.3 (B) for &' =k.

We now prove that (X, @) verifies 7.3 (B) in general. Given &’ (kC 2 Cc K)
we have to show

(5) P(X(K) = M(E),
(6) o(b) = (@),  (beX(E), seT ().

Let be X(k;). Since G operates separably on X, the isotropy group G,
of b is defined over %;. Since G, = G,, the condition imposed on M shows
that @(b) e M(k;). Let now me M(k). There exists ge<G(k;) such that
m=g-@(b). We have therefore m = g-@(b) = p(g-b) ¢ p(X(k;)), whence (5).

Choose a< X(%,), and let again b< X(%;). The k,-morphism gi—g-a
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being separable, there exists ge< G(k;) such that &= g-a. We have then
tb=*g -*a, hence

(7) P(b)=°g-@(a) (seI(k)).

Let s" e I'(k) be the restriction of s to 2,. Then s and s have the same action
on X(k,) and on M(k,), (see 7.1), therefore

p(a) = p(*a) = *(p(a)) = *(@(a)),
since (X, @) verifies (B) for £'=k; taking (7) and 7.1(1) into account, we get

@('0) =*g-*(pla)) = (g - p(a)) = (p(g - 2)) = *(p(b)) -

7.7. PROPOSITION. (i) The varieties of maximal tori and of Cartan
subgroups of G are defined over k and are canonically isomorphic over k.

(ii) The varieties of subgroups of type (C), of Cartan subalgebras, and
of maximal toral subalgebras of G are defined over k, and are canonically
isomorphic over k.

(ill) Let & and C be the varieties of maximal tori and of subgroups
of type (C) of G. Then the map T— Z(t)° induces a surjective separable
k-morphism v=7y: & — C of G-spaces. If k' €C,, and H< Ck'), then v '(H)
is the k'-variety of maximal tori of H.

Let M be one of the sets of subgroups or subalgebras listed in the
statement. Then M is a conjugacy class of G (see 6.6 and [1], [10]) hence
is an orbit of G in the set of irreducible subvarieties of G or g, operated upon
by inner automorphisms or by the adjoint representation. 7.6 (a) is fulfilled
in view of 6.12, 6.13, which yields the existence of the (G, k)-variety structures
listed in 7.7.

As was remarked earlier (6.12), the Cartan subgroups of G defined over
an extension k" of £ are the centralizers of the maximal tori defined over &’
of G. Consequently, the map which assigns to a maximal torus its centralizer
is a bijection of the set A of maximal tori on the set B of Cartan subgroups,
which induces a bijection of A(k;) onto B(k;) commuting with I'(Z), whence
the isomorphism of (i). The isomorphisms of (ii) follow similarly, using 6.6,
6.8.

(iii) is an application of 7.5 (ii).

78. PROPOSITION. Let G’ be a k-group and f: G —G a surjective
k-morphism such that § is spanned by df(g") and some maximal toral
subalgebra. Let ' and C' (resp. & and C) be the k-varieties of maximal
tori and of subgroups of type (C) of G (resp. G).
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(i) The map f induces a surjective separable k-morphism a of I
onto 7', which is an isomorphism if f is an isogeny.

(i) If f is separable, it induces a surjective separable k-morphism
8: C’ —C such that T4 Od=Bo-rg,

The map f induces a surjective map of the set of maximal tori of G
onto the set of maximal tori of G ([1], §22), and is bijective if f is an
isogeny. If f is separable, then f induces a surjective map of the sets of
subgroups of type (C), by 6.10. The proposition follows therefore from 7.4.

The following theorem, for &, is Grothendieck’s main rationality result
([12], Exp. XIV, Th. 6.2, p. 39):

79. THEOREM. The (G, k)-varieties & of maximal tori and C of
subgroups of type (C) of G are rational varieties over k.

We may assume G to be connected. The proof proceeds by induction on
dim G. There is nothing to prove if G is nilpotent, in particular if dim G=1.
If G is its own subgroup of type (C), then C is reduced to a point rational
over k. Using 7.8, 5.3 we see that it suffices to consider the case where the
subgroups of type (C) of G are proper. Let v: & —(C be the canonical
morphism (7.7). Let 2 e¢C,. By 7.7 and 7.5, if He C(k’) then v7(H) is the
F -variety of maximal tori of H. By our induction assumption, it is a rational
variety over k. In particular, +"{(H) (&)= @, if & is infinite. If we apply
this to a generic point over k2, we see that the field %(Z’) is a purely tran-
scendental extension of 2(C). It suffices therefore to prove that C is a rational
variety over k. In the sequel, we view C as the k-variety of Cartan
subalgebras of g, which is possible (7.7).

We assume first that g(k) contains a regular semi-simple element X. This
is the case notably if 2 is infinite (6.2) or if G is reductive (6.4). Let
H=3X) and m be a supplementary subspace to ) in g, defined over 2. Then
N(p) is defined over % (6.13), and C may be identified, over &, with G/N(Y).
To prove the assertion, we shall set up a k-isomorphism between non-empty
open subsets of C and m. The set U of Zem such that X+ Z is regular is
non-empty, since 0 € U, and open, since the set of regular elements in g is
open (6.1). Such an element is contained in a unique Cartan subalgebra §s,
namely its nilspace. Let V be the set of Z<U such that §,nm=0. It is
open, non-empty. The set of Cartan subalgebras § such that ’nm =0 is
open, not empty in C, therefore the set W of Cartan subalgebras 9,(Z e V)
is open, non-empty, in C. To prove our assertion, it is then enough to show
that a: Z|1— Yz is a k-isomorphism of V onto W. The nilspace of ad (X+2Z)
is also the kernel of (ad (X+Z))" (n = dim g) which implies immediately that
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a is a k-morphism. Any subspace q of g supplementary to m intersects X+ m
at only one point, which is rational over the smallest field of definition of q
containing %, hence « is bijective, birational over %k, and therefore is a
k-isomorphism. :

There remains to consider the case where % is finite and G is not
reductive. Its unipotent radical U is then defined over &, (since % is perfect),
and #{e}. Let N be a non-trivial central connected k-subgroup of exponent
p, normal in G (e.g., a suitable p-th power of the last non-trivial term in
the descending central series of U). Let #: G—G = G/N be the canonical
projection. By 7.5, 7.7, it induces a separable surjective k-morphism 8 of C
onto the k-variety C’ of subgroups of type (C) of G, and, for H ('(k),
B~ (H’) is the k’-variety of subgroups of type (C) of z {(NH")), (k'€ C,). If
H'#G’, then induction, and the argument used earlier in the reduction to
varieties of Cartan subalgebras, show that C is a rational variety over k2. So
assume H'=G’. Let A be a subgroup of type (C) of G defined over %, (6.10).
Then, by 6.10 (b), we have G= A- N, and also, since = is separable, g=a-+1.
Since G/N= A/(ANN), it follows that dim(AN N)=dim(ann), hence N and
A intersect transversally. Then so do N and N(A). Consequently, the
natural bijective morphism of varieties of N'=N/(NN N(A)) onto G/N(A)=C
is a k-isomorphism. But N’ is a connected commutative k-group of exponent
p. Since % is perfect, N’ is k-solvable, in the sense of [20], and is k-isomorphic
to a vector group by Prop. 1.2, p. 688 of [18]. In particular, it is a rational
variety over Z.

REMARK_.‘ If G is solvable, we have the stronger result that C and g
are k-isomorphic to affine spaces (see 9.14).

We mention some consequences of 7.9. For more results, see ([12], Exp.

XIV).

7.10. PROPOSITION. G has a maximal torus defined over k. If G is
connected, it is generated by its Cartan subgroups defined over k.

It suffices to prove the second assertion (6.12). If % is finite, see 2.9.
Let £ be infinite. The k-variety M of Cartan subgroups of G is a rational
variety over k (7.7, 7.9), hence M(k) is Zariski-dense, and in particular not
empty. There exists therefore a Cartan subgroup C defined over k. Its
normalizer N(C) is also defined over % (6.13), and M 1is k-isomorphic
to G/N(C). Let H be the subgroup of G generated by the Cartan subgroups
defined over &k of G. Assume H+#G. Since CCc H and C has finite index in
NC), the image of H in G/N(C) has a strictly smaller dimension than
G/N(C). But it contains (G/N(C))(k), which is Zariski-dense, whence
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a contradiction.

7.11. COROLLARY. Let G be connected. Assume that the Cartan sub-
groups of G defined over k are unirational over k. Then G is unirational
over k. If k is infinite, G(k) is dense in G.

(We recall that an irreducible k-variety V is unirational over k if there
exists a dominant A2-morphism of an open subset of an affine space into V,
or, equivalently, if the field £(V) is contained in a purely transcendental
extension of k. If % is infinite, this implies that V(%) is Zariski-dense in V.)

In view of 7.10 we can find finitely many Cartan subgroups C,,---,C,
of G, defined over %, such that the product map: C, X .--- X C,—G is
surjective, whence our assertion.

7.12. COROLLARY. Let G be connected. Then G is unirational over
k if either k is perfect or G is reductive. In particular if k is infinite
and either k is perfect or G is reductive, G(k) is dense in G.

If G is reductive, its Cartan subgroups are maximal tori, hence are
unirational over their fields of definition ([17], Prop. 6, p. 39). If % is perfect,
any connected nilpotent k-group is unirational over k.

REMARK. For perfect infinite fields, 7.10 to 7.12 are due to Rosenlicht
[17]. For solvable groups and infinite fields the existence of a maximal torus
defined over % is also proved in ([20], Thm. 4). See also ([3], §11).

8. Some results on reductive groups.

81. Let G be connected, reductive, 7" a maximal torus of G, and @ the
set of roots of G with respect to T. Given b ¢ ®, there exists an isomorphism
6, of the additive group G, onto a unipotent subgroup U, of G, uniquely
determined by b, such that

(1) t-0y(x)-t7' = 0,(t’-x), (xeG,; teT).

The group G is said to split over k, or to be k-split, if we can choose T to
be k-split, and the 6,’s to be defined over k.

The theorem below is due to P. Cartier (unpublished). More general
results can be found in ([12], Exp. XXII):

82. THEOREM. Assume that G is connected, reductive, and contains
a mazximal torus which is defined over k and splits over k. Then G splits
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over k.

We keep the notation of 81 and assume 7" to be k-split. Then b is
defined over & ([3], 1.3, p. 60). Let S=(kerd)’. It is a subtorus of T, of
codimension one, defined over % ([3], 1.6, p. 61). By 81(1), Z(S)DU,, U_,.
The group Z(S) is defined over k (4.6), is reductive and contains 7. It is
known that its commutator subgroup H’ is three-dimensional, generated by
U,, U_;, ((10], Exp. 13) and defined over k. Moreover L, = (H'NT)° is one-
dimensional, defined over %, and split over 2. The roots of H’ with respect
to L, are ==b', where &’ is the restriction of b to L,. Since ker b’ =(L,Nker b),
it is clear that a monomorphism 6, : G, — H’ verifying ¢-60,(x)t™* = 6,.(£* - x)
for x€G,, t< L, may also be viewed as a homomorphism 6, verifying 8.1 (1).
We are therefore reduced to the case where G is of type A;; we denote by
+b the roots of G. We have ¢ = t+g,+g_,. Since T splits over %2, Ad, T is
diagonalizable over &, and g;, g-, are defined over k. Let u: G— G be as
in 5.3 if t is central in g, the identity otherwise. We want to prove that
Uy, is defined over % and is k-isomorphic to G,. It suffices to show that
B* = T-U., is defined over k, because U,, is its derived group, and then u
is a k-isomorphism of U,, onto its image (since ker du=t), and w(U.,) is
k-isomorphic to G, by [4,1.2]. Let B = u(B*). It follows readily from 2.6
that B is the stability group of b" in G, acting on ¢ via Adopu. Since L(u(T))
is not central in ¢, it is clear that b" is its own normalizer in ¢'. Since
kerdu =t, it follows then that the orbit map f: g— Ad(g)-(b) in the
Grassmannian of two-planes in g is separable. Then B = f~'(b") is defined
over k£ by 1.13. Similarly for B-.

Let a: G,—U, be a k-isomorphism. Then a '¢#6, is an automorphism
of G,, hence is of the form x'—c¢-x for some c<ck*. But then it is obvious
that 8.1 (1) holds for & too, i.e.,, we may choose 6, to be defined over k.

83. COROLLARY. The group G splits over a finite separable extension

of k.

This follows from 82 and from the fact that a k-torus splits over a
separable extension of % [3, 1.5, p. 61].

8.4. PROPOSITION. Assume that G is connected and has a wunipotent
radical U defined over k. Let P be a conjugacy class of parabolic
subgroups, such that the set P(k;) of elements of P defined over k, is stable
under L'(k). Then the variety of elements in P is defined over k. In
particular, the variety of Borel subgroups of G is defined over k.,
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A parabolic subgroup is equal to its normalizer (cf. [10], Exp. 9 for Borel
subgroups, the general case follows immediately) therefore the last condition
of 7.6 (a) is automatically fulfilled. The second one holds true, since we deal
with subvarieties of a k-variety (7.2 (b)).

Let #: G- G/U be the canonical projection. Since U is assumed to be
defined over %, m is a separable %-morphism for every extension % of £,
hence defines a surjective morphism of G(k;) onto G/U(k;). Moreover = maps
2 onto a conjugacy class of parabolic subgroups of G/U. To check the first
condition of 7.6 (a), we may therefore assume G to be reductive. Since then
two parabolic subgroups of G defined over % «C,, and conjugate over %, are
conjugate over k£ ([3], Th. 4.13, p. 90), it suffices to show that P(k;) is stable
under I'(%), (¥ € C,). This is clear for Borel subgroups of course.

Fix a maximal &-torus 7" of G, and an ordering of the roots of G with
respect to 7. Let A be the set of simple roots. Since G splits over k,, P
contains one and only one standard parabolic k,-subgroup P,(6cC A), (see [3],
4.3, p. 86). Moreover, P(k;,) is stable under I'(%,) if and only if 6 is stable
under the action of TI'(¢) on A defined in ([3], 6.2, p. 104). Since T splits
over k,, the analogous action of T'(2) on A goes through the restriction
homomorphism I'(") — I'(k), hence 6 is also stable under I'(¢"), which implies
our contention.

85. COROLLARY. The variety of Borel subgroups of a k-group H is
defined over k if either H is reductive or if k is perfect.

In the first case, U= {e}, and in the second one, U is defined over k.

REMARK. Similar results in the framework of schemes are to be found
in ([12], Exp. XXII; in particular Cor. 5.8.3, p. 74). If U is not defined over
k, the (G, k)-set of Borel subgroups is not always representable by a (G, &)-
variety ([12], Exp. XIV, Rem. 4.6, p. 30).

.8.6. Using 82, one can extend some results of Steinberg [23] to non-
perfect ground fields. The following result is proved there for perfect 2 (Th.
1.7, p. 51) :

Let G be a connected, semi-simple simply connected k-group, which is
quasi-split (i.e., contains a Borel subgroup which is defined over k). Then
any regular semi-simple conjugacy class of G which is defined over k
contains an element of G(k).

Using 8.2, the proof given in loc. cit. carries over to arbitrary ground
fields, if one observes that, with the notations of ([23], p. 305), any regular
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semi-simple conjugacy class intersects N in exactly one point, with multiplicity
1 (as follows from loc. cit., 8.1).
The arguments of ([23], §§10, 11) then show:

If k is a field of dimension <1 and G a connected reductive k-group,
then H'(k,G)=0.

This answers a question of Serre ([23], p. 58, Remarques).

9. Nilpotent elements in Lie algebras.

9.1. Let X be a non-zero nilpotent element in g(k). If p=0, we have
seen (3.3) that X is tangent to a unique one-dimensional unipotent k-subgroup
of G. This is no longer true if p+#0. A necessary (but not sufficient)
condition for this is that X!»1 = 0, a condition which easily is seen not to be
always fulfilled (e.g., in g, for n>2). In this paragraph, we give a few
positive results in that direction. The example below shows that the sufficient
conditions of 9.8, 9.16 (ii), (iii) are also-necessary. We assume p>0 throughout.

92. EXAMPLE. Let g, be two distinct powers of p, with strictly
positive exponents. We let G be the connected unipotent k-group which is
k-isomorphic, as a variety, to the 2-dimensional affine space, with the product
given by

(1) @y - (t)=(+z,y+t+x-2).

Since g # r, G is non-commutative and so yields a (known) example of a
2-dimensional non-commutative nilpotent group in non-zero characteristic.
The k-algebra of morphic k-functions on G is A=k[T,U], with the coproduct
p: A—>AQ®, A given by

pD)=TR1+1QT, p(U)=UR1+1QU+T'QT".

One checks that g is commutative, spanned by X =9/9T, Y=0/2U and that
8= (0}. |

Let H be the k-subgroup of G whose elements are the pairs (0, y). It is
k-isomorphic to G,. We claim that any k-morphism f: G, — G has its image
in H. We have f(x) = (g(x), h(x)) where g, h are polynomials which verify
(2) g(x+y) = g(x) + 9(»), g(0)=0,

(3) hz+y) — h(x) — h(y) = g(@)" 9(»)", h(0) =0 (z,y < G.).

If g=0, the left hand side of (3) is a symmetric polynomia] in x and y,
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whereas the right hand side is not. This is impossible, hence g =0, which
proves our contention. Thus X is not tangent to any one-dimensional
subgroup of G and G has elements which are not contained in a connected
one-dimensional subgroup. Moreover, as ¢ # r, X is not tangent to any com-
mutative subgroup of G, and G has elements which do not belong to any
connected commutative subgroup.

Let T = GL, and & a non-trivial character of 7. We let T act on G by
means of the map {z,(x,y)} — (#x,t9*"%y). It is readily seen that in  this
way T acts k-morphically on G, and X, Y are eigen-vectors of T with weights
b and (g+7)-b.

93. Let T be a k-torus, F a finite dimensional vector space defined over
k,and r: T —GL(F) a k-morphism. We let HY(T, F) be the first cohomology
group of T with coefficients in the 7-module F, based on cochains T'— F
which are k-morphisms of varieties. Thus a cocycle is a k-morphism f: T — F
such that f(s-2) = f(s) + r(s)-f(t) (s, teT) and a coboundary is a cocycle of
the form ¢ — Q—7)u (u < F(k)).

LEMMA. We keep the previous notation. Then HY(T, F)=0.

This is a special case of Th. 3.1, p. 10 of [12, Exp. IX]. For the sake of
completeness, we sketch a proof. It is first easily seen from the definitions
that if £ is an extension of %, then

H(T %, ¥, FQ,k) = H(T,F)Q.% .

It suffices therefore to consider the case where T splits over %, and consequently
where F is one-dimensional. Let a< X*(T) be such that r(f)-x=t*-x
(xeF, teT). The regular k-functions on 7" are the finite linear combinations
with coefficients in 2 of characters of T. Let f be a 1l-cocycle. We have then

f(t)=2ux-mcb-t”, (Cbék, tE’I’),

with ¢; #0 for at most finitely many &’s. The coc'ycle condition and the
independence of the characters over £ imply immediately that f(£) = c,(1—2%)
(t € T), which yields the lemma.

94. LEMMA. Let T be a k-torus, U a commutative wunipotent
connected k-group on which T acts k-morphically, and which verifies
Ur={e}. Let V be a connected k-subgroup of U stable under T. Assume
that V and U/V are T-equivariantly k-isomorphic to vector groups over k
on which T acts linearly. Then U is the direct product of V and of a
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k-subgroup stable under T.

Let w: U—-U’"=U/V be the canonical projection. By ([18], Prop. 1, 2,
p. 688) V is a direct factor over £ in U. There exists therefore a k2-morphism
s: U — U such that 7os=id. We have to show the existence of such an
s which is T-equivariant. Let F be the set of morphisms of U’ into V.
Identifying U’ and V' over %2 with vector groups, we see that F is the vector
space of p-polynomial mappings of U’ into V. It has a k-structure, where
F(k) consists of the k-morphisms of U’ into V. We define a representation
r of T in F by

r@)-flx) =t-ft-2) (feF, teT, zeU’).

Then F is the union of finite dimensional subspaces defined over %, stable
under T, on which this representation is rational.
To ¢ €T let us associate the map:

f): x—> (-5t - x)) - s(x)7!, (xelU).

This is readily checked to be a A-morphism of U’ into V, which is a cocycle
of T with coefficients in a finite dimensional subspace of F, stable under T,
and defined over 2. By 9.3, there exists ce< F(k) such that f(z) =c—r(z)-c.
It then follows that s": xi—s(x)-c(x) is the desired cross-section.

95. REMARK. The existence of an equivariant cross-section, which is
not necessarily a subgroup however, can be proved similarly in a more general
case, namely if U is unipotent, V is central and T-equivariantly k-isomorphic
to the additive group of a vector space W over 2 on which 7 acts via a
k-morphism T"— GL(W).

In fact, Cor. 1, p. 100 of [20] still gives the existence of a cross-section
s: U/V - U defined over .. To get an equivariant one, we argue as before
with F replaced by the space of k-morphisms of varieties of U/V into V.

9.6. Under the previous conditions, U is 7- and V-equivariantly &-
isomorphic to U/V xV. More generally let U be a unipotent k-group on
which 7" acts k-morphically, and V a connected k-subgroup stable under 7.
Assume that there is a T-equivariant cross-section s: U/V — U defined over .
Then, obviously, the map : (U/V)XV —U defined by (z,v)i—s(x)-vis a
k-isomorphism of varieties which is 7-equivariant and commutes with V,
acting by right translations. We note also that if A is a k-variety on which
T acts k-morphically, such that U is T- and V-equivariantly %-isomorphic to
A XV, then the projection of U on U/V induces a T-equivariant k-isomorphism
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of A onto U/V.

9.7. LEMMA. Let G be solvable, connected, U the unipotent part of
G and T a k-torus of G. Then G has a normal k-subgroup M contained
in U, such that G=Z(T)-M and U = (Z(T)NU)-M. The Lie algebra of
M contains all eigenvectors of T not fixed by T. If U is commutative,
M=(T,G) and G (resp. U) is the semi-direct (resp. direct) product of Z(T)
(resp. Z(T)NU) and M.

Let first U be commutative. Let t<T(k) be such that Z(¢) = Z(T), and
M be the image of the commutator map x— (¢,x) (x<U). Then ([3], 11.1,
p-131), U is the direct product of N=Z()NU and M. The group M is
normalized by Z(¢), and also by U since U is commutative, hence M is
normal in G. It follows that M containts (s,U) for any s<7T and also, that
(s5,U)=(s,G) for any seT, hence M = (T,U) = (T,G). The Lie algebra of N
is the fixed point set of 7 in u (4.6), hence m is the unique supplementary
subspace to 1 in u which is stable under 7. It contains then all non-zero
eigenvectors of 7T corresponding to non-zero weights.

If V is a normal k-subgroup of G contained in U and n: G—>G/V is
the canonical projection, then #(Z(T))= Z(»(T)) ([11, 13.1, p. 60). The pro-
position in the general case follows then by induction, dividing out by (G,G).

98. THEOREM. Assume G to be connected, solvable and to have a
commutative unipotent radical U. Let T be a k-torus of G. Let X be a
non-zero nilpotent element of §(k), and b a non-trivial character of T such
that AdKX)=1¢"-X(teT). Assume that either (a): U? = {e}, or (b): no
p-power multiple of b is a root of G with respect to T. Then there exists
a closed k-subgroup V of G contained in U, stable under T, whose Lie
algebra is spanned by X, and a k-isomorphism 0: G,=V, such that
t-0x) t'=06("-x) (teT, xc@,).

() We show first that the proof can be reduced to the case where T is
a maximal torus, is one-dimensional, k-split, U is defined over k2, Z(T)NU
= {e}, and Z(t)°=G.

Replacing G by 7-(7,G) we may, in view of 9.7, assume T to be
maximal, U to be defined over %k, and Z(T) =T. Since the representation of
T in k-X is defined over k, the character » is also defined over 2 Let
S = (kerb)*. It is a subtorus of 7T, defined over %, (see [3], 1.6, p. 61). The
groups Z(S) and Z(S)NU are connected, defined over £ (4.6), and X is in the
Lie algebra of Z(S). The canonical projection of Z(S) onto Z(S)/S induces
a T-equivariant k-isomorphism of U onto the unipotent radical of Z(S)/S.
This reduces us to Z(S)/S, hence we may assume that 7" has dimension one.
It has a non-trivial character b defined over %, hence is k-split ([3], 1.3, p.60).
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If t is central in g, we perform an isogeny z: G—G’ of the type of 5.3 onto
a group G° whose subgroups of type (C) are proper. We have G'=#(T)-z(U),
and 7 is a T-equivariant k-isomorphism of U onto m(U). It suffices then to
consider &', which yields the desired reduction.

(b) Assume Z(t)°=T7. In this case, we shall exhibit a T-equivariant
k-isomorphism of U onto u, the latter being viewed as a vector group. Let ®
be the set of roots of G with respect to 7. Our assumption is equivalent to
dc+#0 for all ce® (1.9, 6.3 (5)). Let A be a non-zero element of t(k). Then,
since T is one-dimensional, dc(A)#0 for all ce®. Thus A is regular,
semi-simple and we have Z(A)c N(T'). Since the normalizer and the centralizer
of a torus in a connected solvable group coincide and are connected ([1], 10.2,
p- 52, 13.2, p. 60) we have Z(A) =T. For u< U, we may write

Adu(A) = A+ flw)  (flw)ew)

and, clearly, f is a T-equivariant k-morphism. Since Z(A) = T, the map f is
injective, hence bijective. We have df{(u) =[A,u] by 1.10, and therefore
df(u) = u, which shows that f is an isomorphism. It has then the required
properties.

(¢) We now proceed by induction on dimU. If dimU=1, then, by the
condition of (a), Z(t)°=T, and we are in the case (b). So let dim U =2, and
assume the proposition to hold true for groups with unipotent radical of
dimension < dim U.

If db =0, then X is in the Lie algebra of Z(t)°, which is a k-subgroup
(4.3), proper by (a), and induction applies. So let db 0. By (b), we have
to consider only the case where C= Z(t)° T. Since Z(T) = T, there exists
in c(k) a non-zero eigenvector Y of 7', with non-trivial weight a, no multiple
of which is a weight of 7 in ¢. By induction, Z(t)NU contains then a
k-subgroup W, k-isomorphic to G,, tangent to Y, and stable under 7. Since
U is commutative, W is then normal in G. Let 7#: G— G/W be the canonical
projection. Then dn(X)#0. The induction assumption yields a one-
dimensional k-subgroup V' of G, tangent to d=(X), stable under #(T), and
T-equivariantly isomorphic to % X.

Replacing G by T-2"Y(V’), we are reduced to the case where dimU = 2
and u is spanned by X,Y. Let us show now that U? = {e}, also under the
assumption (b) of the proposition. The p-th power gi— g? is a T-equivariant
k-morphism of U or U/W, trivial on W and U/W, hence defines a T-
equivariant k-morphism w: U/W—->W. Let a: G,—U/W and B: G,—»W
be the %-isomorphisms given by the induction assumption. Then f=8"'opoa
is a k-morphism of @, into itself which verifies f(£-x) = ¢°- flx) (x € G,).
But f is a p-power polynomial. Therefore if f#0, then ¢ = p’-b for some
7 #0, a contradiction. Consequently f=0 and U” = {e¢}. Our assertion now
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follows from 94. As an application. we deduce a slight extension and
sharpening of a result of Rosenlicht’s ([20], lemma on p. 109).

99. COROLLARY. Let G be connected solvable, with a commutative
unipotent radical U of exponent p, and T a k-torus of G. Then U is the
direct product of Z(T)NU and of a k-subgroup M of G contained in U,
stable wunder T, and T-equivariantly k-isomorphic to its Lie algebra,
viewed as a vector group. In particular, if T splits over k, M is
k-isomorphic to a product of G.'s stable under T.

We may write u as the direct sum of the fixed point set u, of 7" and of
subspaces m; (1 ={=7r) defined over %, stable under 7, and irreducible over
k as T-modules. We have u(k,)=u(k)® %, which allows us to view in the
usual manner u(k,) as a module for the Galois group I'(k) of %k, over k. Since
T splits over k,, it is elementary that we may find a basis X, A=j=m,
=dimm,) of m,(k,) formed by eigenvectors of T permuted transitively by
T'(k). Let k, be the smallest overfield of 2 in %, such that X, e m,(k,).
Choose a one-parameter k;-subgrpup V;, of U stable under T and tangent to
X, (9.8). It is then stable by I'(%). It follows that the transforms °*V,
where s runs through a set of representatives of 1°(%)/I'(k;) are m, distinct
k,-subgroups tangent to the transforms *X;, of X,,. Let M,=IL,*V,;. Then
M, is defined over k, with Lie algebra m,, and is T-equivariantly k-isomorphic
to m;. We claim that M = M,-.-M, fulfills our conditions. The Lie
algebra of M contains the sum of the m,’s, but is not bigger for dimensional
reasons. Let f: M, X +-- X M,—M be the product map. It is surjective,
T-equivariant and ssparable. Its kernel is finite, stable under 7, hence
consists of fixed points of 7', and therefore is reduced to {e}. Thus f is an
isomorphism. Similarly, since u, is the Lie algebra of Z(T)NU (see 4.6), it
follows that U=(Z(T)nU)x M.

9.10. PROPOSITION. Assume G to be connected, solvable, with a
commutative unipotent radical U. Let T be a k-split subtorus of G. Then
U is the direct product of Z(T)NU and of k-subgroups U,,---,U, of G,
contained in U, stable under T, such that the weights of T in U, are
p-power multiples of one of them, and not zero.

The proof is by induction on dimU. In view of 9.9, it is enough to
consider the case where 7' = Z(T'). Then U is defined over 2 (9.7). Let ®
be the set of roots of G with respect to 7. Write ® as a disjoint union of
sets ®, where ®, consists of the p-power multiples of one of its elements, and
is maximal among subsets having that property. Let a; be an element of ®,
such that no p-power multiple of a; belongs to ® and let X;<u(k) be a
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non-zero eigenvector of T with weight a,. By 9.8, there exists a k-subgroup
N, of U which is stable under T, tangent to X;. Let G,=G/N,. The
induction assumption yields a direct k-factor V, of the unipotent part of G,
stable under T, such that the weights of 7" in b, are elements of ®,. Let
U, be the inverse image of V,; in U. The set of weights of T in U, is ®;,
and it is obvious that U is the direct product of the U,’s.

9.11. COROLLARY. Assume that Z(T)=T and that no root of G with
respect to T is a p-power multiple of another one. Then U is a vector
group over k, on which T acts linearly.

We now turn to the case where U is not necessarily commutative.

9.12. COROLLARY. Let G be connected, solvable, U its wunipotent
radical, T a k-torus of G, and assume that either Z(T)NU = {e} or k is
perfect. There exists a series U=U,DU,D---DU, = {e} of connected
normal k-subgroups of G stable under T with the following properties:
U,/U,s1 is central in U/U,,, and is T-equivariantly k-isomorphic to its
Lie algebra w,/u,.,, on which the representation of T is irreducible over k,
(E=0,+--,m—1). There is a T-equivariant k-isomorphism of varieties of
U onto u which maps U, onto u; (i=0,+++, m—=1).

U is defined over £ (9.7). We may find a non-trivial connected central
k-subgroup V of U, stable under 7T, of exponent p, (e.g., a suitable p-th
power of the last non-trivial term in the descending central series of U).
Our assertion is true for V: if Z(T)NU = {e}, it follows from 9.9; if £ is
perfect, it follows from 9.9 and the fact that Z(T)NV is k-isomorphic to a
vector group ([18], Prop. 1,2, p. 688). The assertion follows then using
induction on dim U and 9.5.

REMARK. This implies in particular that U is k-solvable, in the sense
of [20], as follows also from ([20], Cor. to Thm. 3, p.108). If T is k-split,
the groups U,/U,,, are k-isomorphic to G,. In the general case, U,/U,,,
splits over &, into a sum of one-dimensional 7-modules which are inequivalent,
since otherwise U,;/U,,; would not be k-irreducible. Consequently, every
closed subgroup of U,;/U;,, stable under T is defined over k.

9.13. PROPOSITION. Let G be solvable, connected, with a wunipotent
radical U defined over k, and T a k-torus of G. Let V be a connected
k-subgroup of U stable under T. Assume that Z(T)NUCV or that k is
perfect. Then M =U/V is T-equivariantly k-isomorphic, as a variety, to
its tangent space T(M), at the origin, and U is T- and V-equivariantly
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isomorphic, as a variety, to U/V XV. In particular M is k-isomorphic to
an affine space.

In this proof, = stands for T-equivariant k-isomorphism of varieties.
Moreover, if B is a k-subgroup of U stable under T, and A a k-variety on
which T operates k-morphically, then U= A X B means that U is 7T- and
B-equivariantly k-isomorphic to AXxB. This is equivalent to the existence of
a T-equivariant k-cross-section s: U/B—U, and furthermore, in this case,
A =U/B (see 9.6).

The proof is by induction on dimU and, for fixed U, by induction on
dimU/V. We distinguish several cases.

(a) There exists a connected k-subgroup N of U, stable under T,
containing V, and distinct from U and V. »

By induction

(1) U=xnU/NXx N, N=;, NV XV
hence
(2) Uz, U/Nx NV xV.
By 9.6, this implies
(3) U/V=U/Nx NV
hence
(4) U=nU/VxV.
By induction
(5) T(U/N),=U/N, T(N/V),=N/V .
By full reducibility
(6) TU/V)y=TU/N)y x T(N/V ), .
The equality
U/ V) =U0/V

follows then from (3), (5), (6).

From now on, we assume that we are not in case (a). Let W be a non-
trivial connected central k-subgroup of U, of exponent p, stable under T,
minimal for these properties.

(b) Assume WcV,and W to be T-equivariantly £-isomorphic to a vector
group on which T acts linearly. There exist then T-equivariant k-cross-sections
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si: U/V-U/W, s,: UW-U

as follows from the induction assumption for s,, from 9.5 for s,. But then,
sy0s; is a T-equivariant k-cross-section for the fibration of U by V, hence
9.6):

U=.,U/V xXV.
Since
u/v=U/w)/(V/W),
the equality
TU/V),=U/V,

also follows by induction.

() WcV, WZ&Z(T). By the minimality assumption on W, and 9.12,
we have W=, hence we are back to case (b).

(@) WcZ(), k is perfect. Then W is k-isomorphic to a vector group,

and we are back to case (b).
() WcZ(T), k is infinite. Let Z = Z(T)NU. This group is contained
in V. By [3, 11.1, p. 131], it is defined over % and

(7) U=U/ZXZ, V=g V/ZXZ.
(The T-equivariance is clear from the construction.) Let then s,: U/Z—>U
be a T-equivariant k-cross-section, and ¢,: U/W —U/Z the natural projection.
By induction, there exists a T-equivariant %-cross-secion
S U/V=U/W)/(V/W)-U/W.

It is then readily checked that
(8) Sy0tos,: U/ VU
is a T-equivariant k-cross-section, whence

U=»nU/V xXV.
The equality

TU/V)y=U/V
follows from U/V = {U/W)/(V/W) and induction.
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(f) W V. Since case (a) is excluded, we have then U=W-.V. In
particular, V is normal in U, and the last non-trivial term V of the descending
central series of V is also central in U. Let W’ be a non-trivial connected
k-subgroup of V', stable under 7', minimal for these properties. Then, we
are reduced to one of the cases (b), (c), (d), (e) (with W’ playing the role of
W there).

As an application of 9.13, we deduce a sharpening of 7.9 for solvable
groups, due to Grothendieck in the case of & ([12], Exp. X VI, Cor. 6.2, p. 41):

914. COROLLARY. Let G be solvable. Then the (G, k)-varieties of
maximal tori F and of subgroups of type (C) C of G are k-isomorphic to
affine spaces.

We may assume G to be connected. Let 7° be a maximal torus of G
defined over k (7.10), and t its Lie algebra. We know that M(T)=Z(T) and
N(t) = Z(t) are connected (4.8, and [1], Prop. 10.1, 13.2), and defined over %
(4.3, 4.6). Therefore & and C are k-isomorphic to G/Z(T) and G/Z(t),
respectively. By 9.7, there is a connected normal k-subgroup M of G,
contained in the unipotent radical U of G, such that G=Z(T)-M. A fortiori,
we have G=Z(t)- M. We claim that M intersects Z(T) and Z(t) transversally.
We have

dim(Z(T)Nn M) + dim(G/M) = dim Z(T),
hence
dim(Z(T)N M) = dim M + dim Z(T) — dim G,

and similarly

dim(Z(t)Nn M) = dim Z(t) + dim M — dim G,

which shows that these intersections are proper. It suffices to check that the
Lie algebra m of M is transversal to those of Z(T) and of Z(t). The latter
are the centralizer of 7" and of t in g (4.3, 4.6). The transversality follows
then from the full reducibility of Ady7T and the fact that mt contains all
eigenvectors of 7" corresponding to non-trivial characters (9.7). The natural
bijective k-morphisms M/(Z(T)NM)—G/Z(T) and M/(Z(t)n M) — G/Z(t)
are then separable, and therefore are k-isomorphisms. Our assertion now
follows from 9.13.

915. LEMMA. Let U be a connected wunipotent k-group, T a k-torus
which acts k-morphically on U, and N a connected normal k-subgroup of
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U, stable under T, such that T has no fixed point #e in U =U/N. Let ®
and ¥V be the sets of weights of T in N and U’, respectively.

(i) Assume ® not to contain any linear combination with strictly
positive integral coefficients of elements of Y. Then any T-equivariant
k-cross-section s: U —U is a group homomorphism. The extension of U’
by N splits T-equivariantly over k.

(ii) If ® does not contain any element of the form (p'+p’)-a (ac¥;
1,7 =0), N is central and U/N is commutative, then U is commutative.

(i) Let f: U’ x U'— N be defined by
f(x’y) = s(x 'y) 's(y)——l ‘ s(x)—l > (xay € U,) .

We have to prove that flz,y)=e for all x,ycU’. The map f is clearly
T-equivariant. Over %k, U’ and N are T-equivariantly isomorphic to their Lie
algebras (9.12). Hence, f yields a T-equivariant morphism of varieties:

F:u xu—n.

It suffices to show that any such F is the zero map. Take coordinates in w
and n with respect to bases formed by eigenvectors of 7. Then the
coordinates F; of F(X,Y), (X,Y eu’) are polynomials in the coordinates (X,)
and (Y,) of X and Y which satisfy relations of the form

Fi(ta"xl"":tam-Xm; tal'Yb"'7ta'Ym) = tb"Fi(Xl,'",Xm; Yly"':Ym)~

teT, ¥ =1{a,+,an},b,e® X,o++,Xpn, Yi,*++,Y,ck). If F, =0, this
implies that &, is a linear combination with positive, not all zero, integral
coefficients, which contradicts the assumpton made on ® and V. Hence
F =0, which proves the first part of (i). The second part then follows from
the existence of a T-equivariant k-cross-section (9.6).

(i) By ([10], Exp. 9, lemme 2, p. 1), we may find composition series

U=U,2Up-1D+++DUy=N, N=N,DN,D -+ - N, = {e},

of connected subgroups stable under 7', such that the successive quotients are
isomorphic to G,. The set of weights of T in U,/N is then a subset of W.

We prove by induction on 7 that U; is central in U. This being true
for £ =0, we may assume U,_, to be in the center of U. The commutator
map (z,y)l—>x-y-x '-y~! induces then a 7T-equivariant morphism « of
varieties of U/U,-,XU/U,,_, into N. Using elementary facts on commutators,
we check immediately that the restriction of a to U/U,-,x{y} or to
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{z} xU/U,-, is a group homomorphism. Assume that Inac N;, We want
to prove that ImacC N,,;,. The map a defines a T-equivariant morphism of
varieties B: U/U,-1 XU/Up-1 — N;/N;,, which is a group homomorphism if
one of the two variables is left fixed. Identify U/U,-, and N;/N;,, to G,.
Then B is given by a polynomial F'¢£[X,Y] which verifies the conditions

(1) FX+X,Y)=FXY)+FX,Y), (X,Y,Ye<G.),
(2) FX,Y+Y)=FX,Y)+ FX,Y), (XY, Y<G),
and

(3) F@X,2Y)=tF(X,Y), (X,YeG,, teT)

for some ae®, beW¥. (1) and (2) show that F is a linear combination of
monomials X*-Y? (7,7=0). Then, if F#0, (3) implies that a is of the
from (p'+p’)-b (i,j=0) which contradicts the assumption made in (ii).
Hence F = 0. By induction on j, this shows that (U,U) = {e}.

9.16. THEOREM. Assume that the unipotent radical U of G is defined
over k or that G is solvable. Let S be a k-torus in G, b a non-trivial
character of S, and X a nilpotent non-zero element of g(k) such that
Ads(X) =st-X (sedS).

(i) X is tangent to a unipotent k-subgroup V of G, stable under S,
in which the weights of S are non-zero multiples of b;

(ii) if ®(S,G) dose not contain any element of the form (p'+p’)-b
(i, =0), V may be chosen to be commutative and so that the weights of S
in V are p-power multiples of b;

(iii) if ®(S,G) does not contain any element of the form p'-b (i =1)
or (pt+p)+b (4,7 =0),V may be chosen to be one-dimensional, k-isomorphic
to G,.

The proof proceeds by induction on dimG. We distinguish three cases:

(@) G is solvable. Exactly as in 9.8 (a), we first reduce the proof to the
case where S is one-dimensional, maximal, k-split, and U is defined over k.
Let N be a non-trivial connected central k-subgroup of U, stable under S,
and minimal for these properties. If Xemn, our assertion follows from 9.8.
If not, applying induction to G/N, we may assume that the weights of S in
U/N are non-zero multiples of b in case (i), p-power multiples of b in case
(ii) and that U/N is k-isomorphic to G, in case (iii). By 9.7, Z(S)N N is a
direct factor over %4, in N. In view of the minimality assumption on N, we

have either Z(S)DN or Z(S)NN= {e}. K Z(S)DN, then N=ZS)nU and
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9.15 (i) shows that U is the direct product of N and of a k-subgroup M,
stable under S. Clearly X € m, so that we may apply induction. Assume now
Z(S)N N={e}. Then, since N is minimal, 9.8 shows that N is k-isomorphic to
G,. Let ¢ be the weight of S in N. We consider the three cases of the
theorem separately.

(i) If ¢ is a multiple of b, we are done. If not, then (9.15) U is
k-isomorphic to U/NX N and we may apply induction.

(ii) By 9.15 (ii), U is commutative. If ¢ is a p-power multiple of 4, there
is nothing more to prove, so assume it is not. Let d = p*-b be the greatest
p-power multiple of b occurring among the weights of S in U, and let Y be
an eigenvector of 7T in u with weight 4. By 9.8, Y is tangent to a one-
dimensional k-subgroup P, stable under S and k-isomorphic to G,. If 2-X
=k-Y, we are done; if not, we apply the induction assumption to U/P.

(iii) By (ii) and the assumption, V may be chosen so that S has only
the weight & in V. Then (iii) follows from 9.8.

(b) G is reductive. Let L = (kerd)’. It is a connected k-torus; Z(L) is
connected, defined over %k (4.6), and reductive ([3], 2.15 (d), p. 70). The
element X belongs to the Lie algebra of Z(L). If L+ {e}, the result follows,
using induction on Z(L)/L, and (a). Thus we may again assume S to be
one-dimensional, %-split. Choose a maximal &-split torus T of G containing
S and defined over k. Fix an ordering on X*(T") compatible with the ordering
of X*(S) such that 5>0 ([3], 3.1, p. 71). Standard facts about parabolic
subgroups ([3], 5.12, p. 99) show that X belongs to the Lie algebra of the
unipotent radical R,(P) of the minimal parabolic k-group P containing Z(T)
and associated to the given ordering. Since R,(P) is defined over % ([3], 3.14,
p- 80), we are back to case (a).

(¢) G is neither solvable nor reductive. If X eu, we may apply (a) to
S-U. If not, we apply (b) to the image of X in the Lie algebra of G/U,
under the canonical projection, and get a suitable k-unipotent subgroup V*
to which dn(X) is tangent. Then we apply (a) to S-z~(V").
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