
Tδhoku Math. Journ.
20(1968), 417-424.

GROWTH CONDITIONS AND THE NUMERICAL RANGE

IN A BANACH ALGEBRA

J. G. STAMPFLI AND J. P. WILLIAMS**

(Received January 22, 1968)

0. Introduction. In this paper, we consider the numerical range in an
arbitrary Banach algebra with identity, and study its relation to various
growth conditions on the resolvent.

In §1, we list several facts about this generalized numerical range. Some
of these are more or less well known for concrete algebras, but do not seem
to have been formulated in their proper generality. In particular, we recognize
that part of this section is implicit or explicit in Lumer [7]. Consequently,
we have included proofs here only when a result is new (or requires a new
technique), or when the proof represents a substantial simplification.

The main result of §2 is a Phragmen-Lindelδf theorem for quasi-nilpotent
elements in a Banach algebra. This yields a sharper version of a similar
theorem of Lumer and Phillips [8].

Finally, in §3 we apply the methods of §1 to study the numerical range
in its usual setting, Hubert space. The notion of essential numerical range
appears naturally here, and this set is shown to be chracterized in the way
one would expect by analogy with the essential spectrum.

1. . Let J b e a complex Banach algebra with unit, and let p = {fe <Jl*:
/(I) = 1 = 11/11} be the set of positive linear functionals on Jl. (These are
called normalized states in [7].) For x^<Jly define the numerical range W0(x)
as

W0(x) = {A*)'-ftp)

and the numerical radius \WQ(x)\ as

\W0{x)\ = s u p { | * | : zzWlx)}.

The results of §1 are concerned with the relation between W0(x) and first
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order growth conditions on the resolvent of x. The terminology is justified
by Theorems 1 and 6. We will use [9] as a .reference for the basic facts
about Banach algebras.

THEOREM 1. W0(x) is convex, closed and contains the spectrum σ(x)
for x e Jί.

PROOF, p is evidently convex and weak* compact in Jl*. Since f-*f(x)
is weak* continuous on cJί*, it follows that the range of this map (=Wo0r))
is compact and convex.

To prove the last assertion, let C be a maximal commutative subalgebra
of Ji containing 1 and x. Then o-(x) is the spectrum of x in the algebra C,
and since C is commutative, σ{x) is the set of numbers φ{x) where φ ranges
over the complex homomorphisms of C. Now, each such φ can be extended
to a positive linear functional / on Jl, hence, φ(x) = f(x) € W0(x).

LEMMA 1. For Λ&W0(χ), IK^-λ)"! ^ d[\ WQ{χ)Yι.

PROOF. If \&W0(x), then (x—λ)""1 exists by Theorem 1, and hence, it
suffices to show that \\(x-λ)y\\ ^h\\y\\ for all y £ <Jf, where δ = d[\, W0(x)].

For y € Jl of unit norm, choose g <z cJl*, with ||^|| = 1 = ^(3^). Let f(u)
= g(uy) for uzJl. Clearly, / e f t and h\\y\\ ^ \Λ - f{x)\ = \ f(Λ-x)\

THEOREM 2. If K is a closed convex subset of the plane, then
KDW0(X) if and only if IK^-λ)"1!! ^ d[λ, K]-1 for λ<£lC.

PROOF. If KDW0(X), then Lemma 1 implies that

II(.r-λ)"1 II ̂  d[\ Woix)]-1 ^ d[\ K]~ι for X&K.

Conversely, suppose that the resolvent of x satisfies the indicated growth
condition. To show that W0(x)(zK, it suffices to show that every half-plane
H which contains K also contains W0(x). By a preliminary translation and
rotation, we may suppose that H is the right half-plane, Re z ^ 0. Since
HDK, ||(1 +txYλ\\ = Γ'UΓ1 + xY'W ^ 1 for all t > 0. Hence, if /<= ft then
Re/((1 + tx)~1)^ II/IMI (1 + te)-11| ^ / ( l ) , and thus, 0 ̂  Re/(1 - (1 + te)"1)
= Re/(te(l + ίx)"1). Dividing by t and letting t -»0 yields Re/(x) ^ 0.
Since / is arbitrary, this shows that l^o

REMARK. A glance at the proof of Theorem 2 shows that the same
conclusion follows from the weaker condition
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||(x—λ;)'1! ^ d[X, K\~ι + o(l) as |λ | —-> oo .

(See [10] for a special case of this.)

T H E O R E M 3. | W0(χ) | ^ | | ^ | | ^ 41 W0{x) | .

PROOF. The first inequality is clear. To prove the second, it suffices to
show that if W0(x) is a subset of the closed unit disk, then ||.z||^4. Now, by
Theorem 2, \\(χ—X)~ι\\ ^ ( |λ | - I ) " 1 for | λ | > l , and thus, the Cauchy formula

1 Γ
2πi J μ i = 2

yields \\x\\ ^ 4.

Theorem 3 shows that the numerical radius furnishes an equivalent norm
on Jl. The next theorem indicates how the numerical range itself, may be
recovered from the given norm on Jl. We need the following lemma.

LEMMA 2 (Lumer). lim||^: + ί|| — t =

PROOF. If /<= p, then \x + t\^Rzf(x + t) = t + Re/(^), so that, \\x + t\\-t

i=r sup Re WQ(x). On the other hand,

\\x+t\\ = Kx'-mx-trw ^ ί iKar-ίrii + ik2iι IK^-O-MI

^ t2d[t, Woix)]-1 + o(l) ^ ί2[ί - sup Re

Thus, limsup||:r + £|| — t ^ sup Re WQ(x), which completes the proof.
f->oo

THEOREM 4. Let p be a complex nmnber. Then, p € W0(x) if and
only if \p— λ | ^ \x—λ|| /or α/ί complex λ. Hence,

W0(x)= Π{z: \z-\\ ^ | | * - λ | | } .

PROOF. If p = f(x)zW0{x\ then \p-\\ = \f(x-^)\ ^ |k-X| | , for any
complex λ. Conversely, suppose p&W0(x). We claim that there is a complex
number λ, such that |/> —λ| > | |x-λ | | . In fact, by the convexity of W0(x),

there is no loss of generality in assuming that W0(x) lies in the half-plane
Re z^O, and that p>0. Hence, Lemma 2 implies \\x + t\\ — t < p for
large positive t.

Lemma 2 yields a formula for the numerical radius:
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\Wa(x)\ = maxlimflltf+ίeΊ - 0

There is an analogous expression for the spectral radius which follows. This
formula appears in [5] (and probably occurs elsewhere in the literature). The
proof included here seems to represent a substantial simplification.

THEOREM 5. For xzJl

Thus,

i / M r log||exp(ίΛ;)llI σ{x) I = max lim — — — ^ — .
θ ί-oo t

PROOF. The function φ(t) = log||exp(fcr)|| is sub-additive, and thus,
lim φ(t)/t exists (see [11], page 17). Therefore, lim φ(t)/t =
t tt—*oo

= logmax{|λ| : λ <= <r(exp(.z))} = log max{|exp(λ) | : λ e σ{x)} =
The last statement of the theorem is clear.

2. We turn now to the study of the numerical range in the algebra
<B{X) of bounded linear operators on a Banach space X. Recall that X may
be regarded as a semi-inner-product space by choosing a function x-+x* from
X into X* with the properties ||.r*|| = ||.r||, <x,x*> = ||x||2 for xz X.

For T £ @(x), Lumer has defined the numerical range of T as the set
W(T)= {<T*,ar*>: N | = l }

THEOREM 6. W0(T)=CW(T)~ = closure of the convex hull of W(T).

PROOF. This result can be obtained from [7]. We give a simple proof.
If x is a unit vector in X, then T —> <Tx, x*> is a positive linear

functional on (X), hence, W(T)cW0(T). This implies K=CW(T)~c W0(T).
To prove the reverse inclusion note that ||(T—X)x\\ ^ | <(T—X)x, x*>\
= \<Tx,x*> - λ| ^d[X,K], for any unit vector x, and hence, IKT-λ)"1!!
^ J[λ, K]'1 for |λ | sufficiently large. This, coupled with Theorem 2, shows
that KDW0(T).

COROLLARY. If X is a Hilbert space, then W0(T) = W(T)~ is the
closure of the usual numerical range of T.

Let Sa denote the sector symmetric with respect to the real axis, with
vertex at the origin, and angular opening ct.
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THEOREM 7. Let x be a quasi-nilpotent element of a Banach algebra
cJ. Let IK*-*)- 1 II ̂  K/dS9 for z<£Sx/a, where d2 = d[z, SΛ/a], and 0 ^ n/a
<2τr. Let logllOr-s)"1!! = o( | * | - α ) as \z\ ->0 for zz Sβ, β > n/a. Then
xn = 0.

PROOF. Let S = {Sπ/a — a], i.e., Sπ/a translated a units to the left, where
a — \csc n/2cc\. This choice of a makes the distance from S to Sπ/a equal to
1. For λ = rexp(£0) <£ S, d[X~\ Bdry Sπ/a\ ^ \\\-ι\UΏiθ±τr/2a)\, where the
sign must be chosen appropriately. But, |λ | |sin(0±7r/2tf)| ^ 1, and hence,
d[\-\ Bdry Sn/a\^ | λ | " 2 for X&S. Thus,

for

2(71-1)p 2(71-1) _

Let G(λ) = \-v«-» (1-Xx)-1 - 52 λ f c^ = (l-λα:)-1^271-1. Then, G(λ)
•- fc=o -

is an entire function, and ||G(λ)|| ^ Kι for X&S, (and hence for λ € Bdry *S).
Since λ € 5 implies λ € £#, for | λ | sufficiently large,

log||G(λ)|| ^logllλl-IKΛr-λ-rMINI1"-1] - o(\X\")

(as | λ | —> oo). Thus, log||G(te;)|| = log||G(λ + α)|| is o(|t£;|α) in *S, and we may
apply the classical Phragmen-Lindelδf Theorem ([4] page 393) to conclude that
G(λ) is bounded in S. This means G(λ) is bounded in the entire plane, and

2n-l

hence G(λ) = G(0) = xtn~\ Thus, (2-α;)-1 = £ 2"<*+1>x*, since x 2 M =0. But,
fc=0

11(2—xY^l ^J^s l^ l " " , for z on the negative real axis, and so xn = 0.

COROLLARY. Let T be a quasi-nil potent operator on a Banach space,
with W(T)(zSΛ/a. Let logWiT-zIY'W = o(\z\~a) (as \z\ ->0), for zzSe,
β > n/a. Then, T = 0.

This corollary appears in Lumer and Phillips [8]. However, they assume
a stronger growth condition on the resolvent in Sβ, which can be restated as
loglKT-*/)-1!! = o( |* |- δ ), where 8 < a. Our result is sharp in that the
growth condition in Sβ can not be weakened from o(|^|~α) to O(|^|~α). To

see this, consider the Volterra operator (Yf)(x) = I f(t)dt on L2 [0, 1]. It is

well known that W(V)cSπ, and one readily verifies that log||(V— zl)~1\\
= O( |2 | - 1 ) for all small z. A similar example appears in the paper just cited.

We remark that the sectorial angle n/a may be greater than π in the
corollary, since the numerical range W(T) need not be convex. In the other



422 J G. STAMPPLI AND J. P. WILLIAMS

direction, there exist quasi-nilpotent operators in a Hilbert space with numerical
range contained in a sector of arbitrarily small angle. See for example Kato
[6], page 280-281.

3. Thus far the numerical range has been studied in algebras without
involution. In this final section, we will make a few remarks about the
situation where adjoints are present. The paper [1] of Berberian and Orland
is relevant to this section.

To begin with, note that if Jl is a B* algebra (||jΛr|| = \\x\\2\ then p
consists of the normalized positive functionals on Jl, i.e., / 's such that
/(I) - 1, flμ*x) §: 0.

THEOREM 8. Let JL be a B* algebra with unit. If xz Jl is normal,
then W0(x) = Co'{x).

PROOF. If x^ JL, is normal, then \\x\\ = \<r(x)\ — spectral radius of x. It
follows that if D= {z: \z—λ| ^ r] is any disk containing σ(x), then ||.r—λ||
= \or(x—\)\ :g r. Hence, W0(x)dD. Since Cσ{x) is the intersection of all
such disks containing σ(x)9 it follows that W0(x)<zCcr(x).

It is clear from the definition that Wo is invariant under norm-preserving
isomorphisms. More generally, if v is an algebra homomorphism of norm 1,
from a complex Banach algebra Jl with unit into another such algebra Jl\
then Wo(v(x))(zWo(x), for each xeJl.

In the remainder of this paper v will denote the canonical homomorphism
from the algebra -®(iί) of operators on a Hilbert space H onto the Calkin
algebra j£(H)/JC, where Jζ is the ideal of compact operators in H. Both of
these are B* algebras [9]. If T z &KH), then by the above remark W0(v(T))

Wolf [14] calls the spectrum o (v(T)) of the element v(T) of the Calkin
algebra, the essential spectrum of T. (Different definitions occur in [2,13,14].)
It is natural to call the numerical range of this element, the essential
numerical range of T. The following theorem justifies the terminology.

THEOREM 9. // Tz${H), then W0{v(T)) = nW{T + K)~, where the

intersection is taken over all compact operators K.

PROOF. From Theorem 4 and the definition of the norm in the Calkin
algebra, we have pzW0(v(T)) if and only if \p-X\ ^ | | T + K - λ | | for each
complex number λ, and each compact operator K. Another application of
Theorem 4 shows that this condition amounts to the assertion that
pe W0(T+K) for each K.
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COROLLARY 1. The following are equivalent conditions on a self-
adjoint operator A:

(1) OeWo
(2) OzC(
( 3) A is not of the form K±M -where K is compact and M ^ δ > 0.

PROOF. We know that <ress(A) = <r(v(A)) and the convex hull of the
spectrum of the self-adjoint element v(A) is W0(v(A)) by Theorem 8. Hence
(1) and (2) are clearly equivalent.

If A = K+M, with K compact and M ^ 8 > 0, then W0(v{A)) = W0(v(M))
C^o(M)c[8, 00]. Hence, (1) implies (3).

If θ£Wo(v(A)), then by the theorem there exists a compact operator K
with 0&W0{A+K). It follows that 0 £ Re WQ(A + K) = W0{A + ReK), and
hence A + ReK is either positive and invertible or negative and invertible.
Thus, (3) implies (1).

As an application of the preceeding ideas, we mention the following
simple proofs of recent results, due respectively to P. A. Fillmore [3] and
H.Radjavi [12].

COROLLARY 2. Either of the following conditions on A = A* implies
that 0 belongs to the essential numerical range of A '-

(1) A = Re T, where T is quasi-nilpotent,
(2 ) A = T*T - TT* is a self commutator.

PROOF. (1) Since z (Γ) is quasi-nilpotent, 0 e σ(y(T)) c W0(v(T)). Hence
0 € ReW0(v(T)) = WMA)).

(2) Suppose that T*T - TT* = A ^ δ > 0. Then for any positive linear
functional /, we have | |T*T|| ^f(T*T) = f{ΓT*) 4- f(A) ^f(TT*) + δ. This
implies that | |T*T|| ^ sup f(TT*) + δ = | |7T*| | + δ, which contradicts the

fact that | |T*T|| = | |TT*||. The same proof carried out in the Calkin algebra
shows that T*T-TT* cannot be of the form K+M, where M ^ δ > 0 and
K is compact.

REMARK. The converse implication in (2) is also true as Radjavi [12],
shows, but this is much deeper.

R E F E R E N C E S

[ 1 ] S. K. BERBERIAN AND G. H. ORLAND, On the closure of the numerical range of an
operator, Proc. Amer. Math. Soc, 18(1967), 499-503.



424 J O. STAMPFLI AND J. P. WILLIAMS

[ 2 ] L. A. COBURN, WeyΓs Theorem for non-normal operators, Michigan Math. J., 13(1966),
285-288.

[ 3 ] P. A. FlLLMORE, On the real part of a quasi-nilpotent operator, a talk presented to the
Functional Analysis Seminar, Indiana University, Dec. 15, 1967.

[ 4 ] E. HlLLE, Analytic function theory, Vol. II, Ginn and Company, Boston, 1962.
[ 5 ] S. KANTOROVITZ, On the characterization of spectral operators, Trans. Amer. Math.

Soc, 111(1964), 152-181.
[ 6 ] T. KATO, Perturbation theory for linear operators, Springer-Verlag, New York, 1966.
[7] G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Soc, 100(1961), 29-43.
[ 8 ] G. LUMER AND R. S. PHILLIPS, Dissipative operators in a Banach space, Pacific J.

Math., 11(1961), 679-698.
[ 9 ] M. A. NAIMARK, Normed Rings, (translated from the Russian) P. Noordhooff, Groningen,

1960.
[10] G. ORLAND, On a class of operators, Proc. Amer. Math. Soc, 15(1964), 75-80.
[11] G. POLY A AND G. SZEGO, Aufgaben and Lehrsatze aus der Analysis, Springer-Verlag,

Berlin, 1925.
[12] H. RADJAVI, Structure of A*A-AA*, J. Math. Mech., 16(1966), 19-26.
[13] M. SCHECHTER, In variance of the essential spectrum, Bull. Amer. Math. Soc, 71

(1965), 365-367.
[14] F. WOLF, On the in variance of the essential spectrum under a change of boundary

conditions of partial differential boundary operators, Indag. Math., 21(1959), 142-147.

DEPARTMENT OF MATHEMATICS

INDIANA UNIVERSITY

BLOOMINGTON, INDIANA, U.S.A.




