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1. Introduction. One of the authors ([8], [9]) has considered the problem
of determining the order of saturation and its class in the local approximation
by a special class of linear positive operators which includes the Bernstein
polymomial [4], the Szasz operator [10] and the V.A.Baskakov operator [1] as
particular cases. Meyer-Kδnig and Zeller [6] deal with a power series which
has approximation properties similar to those of the Bernstein polynomial.

Our object of this paper is to prove the local saturation theorem about
the Meyer-Kδnig and Zeller operator in the C-space.

2. The operator of Meyer-Kόnig and Zeller. This operator**

(1) Mn(f; x) =
y=0

is constructed in correspondence with a function f(x) <= C[0,1]. The sequence of
operators [Mn(f; x)} converges uniformly in [0,1] to the function f(x), if f(x)
is continuous. In this section, we shall prove the following local saturation
theorem for the operator Mn(f;x).

THEOREM 1. For any function f(x) € C [0,1], we get :

(2) \Mn(f; x)-Ax)\< MX(\~XΎ ' x*ίa>b] ( Λ = 1 ' 2 '

then f{x) has a derivative which belongs to \ΛQM 1 on [a, b].
(ii) If f'(x) exists and belongs to Lip^l on \aub^\9 then

*) Actually in the definition of the operator, Meyer-Kδnig and Zeller have taken /( , " , Λ )

i n s t e a d o f / ( _ _ ) .
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1 Mn(f; x)-f(x) 1 < MX%~X) + 0 ( - ^ ) ' uniformly on xz [a29b2],

(iii) If in addition to the assumption of (i), the relation

holds a.e. on [aub{\9 then f(x) is linear on {aubλ\ where

2.1. Auxiliary theorems. The following theorems for linear positive
operator are known by P.P.Korovkin [3], R.G.Mamedov [5] and F.Schurer [7].

THEOREM A (P.P.Korovkin) [3]). Let [Ln(f;x)} be an infinite sequence of
linear positive operators, which satisfies the three conditions

where ctn(x), βn(x) and yn(x) being any functions uniformly tending to zero
on [a,b] as n—>oo. Then Ln(f;x) converges uniformly on [a,b] to f(x), if
f(x) is continuous in [a,b],

THEOREM B (R.CMamedov [5] and F.Schurer [7]). The ''weight function"
ψ(x) is a bounded, twice continuously differentiable function not equal to
zero on [α, b\ If the three conditions

Ln(l;x)=l, xz [a,b],

Ln(t;x)=x, xz [a,b],
and

Ln(t2; x) = x2 + *&&-< + o ( ) , uniformly on [α, 6],

are satisfied for a sequence of linear positive operators {Ln(f; x)}, which
have the property

Ln{(t - x)A; x] = o (-^) > uniformly on [a, b],
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then for each function f{x) <s C(2)[α, b], τυe get

Ln(f;x)-fix) = *&£& +

As a slight modification of Theorem B, we have

THEOREM C. Let a sequence of linear positive operators [Ln(f;x)}
satisfy the sa?ne conditions of Theorem B, then for each function f(x)
€ CC2> [a, b], we get

Ln(f;x)-f(x)=^x)ζ(x) + 0 ^ ) , uniformly on \aub&

where a<aγ<bx<b.

Now let 0 ̂  a < b ̂  1 be given. We consider the following class U of
functions u{x\ x € [0,1] : u{x) = ->\r{pc)q(x) where q(x) is twice continuously differ-
entiable and vanishes outside of an interval (cc, 0) with α<<^</3<&. Auxiliary
numbers at and bt(i = 1,2) are chosen to satisfy a < ax < a2 < cc < β < b2 < bx < b.
For the linear positive operators {Ln(f;x)} and f(x) € C[a, b], let us define
the linear functional An(f) by

(3) Λ.(/)=2 Σ •
na<k<nb "Φ

wα<Λ<nδ

We assume that for each u{x) € ί7, there is an absolute constant K such that

| A Λ ( / ) | ^ j q | / | | , ||/INmax \f(χ)\.
x€[α,6]

THEOREM D (Y. Suzuki [8]). For £/*£ operator which has the same
properties as the hypothesis of Theorem B, and f(x) € C[a, b]y we get:

( i ) If there is an absolute constant K such that

I An(g)\^K\\g\\, for any g(x)€ C[a, b],

and
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then f(x) has a derivative which belongs to IA$M 1 on [a, b],
(ii) If f\x) exists and belongs to Lip^l on \aub& then

I Ln(f; x) -f(x)\ < 2n~ + ° (n) ' uniformly on x € ^ 2

(iii) If in addition to the assumption of (i), the relation

holds a.e. on [aίy &J, then f(x) is linear on [au 6J.

The functional, An(f) in (3) is used in order to consider the local
saturation problem for the Baskakov operator, but it is convenient to modify
the definition of An(f) for the Meyer-Kδnig and Zeller operator Mn(fx). That

is, let us define a linear functional An(f) by

(4) An(f)=2 2 j n • \u(
V } ft ί^ + l + wY*—l + 7l) L / A \ J V

= 2
;_*•_<„ (k + l + nYk — 1 + n) I "V'k + n

Jc + n

[LnV'

Also, we assume momently that for each u(x) e U, there is an absolute constant
K such that

|1/1|= max |/(x)|,

where the constant X is independent on f(x). This is an essential point of our
proof and its proof will be given in the section 2.2. Then we have

THEOREM 2. For the linear positive operators [Ln(f;x)} which have
the same properties as the hypothesis of Theorem B, and f(x) € C[a, b]9 we
get:

( i ) If there is an absolute constant K such that
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\An(d) I ̂  #IMI, for any g{x) e C[α, ft],

(5) |W;*)-/(*)|<—|^-,*e[α,£] (n=l,2,.

then fix) has a derivative which belongs to Lip^l on [aubχ].
(ii) If f\x) exists and belongs to Lip^l on [al9bι\9 then

\Ln(f;x)-f(,x)\ < — ^ - + o ( ~ ) , uniformly on x e [a» ft,].

(iii) If in addition to the assumption of (i), the relation

Ln(f;x)-f(x)=o(±-)

holds a.e. on [au δ j , then f(x) is linear on [aub^\.

PROOF. We have only to prove (i), for the proof of (ii) and (iii) are the
same as in Theorem D (see, [8]). We shall verify the relation

_ Γ&

(6) lim An(g)= I g(x)u"(x)dx, for any g(x)z C[a,b] and u(x)e U.
n^°° Ja

Firstly let us suppose that g(x) £ C{2)[a, b], then we get

(7) Ln^x)-9{x)

uniformly o n ^ ζ [aub^, for any g(x) ς C(2)[α,b].
From (4) and (7), it follows that

= Σ

Γ
g\x)u{x)dx= I g{x)u\x)dx (n
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which is equivalent to (6). Since C(2)[α, b] is dense in C[a9b] and there is a
constant K such that

\Άn(g)\ ^K\\g\\, for any g{x)zC[a,b\

the relation (6) is established for all g(x) € C[α, b]. On the other hand, we
can write

(8) An(f)= ( u{x)d\n{x\
J

with the step function

where the summation runs over k such that a < k/(k + ri)<x. We assume that
f(x) satisfies (5) for x e [a, b]. Then the function Xn(x) has a total variation
not greater than M, and an increment \λn(x)—Xn(y)\ does not exceed the
number of points k/(k + n) in [x,y] multiplied with M/n. By Helly's theorem
[11], we can extract a subsequence {^nμ(x)} which converges on [a, b] to a
function X(x) of bounded variation and we have

(9) lim A

From (6) and (9)

(f(x)u"(x)dx= f\(x)u"(x)dx,
Ja Ja

where A.(x) is an indefinite integral of X(x). Since this is true for all u(x) € U,
we have

f{x) = Mx) + gx + h, xz [a, b],

with some constants g and h. Hence f'(x) = ̂ (x) + g, xz [a,b].
For the completion of the proof of (i), we have only to verify that X(x)

belongs to Lip^l, which is trivial by the definition of X(x).
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2. 2. Some lemmas.

LEMMA 1. If we set

then we obtain

(10)

(11) F.(iO =

PROOF. From an easy calculation, we have

The right hand of (11) is

~k

—k + n v + n

= 1 Γ
n + k L

Ϊ/ + 72

Thus we obtain Lemma 1.

LEMMA 2.
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(12) -£Fftv)Ga(v)xXl-xy+> = x* + *(~f2

(13) flFl(v)Gu(y)x''(l- xY" = x> + 3 x ^ * y + o
v=0

(14)

PROOF. It is sufficient to show (12) only, for (13) and (14) are verified
analogously.

»-2 ,

+x £

Hence
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where we used the estimation:

00 00

0 < E F0(v)G3(y)x»-χi-x)»+1 < Σ, G3(v)x"-3(1 - x)»+1 = 1.
y=3 v=3

LEMMA 3. It holds that

PROOF. Using Lemma 1 and Lemma 2, we have

Mn{{t-xγ]

= - MB(ί4 x) - 4xMnφ-jc) + Qx2Mn{tl x) - 3x*

oo oo

= Σ, Ft(v)G0(y)xv(l - * ) " + 1 -
v=0

l/=0

LEMMA 4. If f"(x) exists and is bounded, we have

Mn(f; x)=A*) + •f"(x)x£-χ)2 + o (-i-) , x 6 [a, ft], 0^a<b^ 1.

This holds uniformly on the interval [al9 b^ if 0 ^ α < ax < δx <
and if /(α:) is twice continuosly differentiable on [α, &].

PROOF. This follows from Theorems B, C and Lemma 3.

LEMMA 5. For 0 ^ x < 1, Zeί W5



74 Y- SUZUKI AND S. W A T A N A B E

oo

T*(^r\ — Y ^ \(n -4- Λ\τ — (Λ— -r V \ I <h (τ\

/v-\-τi\
where pnυ{x)= ( )xv(l — x)n+1, then we have

(15) TnQ{x) = 1, Tn l(α:) = 0, Tw 2(:r) = (τi H

(16)

oo

PROOF. Since Un0(x) = ^ pnυipc) = 1, we shall calculate the following
y=0

quantities:

Σ,»rPJ*)> (r=l,2)
v=0

Unl(χ) = Σ
v=0

y=0

= (w + l>r + Unl(x)x.

Hence we get

v - 1)}
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v—

a: £

Thus we have

π (n+iγx>+(n+ϊ)x

Therefore it follows

00

τn«{χ) = Σ PJ& = Unix) = 1,

00

τul(χ) = Σ, {(» +1)* - (i - *>}/U*0

= (n

= (n + ΐ)x — (n + l)x

= 0,

oo

Tni(x) = Σ, {(» + 1)* - (1 -

= {n+lfx* - 2(n+l) 2x 2 + (n+1) 2 * 2 + (n+V)x

and

ϊ(x) = £ I (n
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, 1 / 2 . 0 0 1/2

LEMMA 6. For given 0 < α < & < 1, £Λer£ ^x/5ί constants Cr(r= 1,2)
/or polynomials

(17) Ii?Γ(α:)I ^ CrL(n + l)r'\ a^x^b.

PROOF. Let us set X= [x(l-x)]-\ Then.

(18) p'm(x)= - {(» + ΐ)x - (1 - aMX/U*),

(19) pUx)= -(n + l + v)Xpnv{x)+ {(n+l)x-Q.-x)vYX*pm(x)

+(l-2x){(n+ϊ)x-(l-x)v}X*pm(x).

From (18), we get

(20) I R ' n ( x ) | ^ I X Σ | ( « + l ) i - ( l - x)v\pnv(x)
v=Q

< L - V *
— x(l—x)

By (19), we have

r av{(n+l)x-(l-x)p}2pnv(x)

oo

+ (1 - 2x)X2 2 aΛ(n+l)x-0-x)v}pnv(x) •
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Since

Σ, av{(n + ΐ)x - (l-x)v}pM(x) = (n + ϊ)x Σ avpm(x) ~(l-

we get

(21) \R';(x)\^L{(n+l)X+(n+ΐ)x2X2+(n+ΐ)xX2+2(

-1 , 1 , l+2|l-2a:| )

From (20) and (21) we obtain Lemma 6.

LEMMA 7. For arbitrary δ > 0 , there is a constant C(δ) such that

(22) Σ,
l-ϋ—Ja*
I v+n \

PROOF.

iι=0

—I <C(δ)—.
n) - w »

LEMMA 8. Lei QJyχ) be a sequence of twice continuously differentiable
functions on [0,1] (A) let the maximum μn of \ Qn(x) \ on the intervals
(0,α2) and (b2,ϊ) be μn=O(n~1), and (B) the maximum Mn of \Q'ή{x)\ on
(a^K) be Mn=0(n).

Then

(23) Σ (k+1+Uk-1+n) Q n ( ^ ) ~n[Qn(x)dx=O(l).
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PROOF. Let kλ be the smallest and k2 the largest value of k satisfying

k
the condition α t < , <bx. For large n,

For these n the difference (23) is equal to

fe+1
fc + l+w

with an error not exceeding (n + l)μn = O(l). The curled bracket in (24)
equals to

12 nXA + n) t Q ^ f c ) '

by the remainder formula of the trapezoid approximation. This order is O(n~2),
and the order of the whole sum in (24) is O(l).

2. 3. The proof of Theorem 1. We can rewrite (4) in the form

2 Σ

nXife—l+n)

From the Taylor expansion for q(k/(k + n))9 it follows
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where £Λi; are between k/(k + n) and v/(v+ri). Therefore we get

< k + 1 + n $ k - 1 + n )

4-
) q Vv+n)

Since q"(x) is bounded, the statement will follow if we can prove the three
sums

»=0 ^ k

and

\k+n i»+n) ^ - V A + Λ )

are bounded. For the third sum we have, using the estimation (15) for Tnr(x)
in Lemma 5,
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(25) SP^-jr Σ

s i Σ

= 0(1).

To estimate 5i1}, we can rewrite it in the from

are bounded. If we put

(26) Qκ(x) =

since JΓ / > M ( ^ x =then since JΓ />M(^x = ^ ^ ^ ^ L — ^ , we have

where g Λ V =±g(-~- j and gΛy=0 for -^~ < a o r ~^[>β' T h u s t h e

_ " n^ " n(2n-v+l)
~^ (v+l+n)(v-l + n)qn" ^0(v+l+

Therefore



SOME REMARKS ON SATURATION PROBLEM 81

For the function (26), the condition (A) in Lemma 8 is checked by means of
Lemma 7 and (B) by means of Lemma 6. Hence using Lemma 8, we get

(27) ^ = O ( 1 ) .

To estimate S^ , we write it in the form

(28) 5 » =
(k+1+nχk-

where

υ=0 v=0

or

Sinceince JΓ x A ^ ) ^ = ( ,

(29) I fxQα(x)dx- fQα(x)dx
I Jo Jo

= Σ Qnv I f xpjp)dx- ~— [ ρjx)dx I
t = o l J o v-rn j0 i

' W e h a m

(n + lV

^ const.
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Like the function (26), also the functions Qn(x) and Qn(x) satisfy the conditions

(A) and (B) of Lemma 8. For functions xQn(x) this follows from the fact

and Lemma 6 with r = l , 2. Applying (29) and Lemma 8 to the sum (28), we
obtain

\ xQn(x)dx- (~Qn{x)dx

Consequently, from (25), (27) and the estimation for S%\ we complete the
proof of Theorem 1.
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