ON CONFORMAL KILLING TENSOR IN A RIEMANNIAN SPACE

Shun-ichi Tachibana

(Received July 5, 1968)
0. Let M^{n} be an n dimensional Riemannian space. A vector field $v_{a}{ }^{1)}$ is called a Killing vector if it satisfies the Killing's equation:

$$
\nabla_{a} v_{b}+\nabla_{b} v_{a}=0,
$$

where ∇_{a} means the operator of the covariant derivation with respect to the Riemannian connection. A Killing tensor $v_{b c}$ is, by definition, a skew symmetric tensor satisfying the Killing-Yano's equation:

$$
\begin{equation*}
\nabla_{a} v_{b c}+\nabla_{b} v_{a c}=0 . \tag{0.1}
\end{equation*}
$$

In recent papers ${ }^{2)}$ we discussed the integrability condition of the equation (0.1) and determined such tensors completely in the Euclidean space and the sphere.

A conformal Killing vector u_{b} is a vector field satisfying

$$
\begin{equation*}
\nabla_{a} u_{b}+\nabla_{b} u_{a}=2 \rho g_{a b}, \tag{0.2}
\end{equation*}
$$

where ρ is a scalar function and $g_{a b}$ the Riemannian metric. As for a generalization of such a vector it is not suitable to define a conformal Killing tensor as a skew symmetric tensor field $u_{b c}$ satisfying

$$
\nabla_{a} u_{b c}+\nabla_{b} u_{a c}=2 \rho_{c} g_{a b},
$$

where ρ_{c} is a certain vector field. Because we can easily show that a conformal Killing tensor in this sense is a Killing tensor, i.e., we have $\rho_{c}=0$. Thus this definition of conformal Killing tensor is meaningless.

In this paper we shall define a conformal Killing tensor in another way and generalize some results about a conformal Killing vector to the conformal Killing tensor. The definition which we shall adopt is suggested by the following fact. A parallel vector field in the Euclidean space E^{n+1} induces a

[^0]conformal Killing vector on the sphere S^{n} of constant curvature. Thus a tensor field on S^{n} induced from a parallel tensor field in E^{n+1} is to be a model of conformal Killing tensor.

We shall concern only with tensor of degree 2 and the general case will be discussed in Kashiwada's forthcoming paper [6].

1. Preliminaries. Consider an n dimensional Riemannian space M^{n} whose Riemannian metric is given by $g_{b c}$ with respect to local coordinates $\left\{x^{a}\right\}^{3}$.

Let $R_{a b c}{ }^{d}$ be the Riemannian curvature tensor. Then Ricci's identity for any tensor $u_{a b}{ }^{e}$ is given by

$$
\nabla_{a} \nabla_{b} u_{c d}{ }^{e}-\nabla_{b} \nabla_{a} u_{c d}{ }^{e}=-R_{a b c}{ }^{f} u_{f d}{ }^{e}-R_{a b d}{ }^{f} u_{c f}{ }^{e}+R_{a b f}{ }^{e} u_{c d}{ }^{f} .
$$

Especially we obtain the following formula for any skew symmetric tensor $u_{b c}$,

$$
\begin{align*}
2 \nabla_{b} \nabla_{c} u^{b c} & =\nabla_{b} \nabla_{c} u^{b c}-\nabla_{c} \nabla_{b} u^{b c}=R_{b c e}{ }^{b} u^{e c}+R_{b c e}{ }^{c} u^{b e} \tag{1.1}\\
& =R_{c e} u^{e c}-R_{b e} u^{b e}=0,
\end{align*}
$$

where $R_{c e}=R_{b c e}{ }^{b}$ is the Ricci tensor.
The conformal curvature tensor $C_{a b c}{ }^{d}$ is defined by

$$
\begin{aligned}
C_{a b c}{ }^{d}= & R_{a b c}{ }^{d}+\frac{1}{n-2}\left(R_{a c} \delta_{b}{ }^{d}-R_{b c} \delta_{a}{ }^{d}+g_{a c} R_{b}{ }^{d}-g_{b c} R_{a}{ }^{d}\right) \\
& -\frac{R}{(n-1)(n-2)}\left(g_{a c} \delta_{b}{ }^{d}-g_{b c} \delta_{a}{ }^{d}\right),
\end{aligned}
$$

where R denotes the scalar curvature.
If the tensor $C_{a b c}{ }^{d}$ vanishes identically, then $M^{n}(n>3)$ is called to be conformally flat.

A space of constant curvature $(n>2)$ is a Riemannian space satisfying

$$
R_{a b c}{ }^{d}=k\left(g_{b c} \delta_{a}{ }^{d}-g_{a c} \delta_{b}{ }^{d}\right)
$$

and then k is a constant given by $k=R / n(n-1)$.
A space of constant curvature is necessarily conformally flat.
2. Conformal Killing tensor. We shall call a skew symmetric tensor $u_{c d}$ a conformal Killing tensor if there exists a vector field ρ_{c} such that

[^1]\[

$$
\begin{equation*}
\nabla_{b} u_{c d}+\nabla_{c} u_{b d}=2 \rho_{d} g_{b c}-\rho_{b} g_{c d}-\rho_{c} g_{b d} . \tag{2.1}
\end{equation*}
$$

\]

We call ρ_{c} the associated vector of $u_{c d}$. And if ρ_{c} vanishes identically, then $u_{c d}$ is called a Killing tensor. ${ }^{\text {) }}$

First we shall seek for differential equations of second order satisfied by $u_{c d}$.

Transvecting (2.1) with $g^{b c}$, we have

$$
\begin{equation*}
\nabla^{b} u_{b d}=(n-1) \rho_{d}, \tag{2.2}
\end{equation*}
$$

where $\nabla^{b}=g^{b c} \nabla_{c}$. Taking account of (1.1) it follows that

$$
\begin{equation*}
\nabla^{c} \nabla^{b} u_{b c}=0, \quad \nabla^{c} \rho_{c}=0 \tag{2.3}
\end{equation*}
$$

In the following we shall write $\rho_{a b}$ instead of $\nabla_{a} \rho_{b}$ for brevity.
Operating ∇_{a} to (2.1) we get

$$
\begin{equation*}
\nabla_{a} \nabla_{b} u_{c d}+\nabla_{a} \nabla_{c} u_{b d}=2 \rho_{a d} g_{b c}-\rho_{a b} g_{c d}-\rho_{a c} g_{b d} . \tag{2.4}
\end{equation*}
$$

By interchanging indices a, b, c as $a \rightarrow b \rightarrow c \rightarrow a$ in this equation we obtain the following two equations:

$$
\begin{align*}
& \nabla_{b} \nabla_{c} u_{a d}+\nabla_{b} \nabla_{a} u_{c d}=2 \rho_{b d} g_{c a}-\rho_{b c} g_{a d}-\rho_{b a} g_{c d}, \tag{2.5}\\
& \nabla_{c} \nabla_{a} u_{b d}+\nabla_{c} \nabla_{b} u_{a d}=2 \rho_{c d} g_{a b}-\rho_{c a} g_{b d}-\rho_{c b} g_{a d} . \tag{2.6}
\end{align*}
$$

If we form $(2.4)+(2.5)-(2.6)$, then it follows that

$$
\begin{align*}
2 \nabla_{a} \nabla_{b} u_{c d}- & 2 R_{c b a}^{e} u_{d e}-R_{b a d}^{e} u_{c e}-R_{a c d}^{e} u_{b e}-R_{b c d}^{e} u_{a e} \tag{2.7}\\
= & 2\left(\rho_{a d} g_{b c}+\rho_{b d} g_{c a}-\rho_{c d} g_{a b}\right)+\left(\rho_{c b}-\rho_{b c}\right) g_{a d}+\left(\rho_{c a}-\rho_{a c}\right) g_{b d} \\
& -\left(\rho_{a b}+\rho_{b a}\right) g_{c d} .
\end{align*}
$$

We shall deform (2.7) into another form. By $b \rightarrow c \rightarrow d \rightarrow b$ in (2.7) we have

$$
\begin{align*}
2 \nabla_{a} \nabla_{c} u_{d b}- & 2 R_{d c a}^{e} u_{b e}-R_{c a b}^{e} u_{d e}-R_{a d b}^{e} u_{c e}-R_{c a b}^{e} u_{a e} \tag{2.8}\\
= & 2\left(\rho_{a b} g_{c a}+\rho_{c b} g_{d a}-\rho_{d b} g_{a c}\right)+\left(\rho_{d c}-\rho_{c d}\right) g_{a b}+\left(\rho_{d a}-\rho_{a d}\right) g_{c b} \\
& -\left(\rho_{a c}+\rho_{c a}\right) g_{d b},
\end{align*}
$$

4) S. Tachibana, [1].

$$
\begin{align*}
2 \nabla_{a} \nabla_{d} u_{b c}- & 2 R_{b d a}{ }^{e} u_{c e}-R_{d a c}{ }^{e} u_{b e}-R_{a b c}{ }^{e} u_{d e}-R_{d b c}{ }^{e} u_{a e} \tag{2.9}\\
= & 2\left(\rho_{a c} g_{d b}+\rho_{a c} g_{b a}-\rho_{b c} g_{a d}\right)+\left(\rho_{b d}-\rho_{a b}\right) g_{a c}+\left(\rho_{b a}-\rho_{a b}\right) g_{d c} \\
& -\left(\rho_{a d}+\rho_{d a}\right) g_{b c} .
\end{align*}
$$

Adding (2.8) and (2.9) to (2.7) side by side we can get

$$
\begin{align*}
& 2 \nabla_{a} \nabla_{b} u_{c d}+R_{b c a}^{e} u_{d e}+R_{d b a}^{e} u_{c e}+R_{c d a}^{e} u_{b e} \tag{2.10}\\
& =\left(\rho_{b d}-\rho_{a b}\right) g_{a c}+\left(\rho_{a c}-\rho_{c d}\right) g_{a b}+\left(\rho_{c b}-\rho_{b c}\right) g_{a d}+2 \rho_{a d} g_{b c} \\
& \quad-2 \rho_{a c} g_{b d}
\end{align*}
$$

where we have used the following equations which follows from (2.1):

$$
\nabla_{a} \nabla_{b} u_{c d}+\nabla_{a} \nabla_{c} u_{d b}+\nabla_{a} \nabla_{d} u_{b c}=3\left(\nabla_{a} \nabla_{b} u_{c d}+\rho_{a c} g_{b d}-\rho_{a d} g_{b c}\right) .
$$

Next we shall obtain algebraic relations between components of $u_{c d}$ and the curvature tensor, ((2.14) below).

First by subtraction (2.7) from (2.10) we can get

$$
\begin{array}{r}
R_{b c a}^{e} u_{d e}+R_{a d b}{ }^{e} u_{c e}+R_{d a c}{ }^{e} u_{b e}+R_{c b d}{ }^{e} u_{a e} \tag{2.11}\\
=\sigma_{b d} g_{c a}+\sigma_{c a} g_{b d}-\sigma_{c d} g_{a b}-\sigma_{a b} g_{c d},
\end{array}
$$

where we have put

$$
\sigma_{b d}=\rho_{b d}+\rho_{d b}
$$

Transvecting (2.11) with $g^{a b}$ and making use of

$$
R_{d b c e} u^{b e}+R_{c b d e} u^{b e}=0
$$

we obtain

$$
\begin{equation*}
\sigma_{b d}=\frac{1}{(n-2)}\left(R_{c}^{e} u_{d e}+R_{d}^{e} u_{c e}\right) . \tag{2.12}
\end{equation*}
$$

We substitute (2.12) into (2.11) and put

$$
\begin{equation*}
T_{b c a}^{e}=(n-2) R_{b c a}^{e}-R_{b}^{e} g_{c a}+R_{c}^{e} g_{b a}, \tag{2.13}
\end{equation*}
$$

so it follows that

$$
\begin{equation*}
\left(T_{b c a}{ }^{e} \delta_{d}{ }^{f}+T_{a d b}{ }^{e} \delta_{c}{ }^{f}+T_{d a c}{ }^{e} \delta_{b}{ }^{f}+T_{c b d}{ }^{e} \delta_{a}{ }^{f}\right) u_{f e}=0 \tag{2.14}
\end{equation*}
$$

Now we shall show the following
THEOREM 1.5) If there exists (locally) a conformal Killing tensor which takes any preassigned (skew symmetric) value at any point of an $n(>3)$ dimensional Riemannian space, then the space is conformally flat.

Proof. Under the assumption as the skew symmetric parts of coefficients of $u_{f e}$ in (2.14) vanish, we have

$$
\begin{aligned}
T_{b c a}{ }^{e} \delta_{d}{ }^{f} & +T_{a d b}{ }^{e} \delta_{c}{ }^{f}+T_{d a c}{ }^{e} \delta_{b}{ }^{f}+T_{c b d}{ }^{e} \delta_{a}^{f} \\
& =T_{b c a}{ }^{f} \delta_{d}{ }^{e}+T_{a d b}{ }^{f} \delta_{c}{ }^{e}+T_{d a c}{ }^{f} \delta_{b}{ }^{e}+T_{c b a}{ }^{f} \delta_{a}{ }^{e}
\end{aligned}
$$

Contracting d and f in this equation we get

$$
T_{b c a}^{e}=\left(-R_{a b}+\frac{R}{n-1} g_{a b}\right) \delta_{c}^{e}+\left(R_{a c}-\frac{R}{n-1} g_{a c}\right) \delta_{b}{ }^{e} .
$$

Substituting this into (2.13) it follows that $C_{b c a}{ }^{e}=0$.
Q.E.D.
3. A sufficient condition to be a conformal Killing tensor. Let $u_{c d}$ be a conformal Killing tensor. Then we can get

$$
\begin{equation*}
\nabla^{a} \nabla_{a} u_{c d}-R_{c}^{e} u_{d e}-R_{c d}^{b}{ }_{c d}^{e} u_{b e}=-(n-3) \rho_{c d}-\rho_{d c}, \tag{3.1}
\end{equation*}
$$

by transvection (2.7) with $g^{a b}$. Taking the skew symmetric part of (3.1), we have the following equations:

$$
\begin{equation*}
2 \nabla^{a} \nabla_{a} u_{c d}-R_{c}^{e} u_{d e}+R_{d}{ }^{e} u_{c e}-R_{d c}{ }^{b e} u_{b e}=(n-4)\left(\rho_{d c}-\rho_{c d}\right) . \tag{3.2}
\end{equation*}
$$

In this section we shall show that a skew symmetric tensor $u_{c d}$ satisfying (3.1) or (3.2) is a conformal Killing tensor provided that M^{n} is compact. To this purpose we prepare an integral formula about a tensor field.

Define a tensor $A_{b c a}$ by

$$
\begin{equation*}
A_{b c d}=\nabla_{b} u_{c d}+\nabla_{c} u_{b d}-2 \rho_{d} g_{b c}+\rho_{b} g_{c d}+\rho_{c} g_{b d} \tag{3.3}
\end{equation*}
$$

for a skew symmetric tensor $u_{c d}$, where ρ_{c} is given by

[^2]$$
(n-1) \rho_{c}=\nabla^{b} u_{b c} .
$$

Simple computations give us the following equations:

$$
\begin{gather*}
u^{c d} \nabla^{b} A_{b c d}=u^{c d}\left(\nabla^{b} \nabla_{b} u_{c d}-R_{c}{ }^{e} u_{d e}-R^{b}{ }_{c d}{ }^{e} u_{b e}+(n-3) \rho_{c d}+\rho_{d c}\right), \tag{3.4}\\
A_{b c d} A^{b c d}=2 A_{b c d} \nabla^{b} u^{c d}, \tag{3.5}
\end{gather*}
$$

where we have used (1.1) and the relation:

$$
\begin{aligned}
\nabla_{b} \nabla_{c} u^{b}{ }_{d} & =\nabla_{c} \nabla_{b} u^{b}{ }_{d}+R_{b c e}{ }^{b} u_{d}^{e}-R_{b c d}{ }^{e} u^{b}{ }_{e} \\
& =(n-1) \rho_{c d}-R_{c}^{e} u_{d e}-R_{c d}^{b}{ }_{c d}^{e} u_{b e} .
\end{aligned}
$$

Substituting (3.4) and (3.5) into

$$
\nabla^{b}\left(A_{b c d} u^{c d}\right)=u^{c d} \nabla^{b} A_{b c d}+A_{b c d} \nabla^{b} u^{c d}
$$

we obtain the following
ThEOREM 2. In a compact orientable Riemannian space M, the following integral formula is valid for any skew symmetric tensor field $u_{c d}$:

$$
\int_{M}\left[u^{c d}\left(\nabla^{a} \nabla_{a} u_{c d}-R_{c}^{e} u_{d e}-R_{c d}^{b} u_{b e}+(n-3) \rho_{c d}+\rho_{d c}\right)+(1 / 2) A_{b c d} A^{b c d}\right] d \sigma=0,
$$

where do means the volume element of M and $(n-1) \rho_{c d}=\nabla_{c} \nabla^{b} u_{b d}$.
Thus we have
ThEOREM 3.) In a compact Riemannian space a necessary and sufficient condition for a skew symmetric tensor field $u_{c d}$ to be a conformal Killing tensor is (3.1) (or (3.2)).
4. Conformal Killing tensor in a space of constant curvature. For a conformal Killing tensor $u_{c d}$ we have

$$
\begin{align*}
\nabla_{b} u_{c d}+\nabla_{c} u_{b d} & =2 \rho_{d} g_{b c}-\rho_{b} g_{c d}-\rho_{c} g_{b d}, \tag{4.1}\\
\nabla^{b} u_{b c} & =(n-1) \rho_{c}, \tag{4.2}
\end{align*}
$$

6) I. Sato [3] for a conformal Killing vector and K. Yano and S. Bochner [4] for a Killing tensor.

$$
\begin{equation*}
\nabla_{c} \rho_{d}+\nabla_{d} \rho_{c}=\frac{1}{n-2}\left(R_{c}^{e} u_{d e}+R_{d}{ }^{e} u_{c e}\right) . \tag{4.3}
\end{equation*}
$$

The following theorem is a trivial consequence of (4.3).
THEOREM 4. In an Einstein space, the associated vector of a conformal Killing tensor is a Killing vector.

In the following we shall assume the space under consideration is a space of constant curvature.

Let v_{c} be a Killing vector. Then as is well known we have

$$
\nabla_{a} \nabla_{b} v_{c}+R_{e a b c} v^{e}=0
$$

Then by virture of

$$
R_{e a b c}=k\left(g_{e c} g_{a b}-g_{a c} g_{e b}\right), \quad k=R / n(n-1),
$$

the last equation turns to

$$
\nabla_{a} \nabla_{b} v_{c}=k\left(v_{b} g_{a c}-v_{c} g_{a b}\right)
$$

and hence we obtain

$$
\begin{equation*}
\nabla_{a} \nabla_{b} v_{c}+\nabla_{b} \nabla_{a} v_{c}=k\left(-2 v_{c} g_{a b}+v_{b} g_{a c}+v_{a} g_{b c}\right) . \tag{4.4}
\end{equation*}
$$

This equation shows that $\nabla_{b} v_{c}$ is a conformal Killing tensor.
Now if $u_{c d}$ is a conformal Killing tensor, then its associated vector ρ_{c} is a Killing vector and hence $\nabla_{b} \rho_{c}$ is a conformal Killing tensor whose associated vector is given by $-k \rho_{c}$. Thus we have

$$
\begin{equation*}
\nabla_{b} \nabla_{c} \rho_{d}+\nabla_{c} \nabla_{b} \rho_{d}=-k\left(2 \rho_{d} g_{b c}-\rho_{b} g_{c d}-\rho_{c} g_{b d}\right) \tag{4.4}
\end{equation*}
$$

Let us assume that $k \neq 0$ (i.e., $R \neq 0$). If we put

$$
p_{c d}=u_{c d}+(1 / k) \nabla_{c} \rho_{d},
$$

then by virtue of (4.1) and (4.4), it follows that

$$
\nabla_{b} p_{c d}+\nabla_{c} p_{b d}=0,
$$

which means $p_{c d}$ is a Killing tensor. Consequently a conformal Killing tensor
$u_{c d}$ is decomposed in the form:

$$
u_{c d}=p_{c d}+q_{c d},
$$

where $p_{c d}$ is a Killing tensor and $q_{c d}=(-1 / k) \nabla_{c} \rho_{d}$ is a conformal Killing tensor. Hence we have

THEOREM 5. ${ }^{7}$) In a space $M^{n}(n>2)$ of constant curvature with $k=R / n(n-1) \neq 0$, a conformal killing tensor $u_{c a}$ is uniquely decomposed in the form:

$$
\begin{equation*}
u_{c d}=p_{c d}+q_{c d}, \tag{4.5}
\end{equation*}
$$

where $p_{c d}$ is a Killing tensor and $q_{c d}$ is a closed conformal Killing tensor. In this case $q_{c d}$ is the form

$$
q_{c d}=(-1 / k) \nabla_{c} \rho_{d}
$$

where ρ_{d} is the associated vector of $u_{c d}$.
Conversely if $p_{c d}$ is a Killing tensor and ρ_{d} is a Killing vector, then $u_{c d}$ given by (4.5) is a conformal Killing tensor.

The uniqueness of the decomposition follows from the following
Lemma. Under the assumption of Theorem 5, if a Killing tensor is closed, then it is a zero tensor.

Proof of Lemma. Let $u_{c d}$ be a closed Killing tensor. Then we have

$$
\begin{aligned}
& \nabla_{b} u_{c d}+\nabla_{c} u_{d b}+\nabla_{d} u_{b c}=0, \\
& \nabla_{b} u_{c d}+\nabla_{c} u_{d b}=0 .
\end{aligned}
$$

Hence we get $\nabla_{b} u_{c d}=0$. Thus by virtue of Ricci's identity it follows that

$$
R_{a e b}{ }^{f} u_{f c}+R_{a e c}{ }^{f} u_{b f}=0 .
$$

As the space is of constant curvature, we can obtain by a transvection with $g^{a b}$

$$
(n-2) k u_{e b}=0
$$

Example. Let E^{n+1} be the Euclidean space with orthogonal coordinates

[^3]$\left\{y^{\lambda}\right\}, \lambda=1, \cdots, n+1$. Consider the unit sphere S^{n} and let $\left\{x^{a}\right\}$ be its local coordinates. Putting $B_{a}{ }^{\lambda}=\partial y^{\lambda} / \partial x^{a}$, we see that the second fundamental tensor $H_{b a}{ }^{\wedge}$ is given by
$$
\left.\left.H_{b a} \equiv \equiv \nabla_{b} B_{a}{ }^{\lambda} \equiv \partial_{b} B_{a}{ }^{\lambda}-B_{c}^{\lambda}\left\{{ }_{b a}^{c}\right\}\right\}+B_{a}{ }^{\mu}\left\{{ }_{\nu \nu}\right\}\right\} B_{b}^{\nu}, \quad \partial_{b} \equiv \partial / \partial x^{b} .
$$

As S^{n} is totally umbilic we have $H_{b a}{ }^{\lambda}=g_{b a} N^{\lambda}$, where N^{λ} means the unit normal vector : $N^{\lambda}=-y^{\lambda}$.

Let $v_{\mu \nu}$ be a parallel skew symmetric tensor field and define a tensor field $u_{b c}$ on S^{n} by $u_{b c}=B_{b}{ }^{\mu} B_{c}{ }^{\nu} v_{\mu \nu}$. Operating ∇_{a} to this equation we have

$$
\begin{aligned}
\nabla_{a} u_{b c} & =B_{a}{ }^{\lambda} \nabla_{\lambda} v_{\mu \nu} B_{b}{ }^{\mu} B_{c}{ }^{\nu}+v_{\mu \nu}\left(H_{a b}{ }^{\mu} B_{c}{ }^{\nu}+B_{b}{ }^{\mu} H_{a c}{ }^{\nu}\right) \\
& =v_{\mu \nu}\left(N^{\mu} B_{c}{ }^{\nu} g_{a b}+N^{\nu} B_{b}{ }^{\mu} g_{a c}\right) .
\end{aligned}
$$

If we put $\rho_{c}=v_{\mu \nu} N^{\mu} B_{c}{ }^{\nu}$, then it follows that

$$
\nabla_{a} u_{b c}=\rho_{c} g_{a b}-\rho_{b} g_{a c} .
$$

Thus we get

$$
\nabla_{a} u_{b c}+\nabla_{b} u_{a c}=2 \rho_{c} g_{a b}-\rho_{a} g_{b c}-\rho_{b} g_{a c}
$$

which shows $u_{b c}$ is a conformal Killing tensor on S^{n}.

Bibliography

[1] S. Tachibana, On Killing tensor in a Riemannian space, Tôhoku Math. J., 20(1968), 255-262.
[2] S. Tachibana and T. Kashiwada, On the integrability of Killing-Yano's equation, to appear.
[3] I. Sato, On conformal Killing tensor fields, Bull. Yamagata Univ., 3 (1956), 175-180.
[4] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math., Stud. 32, 1953.
[5] K. Yano and T. Nagano, Some theorems on projective and conformal transformations, Ind. Math., 14 (1957), 451-458.
[6] T. KASHiwADA, On conformal Killing tensor, to appear in Nat. Sci. Rep. of the Ochanomizu University.

Department of Mathematics
Ochanomizu University
TOKYO, JAPAN

[^0]: 1) We adopt the identification of a vector field with a 1 -form by virtue of the Riemannian metric.
 2) S. Tachibana [1], S. Tachibana and T. Kashiwada [2].
[^1]: 3) Indices a, b, \cdots run over $1, \cdots, n$. Throughout this paper we assume that $n>3$.
[^2]: 5) Analogous theorem is well known for a conformal Killing vector. As to a Killing tensor, see S. Tachibana [1].
[^3]: 7) For a conformal Killing vector, see K. Yano and T. Nagano [5].
