HYPERSURFACES SATISFYING A CERTAIN CONDITION ON THE RICCI TENSOR

SHÛKICHI TANNO

(Received December 10, 1968)

1. Introduction. The Riemannian curvature, tensor R of a locally symmetric Riemannian manifold (M,g) satisfies

(*)
$$R(X, Y) \cdot R = 0$$
 for any tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M. A result of K. Nomizu [2] tells us that the converse is affirmative in the case where M is a certain hypersurface in a Euclidean space. That is:

Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in a Euclidean space E^{m+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies condition (*), then it is of the form $M = S^k \times E^{m-k}$, where S^k is a hypersphere in a Euclidean subspace E^{k+1} of E^{m+1} and E^{m-k} is a Euclidean subspace orthogonal to E^{k+1} .

Let R_1 be the Ricci tensor of (M,g). Then condition (*) implies in particular

(**)
$$R(X, Y) \cdot R_1 = 0$$
 for any tangent vectors X and Y .

First we have

THEOREM A. Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in a Euclidean space E^{m+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies condition (**) and has the positive scalar curvature, then it is of the form $M = S^k \times E^{m-k}$.

298 S. TANNO

This theorem says that, under the circumstance, condition (**) implies that R_1 is parallel and, in fact, M is symmetric.

If M is compact, then $k(x) \ge 3$ is replaced by $m \ge 3$, and we have

THEOREM B. Let M be an m-dimensional, connected and compact Riemannian manifold which is isometrically immersed in E^{m+1} , where $m \ge 3$. If M satisfies condition (**) and has the positive scalar curvature, then it is a hypersphere.

For the case where k(x) = 2 we have

THEOREM C. Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in E^{m+1} so that the type number k(x) = 2 at least at one point x. If M satisfies condition (**) and the scalar curvature is a positive constant, then $M = S^2 \times E^{m-2}$.

If the Ricci tensor R_1 is parallel, then M satisfies condition (**). Hence, we can show

THEOREM D. Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in E^{m+1} . If the Ricci tensor is parallel and the scalar curvature is positive, then it is of the form $M = S^k \times E^{m-k}$.

The condition on the type number k(x) at a point x is replaced by the rank r(x) of the Ricci tensor at the point, provided that r(x) is greater than 1. Namely we have

COROLLARY. Let M be an m-dimensional, connected and complete Riemannian manifold which is isometrically immersed in E^{m+1} . Assume that M satisfies condition (**) and the scalar curvature S is positive. And suppose one of the following conditions is satisfied:

- (i) the Ricci tensor has the rank $r(x) \ge 3$ at some point x,
- (ii) the Ricci tensor has the rank r(x) = 2 at some point x and S is constant.

Then M is of the form $S^k \times E^{m-k}$, k = r(x).

Proofs are given by modifications of the arguments in [2] and by applying results of P. Hartman [1] and T. Y. Thomas [3].

2. Reduction of condition (**). Let M be a connected hypersurface in a Euclidean space E^{m+1} and let g be the induced metric on M. Let U be a neighborhood of a point x_0 of M on which we can choose a unit vector field ξ normal to M. For local vector fields X and Y on U tangent to M, we have the formulas of Gauss and Weingarten:

$$(2.1) D_{x}Y = \nabla_{x}Y + h(X, Y)\xi,$$

$$(2.2) D_{x}\xi = -AX,$$

where D_X and ∇_X denote covariant differentiations for the Euclidean connection of E^{m+1} and the Riemannian connection on M, respectively. h is the second fundamental form and A is a symmetric endomorphism satisfying h(X, Y) = g(AX, Y). Then the equation of Gauss is

$$(2.3) R(X,Y) = AX \wedge AY,$$

where, in general, $X \wedge Y$ denotes the endomorphism which maps Z upon g(Z,Y)X-g(Z,X)Y. The type number k(x) at a point x is, by definition, the rank of A at x. For a point x of M, take an orthonormal basis (e_1, \dots, e_m) of the tangent space $T_x(M)$ such that $Ae_h = \lambda_h e_h$, $1 \leq h \leq m$. Then (2,3) is written as

$$(2.4) R(e_i, e_j) = \lambda_i \lambda_j e_i \wedge e_j.$$

Now by condition (**) and

$$[R(e_i, e_i) \cdot R_1](e_k, e_h) = -R_1(R(e_i, e_i)e_k, e_h) - R_1(e_k, R(e_i, e_i)e_h),$$

we have

$$\lambda_i \lambda_j (\delta_{jk} R_{ih} - \delta_{ik} R_{jh} + \delta_{jh} R_{ik} - \delta_{ih} R_{jk}) = 0,$$

where R_{jk} are the components of R_1 with respect to the frame $\{e_h\}$. If we put $h = i \neq j = k$, then we get

$$(2.5) \lambda_i \lambda_j (R_{ii} - R_{jj}) = 0.$$

Next, since $R(e_i, e_j)e_k = \lambda_i \lambda_j (\delta_{jk}e_i - \delta_{ik}e_j)$, R has the following components

$$(2.6) R^h_{kij} = \lambda_i \lambda_j (\delta_{jk} \delta^h_i - \delta_{ik} \delta^h_j).$$

300 S. TANNO

Contracting in h and i, we have

$$(2.7) R_{jk} = \delta_{jk} \lambda_j (\Sigma_{i \neq j} \lambda_i).$$

Therefore R_1 is diagonal, and by (2.5), R_1 has at most two eigenvalues 0 and γ . If $\gamma \neq 0$, then the multiplicity of γ is equal to the type number k(x). And the scalar curvature S of M is given by $S = k(x)\gamma$. We denote the mean curvature of M in E^{m+1} by $K = m^{-1}\Sigma\lambda_h$. Then, putting j = k in (2.7), we see that λ_h is a solution of the equation

$$(2.8) \lambda_h^2 - mK\lambda_h + \gamma = 0.$$

Consequently, we have a number $s(0 \le s \le k(x))$ such that

$$egin{aligned} \lambda_1 &= \lambda_2 = \cdots = \lambda_s = \lambda, \ \lambda_{s+1} &= \cdots = \lambda_{k(x)} = mK - \lambda = \mu, \ \lambda_{k(x)+1} &= \cdots = \lambda_m = 0, \end{aligned}$$

by interchanging the order in $\{e_h\}$.

3. **Proofs of theorems**. Let $f: M \to E^{m+1}$ be an isometric immersion of an m-dimensional, connected and complete Riemannian manifold M with property (**). The scalar curvature S of M is assumed to be positive. Since the conclusion of our theorem is $M = S^k \times E^{m-k}$, in the proofs we can assume that M is oriented, and hence k is globally defined.

LEMMA 3.1. The scalar curvature S > 0 implies that the type number is a constant $k \ge 2$.

PROOF. By $S=k(x)\gamma$ at x, we have $\gamma>0$ on M. Since R_1 has at most two different eigenvalues 0 and γ , the inequality $\gamma>0$ on M tells us that the multiplicity of γ is constant on M. On the other hand, $\gamma\neq 0$ at x implies that k(x) is the multiplicity of γ , and hence k(x)=k a constant on M. Suppose that k=1. Then we have $mK=\lambda$ and $\gamma=0$ by (2.8). This is a contradiction, and we have $k\geq 2$.

LEMMA 3.2. Every sectional curvature is non-negative.

PROOF. Let x be an arbitrary point of M and let $\{e_h\}$ be an orthonormal basis of $T_x(M)$ such that $Ae_i = \lambda e_i$ for $1 \le i \le s$, $Ae_u = \mu e_u$ for $s + 1 \le u \le k$, and $Ae_t = 0$ for $k + 1 \le t \le m$. Take an arbitrary 2-plane in $T_x(M)$. Then

we have two vectors X and Y which span the 2-plane:

$$X = \sum_{i=1}^{s} a_i e_i + \sum_{u=s+1}^{k} b_u e_u + \sum_{l=k+1}^{m} c_l e_l,$$

$$Y = \sum_{j=1}^{s} a'_j e_j + \sum_{v=s+1}^{k} b'_v e_v + \sum_{l=k+1}^{m} c'_l e_l,$$

where we can assume that $a_i, b_u, c_t, a'_i, b'_v$, and c'_t are non-negative (by changing some $e_h \rightarrow -e_h$, if necessary). By (2.3) we have

$$egin{aligned} R(X,Y) &= \lambda^2 \Sigma_{i,j} a_i a_i' e_i \wedge e_j + \lambda \mu \Sigma_{i,v} a_i b_v' e_i \wedge e_v \ &+ \lambda \mu \Sigma_{u,j} b_u a_i' e_u \wedge e_j + \mu^2 \Sigma_{u,v} b_u b_v' e_u \wedge e_v. \end{aligned}$$

After a simple calculation we have

$$\begin{split} -\ g(R(X,Y)X,Y) &= [(\Sigma a_i^2)(\Sigma a_j^{'2}) - (\Sigma a_i a_i')^2] \lambda^2 \\ &+ [(\Sigma a_i^2)(\Sigma b_v^{'2}) + (\Sigma b_u^2)(\Sigma a_j^{'2}) - 2(\Sigma a_i a_i')(\Sigma b_u b_u')] \lambda \mu \\ &+ [(\Sigma b_u^2)(\Sigma b_v^{'2}) - (\Sigma b_u b_u')^2] \mu^2. \end{split}$$

The right hand side of the above equation is equal to

$$\begin{split} ([(\Sigma a_i^2)(\Sigma a_j'^2)]^{1/2} \lambda \, + \, & [(\Sigma b_u^2)(\Sigma b_v'^2)]^{1/2} \mu)^2 \\ & - \, ((\Sigma a_i a_i') \lambda \, + \, (\Sigma b_u b_u') \mu)^2 \\ & + \, ((\Sigma a_i^2)(\Sigma b_v'^2) \, + \, (\Sigma b_u^2)(\Sigma a_j'^2) \\ & - \, 2[(\Sigma a_i^2)(\Sigma a_j'^2)(\Sigma b_u^2)(\Sigma b_v'^2)]^{1/2}) \lambda \mu. \end{split}$$

Since $\gamma = \lambda \mu$ and $k\gamma = S$, we can assume that λ and μ are positive. Then, by well known inequalities we have $-g(R(X,Y)X,Y) \ge 0$ and thereby every sectional curvature is non-negative.

LEMMA 3.3. (P. Hartman [1]) Let M be an m-dimensional, connected and complete Riemannian manifold such that all 2-dimensional sections have non-negative curvatures. If $f: M \to E^{m+\delta}$, $\delta > 0$, is an isometric immersion such that the relative nullity function v is a positive constant, then fM is v-cylindrical.

By Lemmas 3.1 and 3.2, we can apply Lemma 3.3 for $\delta = 1$, $\nu = m - k$ and we get the Riemannian product $M = M^k \times E^{m-k}$, where M^k is a k-dimensional, connected and complete Riemannian manifold and E^{m-k} is an (m-k)-dimensional Euclidean space. Furthermore the restriction f' of f to

302 S. TANNO

 M^k is an isometric immersion of M^k into a (k+1)-dimensional Euclidean subspace E^{k+1} which is orthogonal to a Euclidean subspace E^{m-k} in E^{m+1} .

Let $\{e_h\}$ be an orthonormal basis at a point (x,y) of M, $x \in M^k$ and $y \in E^{m-k}$, such that the first e_1, \dots, e_k are tangent to M^k at x and e_{k+1}, \dots, e_m are tangent to E^{m-k} at y. Then the Ricci tensor R_1' of M^k and the Ricci tensor R_1 of M have the same value $R_1'(e_i, e_j) = R_1(e_i, e_j)$ for $1 \le i$, $j \le k$. On the other hand, we see that $R_1(e_i, e_j) = \gamma g(e_i, e_j)$ for $1 \le i$, $j \le k$. Hence, M^k is an Einstein space. By a theorem of (E. Cartan and) T. Y. Thomas [3], fM^k is a hypersphere in E^{k+1} . This completes the proofs of Theorems A and C.

If M is compact, then the type number k(x) at some point x is equal to m (cf. [2], p.57). So we see that $S=m\gamma$, namely, M is an Einstein space. Hence, fM is a hypersphere and we have Theorem B.

If the Ricci tensor is parallel, then the scalar curvature is constant. Therefore to prove Theorem D it suffices to notice the Ricci identity

$$(3.1) \quad (\nabla \nabla R_1)(Z,W;X,Y) - (\nabla \nabla R_1)(Z,W;Y,X) = (R(X,Y) \cdot R_1)(Z,W).$$

4. Remarks.

REMARK 1. If dim M = 2, then condition (**) is trivial.

In fact, we have $R_1 = ag$ for some differentiable function a on M. Then the Ricci identity (3.1) shows that condition (**) is satisfied always.

REMARK 2. If $\dim M = 3$, then condition (**) is equivalent to condition (*).

In fact, if dim M = 3, then we have

$$(4.1) R(X,Y) = R^{1}X \wedge Y + X \wedge R^{1}Y - (1/2)SX \wedge Y,$$

where S is the scalar curvature and R^1 is defined by $R_1(X,Y) = g(R^1X,Y)$. If we take an orthonormal basis $\{e_h\}$ such that $R^1e_h = \gamma_h e_h$, $1 \le h \le 2$, then condition (*) is equivalent to

$$(4.2) \qquad (\gamma_i - \gamma_j)(2(\gamma_i + \gamma_j) - S) = 0,$$

which is also equivalent to condition (**).

REFERENCES

- [1] P. HARTMAN, On isometric immersions in Euclidean space of manifolds with non-negative sectional curvatures, Trans. Amer. Math. Soc., 115(1965), 94-109.
- [2] K. NOMIZU, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., 20(1968), 46-59.
- [3] T.Y.THOMAS, Extract from a letter by E. Cartan concerning my note; On closed spaces of constant mean curvature, Amer. J. Math., 59(1937), 793-794.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN