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INVARIANT SUBMANIFOLDS IN A SASAKIAN MANIFOLD
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(Received May 15, 1969)

1. Introduction. The theory of invariant submanifolds in a contact
Riemannian manifold was initiated by M. Okumura [5].

In this note we wish to classify invariant submanifolds of codimension 2
which are ^-Einstein manifolds in a Sasakian manifold with constant φ-sectional
curvature.

To state the main theorem we prepare the followings. An odd dimensional
Euclidean space E2n+ι (resp. an odd dimensional sphere S2n+1) has the standard
Sasakian structure with constant φ-sectional curvature H=—3 (resp. H>— 3)
[9]. By CD11, L and (LyCDn) we denote the open unit ball in a complex
^-dimensional Euclidean space Cn, a real line and the product bundle LxCD71.
The (L, CD71) also has a Sasakian structre with constant φ-sectional curvature
H <C — 3 [9]. Let Qn~ι be an (n — l)-dimensional complex quadric in a complex
projective space Pn(C) of complex dimension n. By (Sy Q

n~ι) we denote a
circle bundle over Qn~ι. Then (cf. [1, p. 61]) since Q71'1 is a Kaehlerian
manifold of restricted type, (Sy Q

n~ι) defines a Sasakian structure [6]. Since
Qn~ι

 0 * Ξ ^ 3 ) is Einsteinian, (Sy Q
n~ι) is ^-Einsteinian [8]. Henceforth let M

be one of the E2n+ι, S2n+1 and (LyCDn) and B be Cn (if M=E2n+ι), P\C) (if
M=S2n+ί) and CD71 (if M=(L,CDn)). M is a principal Gι-bundle over B and

G1 is a circle or a line, π : M > B denotes the projection. We may prove
the following theorem.

THEOREM, i) S271-1 and (SyQ
n~ι) are the only connected complete

invariant submanifolds in S2n+ί which are η-Einsteinian.
ii) (L, CD71'1) (resp. E271'1) is the only connected complete invariant

submanίfold in (LyCDn) (resp. E2n+1) which is η-Einsteinian.

I wish to express my sincere gratitude to Professor S. Sasaki and Dr.
S. Tanno for their kind guidance.

2. Local results, (φ, ξy ηy g) denote the tensors of the Sasakian structure

of M. Let M be a connected contact manifold of dimension 2n—1 which is
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a submanifold of M, the (almost) contact structure of M being given by

(φo, ζθ9 Vo) An invariant immersion i : M > M(of (almost) contact manifolds)

is an immersion such that i-φ0 = φ i and iξo=ξ. i(M) is called an invariant

submanifold of M. All metric properties on M will refer to the metric g0

induced on M by the immersion i. The structure tensors g0, φ0, ξ0 and η0

may be respectively identified with the restrictions of the structure tensors

g, φ, ξ and η to i(M). It is known that i{M) is a Sasakian manifold and

a minimal submanifold in M (for instance [5]). Henceforth we assume that

M is connected and complete.

On B there is a Kaehlerian structure (J, Ω, A) which has following

properties [6]:

( 1 ) 7t φ — J it••,•

( 2 ) Jτ7 = τr*Ω,

( 3 ) # = τr*λ + «7 ® V .

As M is complete and clearly a regular contact manifold, there is a fibering

τr0: M > B = M/ξ. Henceforth X*, Y* and Z* over M will be horizontal

lifts of X, Y and Z over B respectively with respect to the connection η. If

we define a (1, 1)-tensor field 'J on ΰ by

( 4 ) 'JyX=π0φX*9

where X<Ξ Ty(B), 7ro(v)=y and define a metric tensor field hQ on B by

( 5 ) ho(X,Y)

then ('J, Ao) is a Kaehlerian structure on B and 5 is complete.

We define a mapping of B into 5 as follows :

( 6 ) f(x) = π > i(u) , τro(u) = x , xe B .

Then / is clearly well-defined and an immersion of B into B. Making use of

(1), (4) and (6), it is easily verified that / is an almost complex mapping.

Since B and B are complex manifolds and / is a differentiable mapping of B

into B such that

by the well-known fact,/ is a complex analytic mapping. Therefore we obtain



INVARIANT SUBMANIFOLDS 497

PROPOSITION 1. Let M2n"1 be an invaria?ιt sub manifold of M'2n+ι

which is complete and B the base space of the principal G1-bundle M2n+ι.

Then πM=B is a complex hyper surf ace of B which is complete.

Let W be a neighborhood of a point x of B on which we can choose a

unit vector field A normal to B. By [7, (2)] for a vector field X on B tangent

to B we have

( 7 ) V χ A = - ' < X ) + XX)JA,

where Όί{X) is tangent to B and V J denotes the covariant differentiation for

the Riemannian metric h on B. a is the second fundamental form of B.

When A* denotes the horizontal lift of A with respect to ηy by virtue

of (3), A* is a unit vector field normal to M (for the metric to g). For a

vector field U tangent to M we have

(8 ) VrA* = - a(U) + s(U)φA* ,

where ct(U) is tangent to M and Vr/ denotes the covariant differentiation for

the Riemannian metric on M a is the second fundamental form of M.

PROPOSITION 2. Under the same assumption as Proposition 1, the

relations

( 9 ) τt a— ct- 7t 9

(10) S + η - 7Γ* '*

/io/J good.

PROOF. By Lemma 1 and lemma 2 of [6, §35] we have

(11) [A*,£] = 0,

(12) i?([X* Y*]) - - 2<7(X* φY*),

(13) V* Y* = C VxY)* + \ <[X*9 Y*]) f

From (12) we have

(14) ?([X*,A*]) = 0.

From (7), (8), (13) and (14) we have
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(15) d(X*) - 'tf(X)* , <X*) = XX) * .

Making use of (11) and the fact that the torsion tensor is zero, we have

(16) <ξ) = 09 s(ξ)=-l.

By (15) and (16), for any vector field U tangent to M it follows that

(17) 7t a(U) = ra - π(U), (s + η)(U) = ** fs(U).

COROLLARY 1. Under the same assumption as Proposition 1, M is
totally geodesic if and only if B is totally geodesic.

PROOF. By (9) and (16), Corollary 1 is proved.

The following Theorem is due to Tanno [9].

THEOREM A. In the fibering n : M > B of a regular K-contact

Riemannian manifold M, M is an ηΈinstein manifold if and only if B is
an Einstein almost Kaehlerian manifold.

The following Theorem is due to Chern-Nomizu-Smyth [2], [4].

THEOREM B. Let B be a complex hyperswface in a space B of
constant holomorphic sectional curvature K. If B is co?nplete and
Einsteiniariy then either B is totally geodesic in B or B is holomorphic ally
isometric to the complex quadric Qn~ι in Pn(C), the latter case arising
only when K > 0.

PROPOSITION 3. Let i: M *• M be an invariantly immersed sub-
manifold of codimension 2 such that the induced metric is complete
and ψEinsteinian. Then, if M=S2n+1, M is totally geodesic or nM is
holomorphically isometric to Qn\ If M = E2n+1 or (L,CDn), M is totally
geodesic.

PROOF. Proposition 3 follows immediately from Proposition 1, Corollary
1, Theorem A and Theorem B.

3. The proof of Theorem. When M is totally geodesic in M, M having
a property of a free mobility [9], M is unique up to an automorphism of M.
With a view to obtain Theorem we need to prove only the following
Proposition.
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PROPOSITION 4. Let M be a non-totally geodesic connected invariant

submanifold of codimension 2 in S2n+ι such that the induced metric is

complete and η-Einsteinian. Then there is an automorphism θ of S2n+ι

such that Ί)M=(S,Qn-1).

PROOF. By Proposition 3, B = πM is holomorphically isometric to Qn~ι.

By Theorem 1 of [4] there is a holomorphic isometry of Pn(C) such that

ΘB = Q71'1. Let xe B and θx=y and let r(t), 0 ^ t ^ 1, be a curve joining x

and y. Then we have a continuous family of J-basis (τ(ί), £*(£), Jet(t))y

z = l, , n, on r{t) such that e t(l) = 0^(^(0)). Therefore θ is contained in

the connected component of the automorphism group of 1^(0). Hence there

are finite numbers of infinitesimal automorphisms Xu X2, , Xs of P^C)

such that θ = exptsXs expίiXχ. By Lemma 5.1 of [9] there are infinitesimal

automorphisms Yk (k = l, ,s) of S2n+1 such that

(18) τtYk = Xk,

(19) τr(exp tkYk)(u) = exp tkXk(πu) , ue M.

Putting θ'= e x p ί X e x p ί ^ , we have 7tΊJM=Qn-\ Since ~ΘM and (5, Qn~l)

have the same fibre, we have ΘM= (*S, Q71"1)- This completes the proof of

Proposition 4.

The Theorem follows immediately from Proposition 4.

REMARK. This proof is due to S. Tanno. Our original one is slightly

different and more complicated.

For an invariant submanifold of S2n+1, we have an improved result.

COROLLARY 2. S211'1 and (5, Qn~ι) are the only connected complete

invariant submanifolds in S2n+ι which have constant scalar curvature.

PROOF. πM is a complex hypersurface in P\C) and also constant scalar

curvature [8]. By [3] πM is an Einstein space. It follows that M is an

^-Einstein space in S2n+1.
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