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Introduction. R. Bott [2] applies Morse theory to compute the betti
numbers of the complex flag manifold. The Morse inequalities become equalities
simply because the indices of critical point of the distance function are even.
(This shows that the complex flag manifold has no torsion.) This method is
applied to several homogeneous spaces and except in three cases the Morse
inequalities become equalities for the same reason. For these three we use
some results on P. A. Smith theory, in particular results of E. E. Floyd [1] to
show that Morse inequalities are equalities. This method is due to T. T. Frankel
[5]. The results on betti numbers obtained here are contained in Bott and
Samelson [3, Theorem VI]. But they obtain these results as a consequence of
a theorem on "loop spaces". We apply Morse theory directly to the spaces
themselves using the ideas of Bott and Samelson. It should be pointed out that
we obtain a cell-decomposition for these homogeneous spaces and as a corollary
we obtain the betti numbers. The basic results of Morse theory can be found
in [2 or 6].

Description of the spaces. Let K be a compact Lie group acting on
differentiable manifold M, i.e., there is a differentiate map π:KxM-+M
such that (1) π(e, x) = x, where e is the identity in K and (2) τt(k, π(k', x))
= π(kk\ x) for k, k' £ K and x^M. Let Kx be the stability group of x € M,
i.e., Kx= {k^K\n{k, x) = x}. Then the K-orbit of x is a regular submanifold
of M homeomorphic to K/Kx.

Let G be a compact connected Lie group. We will take G to be a classical
group. Let g be the Lie algebra of G, and g will be considered to be the tangent
space at e z G. A maximal abelian subgroup of G is called a maximal torus
(denoted by T) and the tangent space to T at e will be denoted by t. It is
well-known that t is abelian, namely [t, t] = 0 where [ , ], denoted the usual
Lie product, i.e., [X,Y] = XY-YX. A point Pz t will be called a general
point if QP= [Xz g|[X, P] = 0} = t.

*) This work was partially supported by NSF Grant GP-5874.
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The group G acts on its Lie algebra Q by adjoint action. The following
spaces arise as orbits for this action.

)=W(ni'Uinjx - - xU(nk)
=W(ni'''"' n^9 ni + " ' + n* = n (Complex flag mani-

fold). The Lie algebra of U(n) (denoted n(n)) consists of nXn skew-hermitian
matrices. Let Inu...tnk be a nXn diagonal matrix with the same first nγ entries
(say all equal to 1), the same second n2 entries (all 2), , the same last nk

entries (all k). Consider X=ilnu...tnt€ u(n). The orbit of X under the action of
Ad U(ri) on \x(n) is W(nu 9nk), because the stability group of X is U{n^)X
x U(nk). Clearly, there is no unique choice of X. For example if we take 2X
we get an orbit homeomorphic to W(nl9 , nk).

The algebra n(n) has a natural Riemannian structure defined by (X, Y)
= — Rl tr X°Y, X, Yeu(n). Consequently \x(n) can be thought of as an
Euclidean space in which the orbit is imbedded. For this reason all our orbits
will be considered as imbedded in a suitable Euclidean space.

If P is a general point (corresponding to X) with nγ — n2 = = nk = 1
then the corresponding orbit is an orbit of maximal dimension which is U(τi)/T.

In this case t consists of all purely imaginary diagonal matrices and T=eίθι

x x eί

—

matrices. Consider Xz §o(2w) where X =

AdSO(2n) on $o(2n) the orbit of X is

The algebra $o(n) consists of all nx n skew-symmetric

For the action of

for it is easy to

X U(nk). Here we consider

U(ή) as imbedded in SO(2ή) under the correspondence A + Bi I

verify that the stability group of X is U(n^)X

I

Again for nx = n2 = = nk = 1 we get an orbit of maximal dimension. This

k . . SO(2n) .
orbit is —ψ— 1 , where

^ 0 s i n ^ 0

•
0 cos θn 0 sin θn

— ύnθι 0 cos 0i 0

•
0 —sin θn 0 cos θn

The algebra t consists of matrices having non-zero entries in (/, n-\-j)th place
and (n+jj)th place j = 1, , n.
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. Consider the action of AdSO(2n + l) on §o(2rc-
U(μι)x — x U(nk)xl

Let

nXn nXn nxl

0 Inu...,nk 0

x=[ -A....... 0
\ 0 0

The orbit of A is
x x U(nk)x 1

— - ' ττ,—v. The group Spin) will be thought of as imbedded in

U(2n) u n d e r t h e c o r r e s p o n d e n c e A + Bj <—> I _ _ _ - ) . W e c o n s i d e r t h e
\ — B A)

quaternions as a 2-dimensional vector space over the complex numbers with

basis 1, j. The algebra Sp(n) consists of all matrices of the form

Zλ ZΛ Zλ: n X n skew-hermitian

— Z2 Zγ) Z2: n x n complex symmetric.

Let X= ( nu'"'nk \ ζ. gp(w). Then the orbit of X under the action

\ 0 -Hnu...,J,J
of AdSp(n) on §p(w) is jγ,—r— jy—\ The algebra t is obtained by taking

Z2 = 0, and Zx to be diagonal.

In order to describe the other orbits we make the following well-known

definitions.

Definition. The pair (G, K) is called a symmetric pair if 1) G is compact

connected Lie group and 2) K is the full fixed set of an involution σ

(automorphism of order 2) on G.

The Lie algebra Q splits into a natural direct sum ϊ = [X £ g | s(X) = X}

and p = {X £ g I s(X) = — X} where s is the endomorphism induced on g by σ.

A maximal subalgebra t of p is called a Cartan subalgebra. It is abelian and

the dimension of t is the rank of (G, K). If t is such an algebra, A e t is

called a general point if p^ = {Zs p|[Z, A] = 0} = t [4, p. 1019]. As before it

can be verified that orbits of general point are orbits of maximal dimension.

We choose and fix t for each case. The two cases of handling classical groups

and symmetric spaces can be dispensed with if we consider Lie groups as

symmetric spaces.
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It is known that K acts on p by conjugation. The following homogeneous
spaces arise as orbits for the action of AdK on p. As before the orbits will
be considered to be imbedded in a suitable Euclidean space (namely p).

r τ r ~ = G(n * * Λ ) n + " + " = " ( R e a l fla£ manifold).
^ i J yfc)

Consider the involution σ on £/(w) defined by σ(X) = X, XzU(n). (Bar
means complex conjugation.) The full fixed set is O(n), and p consists of all
nXn purely imaginary symmetric matrices. Let X= ilnu...t7lk^ p. The orbit of
X under the action of AdO(n) is a real flag manifold. A maximal subalgebra
of p consists of all pure imaginary diagonal matrices.

i m b e d d e d i n U(2n) b y
0(nOx xO(#ιΛ)"

A B\ _
_ __ 1 . Let σ be an involution on Sp(n) defined by cr(X) = X. The

\-B Aj

fixed set consists of all matrices of the form j j which is precisely U(n)

Zλ . )
I Z Z l ii t i tices >

i/Zi Zλ .
G SO(2n). The space p = j I I Zl9 Z2 purely imaginary symmetric matrices >

I \Z% — ZJ )
and t is obtained by taking Z2 = 0 and Zx to be diagonal. Let X— I nu >n* I

\ 0 -ilnu-.nj
€ p. The orbit of X under the action of AdU(n) is 7̂ 7—ς ^—-—7^7—r.

y O(/i0 X X O(Λ Λ )

— - — (The quaternionic flag manifold). Consider the
xSp(nk)

involution σ on U(2n) defined by σ(X) — JnXJ~1, Jn = j n

\ w /

identity matrix. The fixed set is I __ — J, i. e., Sp(n). The space
\ — B A./

(Zι ZΛ Zx skew-hermitian
— f, and the diagonal matrices in p
Z2 — ZJ Z2 complex, skew-symmetricj

form t. Consider X = ' e p. The orbit of X under AdSp(ή) is
\ 0 Hnu-'.nJ

the quaternionic flag manifold.

S~7—Λx .. . x S (—Y ' ^ o n s ^ e r t n e involution σ on SO(2n) defined by

σ(X) = JnXJn\ The fixed set is U(n). The space p = \( ) A, B skew-
[\B -A
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symmetric matrices [ . Let X =

o o o init...>n\
o o -/,„....»• o
0 Jni.....nt 0 0

V-/»,.....», o o o >
of the pair (SO(4n), U(2n)). The orbit of X under the action of AάU(2ή) on p is

U(2ή)

Here Sp(ri) is considered imbedded in SO(4n) under the correspondence

A B C Ds

-B A D -C
-C -D A B

\-D C -B Aί

REMARK. For special values of k, we get the classical structures of

irreducible Riemannian symmetric spaces and spaces G/T, where G is a

classical group and T is a maximal torus. Also we get G/T where

/Z. 0\

Γ =

I o ± 1 0

for G = O(n) and U(n).

Morse theory. Let M" be a differentiate manifold of dimension n

differentiably imbedded in a real Euclidean space Rn+lc. Let (xu , xn+k) denote

the co-ordinate system in Rn+k. Let the Morse function on Mn be the square

of the distance of the points on Mn from a fixed point Pz Rn+k — Mn. Let us

denote this function by LP(x), x^Mn.

With the usual notations LP(x) = (x, χ\ taking P as origin for Rn+k.

Taking differentials, dLp(x) = 2(dx9 x). Thus dLP(x) = 0 if and only if dx is

perpendicular to x. Hence Q is critical point for LP if and only if PQ is

normal to M1 at Q.

Consider the Hessian quadratic form

x, dx).d2LP(x) = 2(x,

At a critical point Q, x= \x\N9 N unit normal vector. Hence d2LP(x)/2

= (dx, dx) + (\x\N9 d2x). The first term is called the first fundamental

quadratic form for Mn and the second term is called the second fundamental

quadratic form for the normal direction N.
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We choose local co-ordinates near Q as follows : Q = (0, , 0). Let
X\, *" > Xn be the local co-ordinates for Mn near 0.

Then in Rn+k, Mn is given by gL(xu , xn) = ^n+«> ^ — 1? *" * > >̂ where

<7; are differentiable. Since PQ is perpendicular to Mn we can take P = (0, , 0,

/>!>•••> />*)• L e t */> = (0, , 0, ί/>χ, , */>*)• Let H L J O ) = Hessian of Ltp

at 0. By a direct computation HLtp(0) — I— J~] ί j ^ ~—^— (0), where I is nXn
OJCi uOCj

identity matrix.
By well-known results on quadratic forms, it is possible to find a basis for

(
fc O2 \

- Σ tpι ^ (0) ) ί s reduced
to diagonal form. With respect to this basis

0

HLtp(O)= " "

,0 tan

It is easy to see that Q is non-degenerate critical point if and only if
t ^ —lJaH for all i. Thus for only finitely many values of t> Q is degenerate.
The values an, ,ann are called the principal curvatures of M" at Q

corresponding to the normal N. The reciprocals of α π , ,flnn are called the
principal radii of curvatures. Of course these need not be all distinct. Suppose

t\y — ,tm are the distinct values, t1 = l/an, — , tm = l/amm then tλN, — , tmN
are called the centers of principal curvature. The set of all centers of principal
curvatures for all normals is called the focal set. Intuitively, a focal point is
where nearly normals meet. A point which is not a focal point is called
regular point. The focal set has "measure" zero.

As t increases from 0 to 1 we get the segment QP. If t = 0 then HLtp(0)
is positive definite and the index of HLtp(0) is zero. Also the index of HLtp(0)
is an increasing function of t. The entries of HLtp{0) change sign at — tΛp, •,
— tmp, i.e., at centers of principal curvature. The number of changes in sign
(from plus to minus) at ttp is (HLtiP(0)) = dimension of nullity of HLtiP(0), i
= 1, , m. Hence

THEOREM [2,p.23]. Let Mn be a differentiate manifold, differentiably
imbedded in Rn+k. Let Pz Rn+k—Mn and Lp(x) = square of the distance
from x^M to P. Let Q be a critical point (degenerate or not) of LP{x).

Then the index of the Hessian HLP(Q) = ^ (HL^^p+to)'
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Since the focal set has measure zero, for almost all points P^Rn+k the
distance function LP has non-degenerate critical points.

Critical points and their indices. Here we closely follow the method
due to Bott [2, 5]. The proofs of the Lemmas are reproduced only for the sake
of completeness. The statements and proofs are also in [4, Chapter IV].

LEMMA la. For the action of AάG on g, the tangent space to Mx

{the orbit of X) is Tx = {[X, Y]\Y£ 9} = adX g. The transversal space
Nx = {ZZQ\[X, Z] = 0} = Qx {centralizer of X in g).

PROOF. The first statement is a consequence of d/dt(Adetγ X) | ί = 0 = [Y, X]
for Yeg. The second statement follows from ([X, Y], Z)=-(Y, [X, Z]),
where ( , ) is the Riemannian metric on g.

LEMMA lb. For the action of AdK on p, Tx = ad X(ί), Nx= {Zz p\[X, Z]
= 0}= px.

PROOF. Same as above. For the second part we use the fact [p, p] c ϊ.

The following three lemmas are true for both actions.

LEMMA 2. If X is a general point Nx= t.
Follows from the definition of general point.

LEMMA 3. If a line is perpendicular to an orbit, then it is perpendicular
to all orbits which it intersects.

This lemma is a consequence of a more general statement [4, p. 967, Prop.
2.2].

PROOF. Let B+At be perpendicular to MB at B. By Lemma 1 ([X, B],A)
= 0 all X ζ Rm( = 8 or p as the case may be). Since ([X, A], A) = (X, [A, A])
= 0 all X€ Rm, ([X, B + tA], A) = ([X, B], A) + ί([X, A], A) = 0 all Xe Rm.

To apply Morse theory, we have to choose a point P for the function LΓ.,
This point is taken to be a general point.

LEMMA 4. Let Mx be any orbit. Then the critical points of the function
LP in Mx are Mf)t. In particular these points do not depend on P.

PROOF. Let A z Mx be critical for LP. Then by Morse theory PA is
perpendicular to Mx at A. By previous lemma PA is perpendicular to MP at
P. By Lemma 2, PA is in t, since P is a general point. Hence A £ t. Conversely,
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if A <Ξ Mx Π t, then [A, t] = 0 and PA is in t. Also, by Lemma 2, PA is

perpendicular to Mx at A.

Finally since Mx is compact the function LP has critical points. Therefore

all orbits intersect t. In order for the critical points to be non-degenerate, P

must not be a focal point. The above lemma tells us that such a choice of P

does not affect the critical set of Mx.

In order to compute the indices of the critical points we give the following

definitions found in [4]. (The full details may be found in this paper.)

Let a compact Lie group K act on a differentiate manifold M from left.

Let X £ ΐ (the Lie algebra of K). Let h : i? —> K be the corresponding

1-parameter subgroup with A(0) = X. For x <= M, let hx : R -» M be the curve

defined by AX(Λ) = h(μ) x for all a e R. The assignment x —> /^(O) defines a

vector-field X on M. This vector-field is called the infinitesimal K-motion

corresponding to X.

A geodesic g of M is called K-transversal if for each tzR the tangent

vector g{t) is orthogonal to the K-oτh\t of the point g(t). By [4, Prop. 2.2, p.967]

transversality holds, provided it holds at one point.

A geodesic variation Va of a geodesic g in M is a C°°-map V : Rxl—>M,

where / is an open interval containing 0, such that (1) for each CC € / , the map
Va:R->M defined by Va(t) = V(t9a) is a geodesic and (2) Vo = g. The

vector-field along g defined by η(t)= σ v (t, 0) is called the Jacobi field (J-field)
dec

determined by the geodesic variation V. The J-fields along a geodesic g will be

denoted by Jg. For any t0 € i?, let Aα(ί0) = ί7? € ΛI 9(*o) = 0}.

Suppose g is a K-transversal geodesic. A J-field is called transversal if it
is derived from a geodesic variation Va of g in which all Va are transversal
geodesies. By [4, Prop. 6. 6, p. 974] if g is transversal then the restriction of
any infinitesimal X-motion to g is a transversal J-field. Let g be a transversal
geodesic and let t0 € i?. Then Jj(ί0) = ί7? € ΛI v(t0) is tangent to the K-orbit of

<7(α.
The action of K on M is varίationally complete if every transversal J-field

η which is tangent to the X-orbits for two different points on g (i. e., η e Jg(t0)
Π J'(ti)y t0 ^ ti) is induced by K (i. e., is the restriction to g of an infinitesimal
X-motion).

Variational completeness was introduced by Bott [3] and Bott showed that
the action of AdG on Q is variationally complete. Bott and Samelson generalized
this result and showed that the action of AdK on p is variationally complete,
[4, p. 986]. The proof is quite easy because in Q or p the geodesies are straight
lines.

Bott also proved the following result [3, Prop. 6.1]. Let the action of K
on M be variationally complete. Let N be an orbit of any point of M under
K. Let P be a regular point of M—N on an orbit of maximal dimension. (The
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regular points in M— N are "plentiful".) Let Q £ N be a critical point of the
function LP on Ni Then as a non-degenerate critical point Q has index
= Σ(dim Mp— dim MR) = Σ(dim KR — dim i£j>), where XΛ = stability group of i£,
for all focal points R € PQ. (Here M γ means the orbit of X under i£). Hence
to find the index of Q we have only to find where PQ intersects orbit of
lower dimension.

In our cases PQ lies in a torus t and hence the points R can be found
easily. The index of the segment PQ is the same as "defect function" of PQ
as defined by Bott and Samelson.

Applications of fixed point theory. The (weak) Morse inequalities are
bi(M)^ number of critical points of index i. To show that these Morse

inequalities become equalities for the cases of real flag manifold, γγ,—r r\(—\

and 7̂ —7—v — c, ,—ς we use Smith theory of fixed points. We use the
Spinjx X Sp{nk)

following two theorems which are special cases of results of E. E. Floyd. More
general results and details are found in [1],

THEOREM A. If Z2 acts on a compact manifold, if F is the fixed set

UF; Zt) ̂  Σ W ; Z2).

By repeated application of this theorem we get that if Γ = Z2 X x Z2

(n copies) acts on M and if F is the full fixed set then JZ b^F Z2) ̂  ^
i

Z2). For the adjoint action of Γ on the real flag manifold and: —
Ό(«,)χ χO(«t)'

the fixed sets are precisely the intersection of these orbits with t (i. e., the
critical points) because Γ commutes with t. Hence Morse inequalities combined
with Floyd inequalities give equalities for these two cases.

tor the case -̂ —7—N — , QU—N we use

THEOREM B. If a toral group acts on a compact manifold and if F
is the fixed set then

where K — R or Zp, p prime.
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Consider the torus

I cosθ1

T =

cos#n

— sinfl,,

U(2n)
acting on N = w—7—r—-— ^ ,—r by adjoint action. The fixed set F is precisely

the set of critical points (Nd t) because T and t commute.
Hence in this case we get Morse inequalities to be equalities. This space

has no torsion for according to the above theorem we can take the coefficients
to be K=ZP or R.

In the other cases the (strong) Morse inequalities become equalities because
the indices of the critical points are even [6, p. 31].

Lastly we list the number of critical points obtained in each case. Let

r =
n\

\ 'hl -nk\

The space

0{n)

Number of critical points

xθ(«t)

U(n)
ί/(»,)x x£/(«,)

Sp(n)
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SO(2ή)
2n~ιr

2nr

2nr

V&n> 2 V

x Y>U(nk)

SO(2n + l)
X x U(nk)xl

U(n)
O(nλ) x x O(nk)

Sp(n)

SpζnO x x Sp{nk)

ADDED IN THE PROOF.

The spaces studied in this paper have also been considered by Kobayashi
[Tόhoku Math. J. 19(1967), 63-70] and Takeuchi and Kobayashi [J. Differential
Geometry, 2(1968), 203-215]. In the latter paper it is shown that the imbeddings
are "minimal". The Morse function used by Takeuchi and Kobayashi is
essentially the same as our length function.
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