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1. Introduction. Every orientable 6-dimensional immersed submanifold
M of R8 possesses an almost complex structure [7]. In fact R* (as a vector
space) possesses two nonisomorphic 3-fold vector cross products each of these
induces an almost complex structure on M. In general the two almost complex
structures are distinct, and the manifolds thus obtained are not Kahlerian.
However, the almost complex structures do have some properties that are similar
to, but more complicated than, those of Kahler manifolds.

In this paper we investigate the topology and differential geometry of three
of the most important types of these almost Hermitian manifolds, namely those
which are nearly Kahlerian, Hermitian, and quasi-Kahlerian. We assume
throughout this paper, unless stated otherwise, that M is an orientable
6-dimensional submanifold of Rs. The almost complex structure is defined by
means of a 3-fold vector cross product [2], [7], and the induced metric from R8.

In §2 we discuss nearly Kahler manifolds. The canonical example of a
non-Kahler nearly Kahler manifold is S6. However, according to [7], the nearly
Kahler structure of SQ is not unique. Nonetheless, it seems plausible that every
compact nearly Kahler manifold M obtained by means of a 3-fold vector cross
product is isometric to SQ. We show that this is the case if M is Einstein and
has positive sectional curvature.

If the almost complex structure of M is integrable, so that M is Hermitian,
then M is a minimal variety of Rs [7]. This implies that M is noncompact.
We give more detailed information about the homotopy type of M in § 3.
Furthermore we show that the curvature operator of M satisfies certain identities
which are satisfied by Kahler manifolds, but not by all Hermitian manifolds.

In § 4 we investigate principal distributions defined in [5] on quasi-Kahler
manifolds and generalize some results of [7].

2. Nearly Kahler manifolds. Let M be a C°° almost Hermitian manifold
with metric tensor < , > , Riemannian connection V, and almost complex structure
J. Denote by $(M) the real valued C°° functions on M and by X(M) the C°°
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vector fields of M. Then M is said to be a nearly Kdhler manifold provided
VΛ«/XX) = 0 for all X <Ξ 3E(M).

The following notions will also be useful. Let M be any almost Hermitian
manifold, and for m € M denote by Mm the tangent space to M at m. Then M
is said to be of constant type at m £ M provided that for all x € Mm we have
IIVxG/X3θl| = II VxG/)(*)|| whenever <:r,;y> - <Jx9y> = <x,z> = <Jx,z>=0
and \\y \\ — \\ z\\. If this holds for all πi^M we say that M has pointwise
constant type. If M has pointwise constant type and for X, Y e X(M) with
<X,Γ> = < JX,Y> =0 the function || VxC-ΠOOII is constant whenever
1|X|| = ||Y|| = 1, then we say that M has global constant type.

PROPOSITION 2.1. Let M be a nearly Kάhler manifold. Then M has
pointwise constant type if and only if there exists oί £ %(M) such that

for all W, X £ 3ί(M). Furthermore M has global constant type if and only
if this equation holds with a constant function a.

The proof of proposition 2.1 is easy, and so we omit it. We agree to call
a the constant type of M.

Now let M be a 6-dimensinal orientable immersed submanifold of Rs. Denote
by P the 3-fold vector cross product on Λ8; then P determines an almost complex
structure on M by the formula

JA = P(N,JN,A)

for A £ 3£(M). Here N and JJVare unit normal vector fields with <N, JN> = 0
defined locally on M (see [7]).

THEOREM 2. 2. If M is nearly Kdhlerian, then M has pointwise constant
type.

PROOF. Let T denote the configuration tensor of M in Rs [4J. According
to [7, theorem 6. 13] there exists a 1-form β defined on the normal bundle of M
such that

(1) TAJN ± JTAN = β(JN)A ± β(N)JA

for all A € 3£(JW). (Here + or — is determined by the isomorphism class of the
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3- fold vector cross product P.) Furthermore by [7, theorem 6. 41 we have

< Vx( J)(β), C > = < P(ΛΓ, 7VJV ± JΊ\N, B), C >

for A, B, C € £(M). Therefore

VXJ)(β) = PW 7VΛ/ ± JTJV, β) + < TΛJN ± JTAN, JB > JN.

Hence

*=\\P(N, TAJN ± JTAN, B)f-< TAJN ± JTAN, JB > 2

= \\TAJN± JTAN\\*\\B\\* - < TAJN± JTAN,B>*

- < TAJN± JTAN, JB>2

= \\β(JN)A ± β(N)JA\\* - < β(JN)A ± β(N)JA,

- < β(JN}A ± β(N}JA, JB>*

= {β(JNγ + β(κγ] {|| A ιi 2 - < A, B >2 - <JA,

Hence the theorem follows.

We remark that the homogeneous space F^/Az x A2 has a nearly Kahler
structure which is not of constant type.

THEOREM 2. 3. Suppose the hypotheses of theorem 2. 2 hold. In order
that M have global constant type, it is necessary and sufficient that the
mean curvature vector of M in R& have constant length.

PROOF. The mean curvature of M in J?8 is defined by H=ΣΪ=ιTKiEi, where
[Eί9 , EG} is any local orthonormal frame field on M. It is not hard to see
that

< TAA 4- TJAJA, N> = - 2/9(ΛOilA||2 for A € X(M),

and so <H,N> = - 6β(N). Hence ||H||2 - 36\\β\\2. Now theorem 2.3
follows from theorem 2. 2.

We now give sufficient conditions that a nearly Kahler manifold be isometric
to a sphere.
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THEOREM 2. 4. Let M be a ^-dimensional orientable immersed submani-
fold of Λ8, and assume that M has the induced metric, and the almost
complex structure derived from a 3-fold vector cross product on R*. In
addition assume that M is a compact nearly Kάhler Einstein manifold -with
positive sectional curvature. Then M is isometric to a ^-dimensional sphere.

PROOF. According to Theorem 2. 2 M has pointwise constant type. The
theorem is now a consequence of [8, Theorem 8.1].

3. Hermitian manifolds. In this section we assume that the almost
complex structure on M denned by a 3-fold vector cross product on JR8 is
integrable. We shall need the following lemma, which is proved in [7].

LEMMA 3.1 For all X, Y e 3E(M) we have

TXY + TJXJY = 0.

As an immediate consequence, we have the following theorem.

THEOREM 3. 2. M has the homotopy type of a CW-complex with no
cells of dimension greater than 3.

PROOF. Lemma 3. 1 implies that for each m^M and each z z Mm, at
least 3 of the eigenvalues of x—>Txz are nonpositive. Hence by [6, Lemma 3. 2],
the theorem follows.

Next we prove that the curvature operator RXY(X, Y) £ 3E(Λf) satisfies certian
identities. Also let k, R, K and B denote the Ricci curvature, Ricci scalar
curvature, sectional curvature, and holomorphic bisectional curvature of M. The
last is defined by BXY\\X\\*\\Y\\* = <RXJXY,JY > for X, Y € 3E(M), whenever
X and Y are non zero. (See [3], [8]).

THEOREM 3. 3. We have

( i ) Bxγ = Kxγ + KXJY = - \\TXY\\* - l |7VY||2:gO,

for X, Y € Ϊ(M) whenever \\X\\ = || Y|l = 1, < X, Y > = 0 :

(ii) <RXYX, Y> = <RXYJX, JY> - <RXJYJX, Y> - <RXJYX, JY> ,

for X, Y €
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(iϋ) < Rn χY, Z> = < RJvrJXJY, JZ > ,

for W, X,Y,Z€

(iv) MX, X) = ΣBX ,, = - £ ί II TxEt \Γ + \\ TxJEt I I 2} ί£ 0 ,

for X € s£(M) with \\X\\ = 1, where [El9 E2, E3, JEί9 JE2, JE3} is any local
frame field on M:

1 Γ(vi) ^ •-, ̂  Bxxdx = R,

where Sn denotes the unit sphere in M,n for any πi £ M, dx is the canonical
measure on Sm, and V(S5) denotes the volume of the unit 5- dimensional sphere.

PROOF. The Gauss equation [4] states that <RWXY,Z> = <TWY,TXZ>

- <TWZ, TXY> for W, X, Y, Z € 3E(M). In particular for X, Y

<RπX,Y> = <TXX,TYY>-\\TXY\\*.

<RXJYX,JY> = <TXX,TJYJY> - \\TXJY\\*

< RXJXY,JY > = < TXY, TJXJY >-< TXJY, TJXY

Now (i) follows from Lemma 3. 1 and these equations. Similar applications of
Lemma 3. 1 and the Gauss equation yield (ii). Then (iii), (iv), and (v) follow
from (i). For (vi) we note that Berger [1] has proved exactly the same formula
for Kahler manifolds. An examination of Berger's proof shows that (i) is all
that is needed to prove (vi) for the case we are considering.

As an immediate consequence of Theorem 3. 3 and [7] we obtian the
following result.

THEOREM 3. 4. In order that the Hermitian manifold M be Kdhlerian
and totally geodesic, it is necessary and sufficient that any of the following
vanish on M : the sectional curvature, holomorphic sectional curvature,
holomorphic bisectional curvature, Ricci curvature, Ricci scalar curvature.

4. Quasi-Kahler manifolds. Recall that an almost Hermitian manifold

M is quasi-Kdhlerian provided V x(J}(Y) + Vjχ(J)(JY) = 0 for all X,Y
(see [6]), A nearly Kahler manifold is quasi- Kahlerian [4],
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We shall also need some results of [5] . Let M be a Riemannian submanifold
of a Riemannian manifold M, and let M.m denote the tangent space at m £ M.
We call a subspace C(m) c Mm a principal subspace if dim C(m)^±l and there
exists a 1-form Ύ on the normal bundle of M such that Txz — Ί(z)x for

x € C(m\ z £ Mm M is said to be principally reducible provided each tangent
space Mm is the direct sum of principal subspaces. The distribution m—*C(ni)

is said to be parallel provided VxC/XZ) = 0 for X € 3£(M), Z € Ϊ(M), where

V denotes the Riemannian connection of M.

No^v we resume our consideration of 6-dimensional orientable submanifolds
of R\

THEOREM 4. 1. Suppose Mis quasi-Kahlerian and principally reducible.
Then

( i ) each principal subspace is closed under J
( ii ) TAB = TJAJB for all A, B z 3E(M)

(iii) <RΛBC, D> = <RJAJBJC, JD> for all A, B, C, D € 3E(M)
(iv) BΛB\\A\\*\\B\[2 = |1TJ3||2 + \\TAJB\\*^0 whenever A, B € 3E(M) are

(v ) V,ι(</)(A) = 0 z/ A always lies in a principal subspace.

PROOF. According to [7] , M is quasi-Kahlerian if and only if

( 3 ) J(TAA - TJAJA) ± 2TAJA = 0

for all A € 36(M). Now assume that A is in a principal distribution m— >C(m).
Then there exists a 1-form 7 on the normal bundle of M such that for N £ ^(M)-1-,

( 4 ) TAN=V(N)Λ.

From ( 4 ) it follows easily that TAJA = 0. Thus, since M is principally reducible,
(ii) follows from (3). Furthermore (i) is a conequence of (ii). Also (iii) and
(iv) follow from (ii) and the Gauss equation [4]. Finally (v) is an easy
calculation from (2).

Next we combine Theorem 4. 1 with a result of [5] . This generalizes a

result of [7].

THEOREM 4. 2 Suppose M is quasi-Kahlerian and principally reducible.

Also, assume that each principal distribution is parallel and has the same
dimension on all of M. Then each principal distribution is integrable and

there are at most three of them. Furthermore each of the integral manifolds

is a totally geodesic quasi-Kάhler submanifold of M,
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PROOF. That the principal distributions are integrable and totally geodesic
follows from [5]. The rest is a consequence of Theorem 4.1.

Finally we state some further results. The proofs are similar to those of
Theorems 4. 1 and 4. 2.

THEOREM 4.3. (i) Assume that M is principally reducible. Then M is
Kάhlerian if and only if M is totally geodesic.

(ii) Suppose M is nearly Kάhlerian and principally reducible. Then
there is exactly one principal distribution. This distribution is parallel
if and only if (a) the mean curvature vector of M has constant length, or
(b) M has global constant type.
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