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Introduction. Some results concerning outer automorphisms of continuous
factors have been known for some time. Notably for the hyperfinite factor Dixmier
[1], Suzuki [2], Saito [3] and Blattner [4] showed that it has a large set of
outer automorphisms. Dealing with the hyperfinite factor has the advantage
that there are many distinct realizations for it, in each of which a particular
class of groups is shown to be representable as groups of outer automorphisms.
For non-hyper finite continuous factors far fewer results are known. In fact
the example by Kadison [5,6] seems to be the only one in the published
literature. A more systematic attempt to study automorphisms of W^'-algebras
has been made by I. M. Singer [7]. He considered automorphisms of certain
finite W^-algebras, which are crossed products of a commutative W^-algebra
and a countable discrete group. In certain respects the present study of auto-
morphisms of crossed products can be considered a sequel to Singer's paper.
In fact in Section 2 we present generalizations of some of his results. Following
this we give a complete description of the group of automorphisms of the
crossed product of a factor SI and a countable discrete group G, which leave SI
invariant. These results suggest to study automorphisms of crossed product
(31, G) which are combinations of automorphisms of 81 and G. Criteria are
given in Section 4 for such automorphisms to be outer. The remainder is
devoted to the study of particular examples. Among other results we show
that outer automorphisms of groups extend under very general conditions to
outer automorphisms of the corresponding left rings. In Section 6 we study
factors of type II and III, which have been introduced by von Neumann [8].
All these examples possess outer automorphisms. We further consider
automorphisms of certain finite factors, which apparently have not been studied
before. Our results lend further credibility to the hypothesis that continuous
factors possess outer automorphisms in contradistinction to factors of type I.

Part of this paper is drawn from the thesis of the author submitted to
Indiana University.

*) The research in this paper was partially supported by the U. S. Army Research Office,
Durham and the N. S. F. Grant GF-SO59.
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1. Crossed products have been introduced by Turumaru [9] and have been
studied by Suzuki [10], Zeller-Meier [11], Leptin [12] and other authors. The
construction of crossed products is analogous to that of semi-direct products of
groups. Let SI be a W^'-algebra and G a countably infinite discrete group,

which has a representation G — > G as a group of ^-automorphisms of 31.
Elements of 31 will be denoted by α, b, and elements of G by a, β, .

e will denote the identity of G and Sα will stand for the image of a £ 31
under the automorphism a, with cL^G. Throughout this paper automorphism
will always mean ^-automorphism. The group of automorphisms of 81 and G
will be denoted by Aut 3ί and Aut G respectively. Let φ be a normal
G-invariant state of St. For our construction we can assume without loss
of generality that φ is faithful. The faithful normal state φ leads by the
Gelfand-Segal construction to a faithful W* representation π of 31 on a Hubert
space Jζ. τr(3l) has the cyclic and separating vector ξ £ JC with

<n(a)ξ\ξ> = φ(a} Ma € 91 . (1)

Since φ is G-invariant we also have a unitary representation u of G on <JC.
This representation satisfies

( 2 )

The representations π and u can be extended to JC<S) /2(G) by

Π(α) 2 ?β <8> £«

(3)

Here ξa € JC and Sa^ί\G) with £.(£) = δβf* The W^-algebra on JC® l\G)
generated by all operators Π(α) and ί7α is then called the crossed product of 31
and G, induced by φ. If will be denoted by (31, G). (31, G) can also be
considered the weak closure of the *-algerba (31, G)0, which consists of all finite
linear combinations of elements Π(α)ϊ7β. Multiplication and involution in (31, G)
are given by

U(a)UaU(b)Uβ - U(aab)Uaβ

(4)
(Π(α)E7β)* - t/^ΠCα*) - U(cL~l a*)U *+ .

Since hardly any confusion is possible we shall identify the algebra τr(Sl) ® 1
and 31 in the sequel. As in [10] one shows :
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LEMMA 1.1. To each A z (SI, G) there is associated a unique family
{<2«}cSί such that

and

α«)< oo . (6)

This correspondence will be denoted by A — - (αα) and we call the set of all
ci^G with φ(a* αα) > 0 the G-support of A, for short G-supp A. It is easy
to see that for A ~*~ (αα) and 5 ~ (&„) we have :

A + λ5 — (

( 7 )

The sum in the last correspondence is taken in the sense of strong convergence
in J{. It is easy to see that the vector ξ ® £e is cyclic and separating for
(81, G). We further have for A— (α«)

|A| ^ \aa\ MazG.

If 31 is a W^-algebra Sltt will denote the group of unitary elements of 31 and
.2(31) will mean the center of 81. Since we are dealing with automorphisms
of crossed products it is advantageous to introduce a particular notation for
automorphisms. Assume S £ Aut(3l, G) is a spatial (inner) automorphism, then
S will denote the unitary operator (a suitable element of (31, G)) which induces
S, i.e.

SA§* = S(A) (8)

2. In [7] Singer considers automorphisms of crossed products (31, G)
with 31 = J?°°(X, Σ, μ), where (X, Σ, /A) is a finite separable nonatomic measure
space on which G acts as a group of measure-preserving, free and ergodic
automorphisms. However it is apparent that his proofs carry over also to the
case when (X, Σ, μ) is σ-finite and where G leaves μ only quasi-invariant. Thus
his results can be extended also to a certain class of infinite factors. Since
the proofs require only minor modifications we shall not state these extended
results here. Instead we shall try to apply some of his methods to the
noncommutative case. Before we state the generalization of his key lemma,
let us begin with a few general remarks.

Let T€(8l,G)M, the unitary group of (31, G), such that T21T* = 81 and
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7t*3lT=8l, i.e. T induces an automorphism r on 31, then

TΠ(α) T* - Π(τα), T* Π(α) T = ΠOi-'α) V α 6 91 . ( 9 )

We assume that T^(bβ). After rewriting (9) as

TU(ά) = Π(τα)T,T*Π(α) = Π(τ~lα)Γ^

and applying Lemma 1.1 we obtain

bββa = τ(a)bβ, β~\b$ a) = r~\a)β'\b^ (10)

A simple computation finally shows that (10) is only possible if bβb% and b%bβ

belong to the center 3(31) of 81. At this point it is advantageous to introduce
the polar decomposition of bβ.

= v bβ\ . (11)

Since bβbβ,bβbβ€ Z(tyί\ vβ satisfies

Vβ v$ =v%vβ = Eβz 2(31) . (12)

Thus the v0 are even partial unitary operators. This allows us to rewrite (10)
as

t̂ OK = τ<α)£β, £"(*!) /SΓ'Cα^'W = τ-\a )β'\Eθ ) (13)

So far we have been very general and we have not yet used any particular
hypotheses on G or 81.

LEMMA 2.1. Let 81, G, φ be as in Section 1 and assume G acts freely
on the center 2(31) of 31. Then any T £ (31, G)«, T~~(bβ\ which satisfies (9)
/zαs α unique decomposition

Z>e9(, , (14)

T' ~ (£fl), 6̂ 1 =b%ba = Eez 2(9t) (15)

ET = δ,,γ£,, ^-'(£β) y-'Cfi,) - Sβ.7β-\Eβ) (16)

£/3 = l. (17)
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Conversely any such T <Ξ (S(, G) is a unitary operator τvliicli leaves 21

invariant

Tll(ayΓ* = 11(2 £*£(<*)) . (18)

PROOF. As before let ^ = ̂ 1^1 be the polar decomposition of bβ. (13)

shows that for any a € 55(51) with support contained in β (Eβ)Ύ (EΎ) we have

βa = Ύa. Since G operates freely on 2(21) this is only possible if the β Eβ are

orthogonal central projections. The other half of (16) is shown similarly.

Since T is unitary we have 1 = Σbβbβ — ΣEβ\bβ\
2. Since all Eβ are orthogonal

this implies \bβ — Eβ,bβ = vβ and (17). Now set b — Σbβ, then b is obviously

unitary and T' — H(b*) T — - (b* bβ) — (Eβ). The converse can be shown easily

by considering

T'Π(α) T'* ζ (8) Se = Π(2 E*i&0 ? ® £e .

COROLLARY. 2Γn(2l,G) - 2 (Si) and (Sί,G) zs α /αcίor if G is a group

of ergodic automorphisms of 5l(Sl).

PROOF. Let Tz δl'Π(Sl,G)ω and assume T — (bβ\ Then (13) shows that

for α ^ 2(31) we have Eββa = aEβ. Since G operates freely on 2(81), this is

only possible if Eβ = 0 for β*e. Thus T - Π(&) and obviously b € 2(21). If

furthermore Π(&)s2(2ί,G) then Π(i) = C7βΠ(6)C7ί =Π(36), and this shows the
remainder.

As in Singer's paper let <S be the group of all automorphisms of (2ί,G)
which leave 21 invariant. & will denote the group of all automorphisms which

leave 21 elementwise invariant.

THEOREM 2.1. Let 21, G, φ be as in Section 1 and assume that G

operates freely and ergodic ally on 21, then any S £ & satisfies :

SU(a) = Π(α), SU. = Π(αα)t/α (19)

with

aa <Ξ 2(2l)M and aaβ = aa 2 aβ . (20)

PROOF. The equation

(5C7α) Π(αXSt/β)*

implies that ί/ά^f/α) commutes elementwise with 21. The above corollary
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shows then that U^S^*) = ll(oί~laa). The remainder is a consequence of
the multiplicativity of S.

COROLLARY. Sz& is an inner automorphism if aa — bab* for some
b

PROOF. Apply the corollary of Lemma 2.1.

THEOREM 2.2. Any SzS satisfies

SU(a) = Π(σα) σ £ Aut SI (21)

a bazKu (22)

= U(ba) Ba π(bβ)Ba* (23)

and Ba satisfies (15) -(17) (24)

Elb«β(a)b«* (25)

ElEl = δα,γ£g (26)

Further S is spatial, whenever σ is spatial, in particular & is a group of
spatial automorphisms.

PROOF. It is easy to realize that SUa is a unitary operator in (51, G)
which leaves 51 invariant. The decomposition (22) as well as (24) are therefore
consequences of Lemma 2.1. The multiplicativity of S implies (23), whereas
(21) holds by definition of <S. By definition (21) and by (4) we have

H(<raσ~la) = S[UaΠ(σ^ a) U*] = S(UJ Π(α)S(C7«)*

This shows (25).

This equation means that restricted to β (E£) the automorphism σaσ~l

looks like ba β[ ]&α*. This shows that σaσ"1 and σΎσ~l act alike on all

central elements with support in β [E%E^\. Since G operates freely on 2(51)

also σGσ~l has this property. This shows (26). Assume σ z Aut 51 is induced

by uσ on JC, then define Sζ® £a = U(ba) Ba uσ u'1 ζ '® Se. Using (21) -(26) it

is easy to see that S is a unitary operator on <JC® ί\G\ which satisfies (8).

The inner automorphisms of S have already been described in the lemma.
Again we can single out a subgroup Si of S, which consists of all S £ S with
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S(Ua) = Ba — (.Eg). However only if 21 is commutative can we assert that S
is the semi-direct product of S and <Sι This can already be seen for inner
automorphisms.

3. In the last section the relevant conditions were given on the center
of 31. Now we shall study the opposite case. In particular we shall assume
21 to be a factor and G to be a group of outer automorphisms. The latter
condition seems to be the most suitable replacement for the free action of G
on 2(21), which we had assumed previously.

LEMMA 3.1. Let 21 be a factor and G a countable discrete group of
outer automorphisms of 21. Then any T € (21, G)M which satisfies (9) is of
the form T=U(b)Uβ with b € 21M.

PROOF. Assume T — (bβ) since 21 is a factor we either have in (13)
Eβ = 0 or Eβ = 1. Assume Eβ = 1 = EΎ for γ^β, then (13) implies

βj-\a) = v% vΎav* vβ for all a e 21 .

This however is impossible, because G is a group of outer automorphisms.
Thus there exist only one β e G with Eβ = 1 and T = H(b)Uβ.

COROLLARY. 2Γn(2l,G) - {λl} and (81, G) is a factor.

PROOF. Π(b)UβlI(a)U$Π(b*) = ll(α) implies β = e and b £ 2(21) - {λl}.

This corollary generalizes a result by Suzuki [10], who proved it for the
case where 21 is a finite factor and φ its trace.

Again let S be the group of all automorphisms of (21, G), leaving 21
invariant, and let again S denote the fixgroup of 21.

THEOREM 3.1. Any Sz® satisfies

SH(a) = Π(α), SUa — λα?7«, λα complex numbers (27)

|λβ | = 1, λβλ0 = λ«£ (28)

β ̂  (G/CG)* . (29)

Here CG denotes the commutator subgroup of G, and (G/CG)* stands for
the dual group of the abelian group G/CG. Moreover ίί is a group of
spatial outer automorphisms.
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PROOF. As before we use the fact that UalS(Ua} belongs to the relative
cornmutant of 31. Lemma 3.1 shows then (27), and the multiplicativity of S
yields (28). This formula also shows that any S £ & thus induces a homo-
morphism Λ s of G into the circle group. Since the circle group is abelian CG
will be in the kernel of any such homomorphism. With these remarks (29) is
now nearly obvious. We only have to remember that for Si, S2 £ & the induced
homomorphism is oi— >λιαλ2«, when Sl corresponds to λ,ι« and 52 to λ2« To
see that these automorphisms are spatial we define the unitary operator S on

<K®l\G) by 5Σ£βg)£β = Σλ Λ f β ®£ β . Then Sΐl(a)UaS* = U(a)\aUa is easy
to check. The corollary to Lemma 3.1 shows that Sϊ is a group of outer
automorphisms.

THEOREM 3.2. Any SzS satisfies

5(Π(α)) - Π(σ[αl), 5(C/β) = Π(αβ)C7.(β) (30)

with s £ Aut G, σ z Aut SI, aa £ Sltt an d

aaβ = aas(a)[aβ], aas(oί) σ[α]αί = σ a\a] (31)

Conversely any such S defines an automorphism of (91, G)0. If φ is moreover
σ- invariant, this S extends to a spatial automorphism of (31, G).

PROOF. We proceed as in Theorem 2.2. Since S leaves 31 invariant and
because the S(Ua) leave 91 invariant (30) follows easily. Equation (31) is a
consequence of the multiplicativity of S. Conversely let 5 € Aut G, σ € Aut 91
and {aa} C 9lu be given such that (31) holds. Then it is easy to see that
5(II(a) [/„) = Π(σ(α))Π(αα)ϊ7s(α) defines an automorphism of (91, G)0. If φ is
even σ- invariant, then there exists a unitary operator uσ on JC with uστc(a)ξ

= π(σ[a\)ξ and uσπ(a)u% — π(σ(d)}. In this case we define an operator S on

JC® /2(G) by iSΣ?«® £„ = Σ7r(αα)« s (α)wσw;r1£>α® ^s(«) A tedious but simple
computation shows then that S is unitary and that SΐI(a)UaS = S(Π(α)[/α).

We should add here that as a consequence of Lemma 3.1 all inner
automorphisms of S are induced by elements of the form 11(6)17 .̂ This
shows, in particular, that an inner automorphism of S will lead to an inner
automorphism 5 € Aut G. Theorem 3.1 shows that & does not only leave 91
elementwise invariant, but also the much larger subalgebra (91, CG), which
consists of all elements A £ (91, G) with G-suppAcCG. This indicates that it
will be impossible in general to prove Galois-like theorems in this connection.
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4. Our results in the previous section suggest to consider automorphisms
of (31, G), which are combinations of automorphisms of 21 and of automorphisms
of G. Of course we can no longer hope to describe completely the group <5 of
arbitrary crossed products (51, G), but a number of useful results can still be
derived for certain subgroups of <5

THEOREM 4.1. Let 21, G and φ be as in Section I and assume *we are
given σ£ Aut Si, 5 ̂  Aut G and {aa} c 21 ω such that

aaβ = aas(ά)[aβ], aas(d) σ[a]a* = σ a\a\ (32)

then S(Yl(a)Ua) = Π(σ(#)) Π(αα) £/«(«) defines an automorphism of (21, G)0. This
automorphism extends to a spatial automorphism of (21, G) if φ is even
σ-invariant.

The proof follows along the lines of the proof of Theorem 3.2 and is
therefore omitted.

It is obvious that all automorphisms S £ S described by (32) form a group,
which we call c$2 A very simple method of satisfying (32) is given by the
following corollary.

COROLLARY. Let {λα}α€^ be a family of complex numbers of absolute

value 1, which satisfy λα/3 — λαλ^, then SΣta® £« = Σλ«ξ"«® £« defines a

spatial automorphism of (21, G) with Sΐί(a)UaS~l = λ«Π(α)?7α. The group
of all such automorphisms is isomorphic to (G/CG)*.

This corollary is shown as Theorem 3.1.
It is now of interest to determine, which automorphisms of 6% are actually

inner automorphisms of (21, G).

THEOREM 4.2. Let 21, G and φ be as in Section 1 and let S € c52 be an
automorphism, which is described by (32). If S is an inner automorphism

induced by S € (SI, G), then β £ G-supp S implies

Eβ = {s(a)βcrl\azG} is a finite set. (33)

PROOF. We have by assumption "t/β*=Π(αβ)C/β v β ) or SC7β = Il(αβ)l7.(β)S;

Assume S^(b$) and use Lemma 1.1, then bs(a}IΛa-ι = aas(oί)\b^\. However, since

S is unitary, we must have
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- I S ξ (g) εe 1 2 - Σ φ(bl bβ) ̂  Σ.(β)/8β-ι € ̂  φ(Ί(a)(bβγ al aa £a)(b^

= card £#

This proves the theorem.

We should remark here that only the condition S(UΌ) = Π(αα) £7 s(α) was
used. Otherwise the theorem is quite general.

COROLLARY 1. Let G be an R-group and S z S as described by (32),

then S is an outer automorphism of (31, G), whenever s is an outer auto-
morphism of G.

PROOF. We assume that S is an inner automorphism of (31, G). Let

Θ £ G-supp S, then by Theorem 4.2 Eβ must be finite. This implies in
particular that for all a^G the set [s(a}n βa~n\n = Q, dbl, } is finite. Thus

there exists a positive integer k with s(ά)+lcβa~k=β or s(a)k=βalcβ~1 = (βaβ~ί)k.

Since G is an ίί-group s(ά)=βaβ~\ and 5 is an inner automorphism of G.

COROLLARY 2. Let G be a group with no normal subgroups of finite

index and assume s is an outer automorphism of G, then S as described
(32) is an outer automorphism of (31, G).

PROOF. We assume that S is an inner automorphism of (31, G). For

β £ G-supp S we know that Eβ is finite (33), Eβ= [β, s(az}βc£l , , s(cL^&c&1} .
This shows that for any oί^G there exists an ott z = l, , n such that s(cL)βcί~l

= s(a^βaΐ^ or aτla^Nβ= [I7\s(fy)βy~l = β}. Thus the subgroup Nβ is of

finite index. Therefore also the subgroup N'= (^\ Ws(αt)/3αrι = (~} ΛΓs(α)/3α-ι is of
ί=l azG

finite index. However it is easy to see that N is a normal subgroup of G.
By assumption N=G=Nβ, and this implies 5(7) = βyβ'1 \/yzG.

COROLLARY 3. Let G be an R-group or a group with no normal

subgroups of finite index and assume the center of G is trivial, then any

inner automorphism S as described by (32) is of the form S = ΐl(b)Uβ.

PROOF. In Corollary 1 and 2 we had seen that S can only be inner on
(31, G), if it extends the inner automorphism s of G. By modifying S we

can assume that s(ά) = a Moί £ G. Then for β € G-supp S we must have that
Eβ= {oί/3oΓl\oί£ G} is finite. Since G is an Λ-group or has no normal subgroups

of finite inde?ζ 8 must lie in the center of G? which by assumption is β,
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COROLLARY 4. Let S be an inner automorphism of (81, G) as described

by (32), then G-supp/S lies in a coset of G0. G0 denotes the normal subgroup
of G consisting of all elements in G -with finite conjugacy classes.

PROOF. Let a^G-suppS and modify S by U~l, i.e. instead of the

automorphism S we consider the automorphism induced by Uΰ1 S = S'. Thus

we can assume without loss of generality that e € G-supp S. Let also

βzG-suppS, then we have for the conjugacy class Cβ of β Cβ — {oίβa~l

= [as(a)-l][s(ά)βa-ί]\azG}^E;ίEβ. Since both Ee and Eβ are finite by (33),

C0 must be finite.

This corollary shows in particular that if all nontrivial conjugacy classes in

G are infinite any inner automorphism of <52 is induced by some H(b)Uβ. It

is now easy to prove related results along similar lines as above. However

we want to study now means of satisfying the conditions in (32).

LEMMA 4.1. Let 81 be a W*-algebra and let H be a group of auto-

morphisms of 31, such that the normal faithful state φ is H-invariant. Let

G be a normal subgroup of H. Then any σ £ H extends to a spatial
automorphism S of (31, G).

PROOF. For 2r € H define for all 2 £ G s(a) = σ α σ"1.

Then σ € Aut 31, s £ Aut G and for all a £ 81 we have σ a[a]— σ 2 e^1 <?[α]

= s(ά)σ.[a], which shows (32). Thus S[U(a)Ua] - Π(σ[α])C7^βσ-, defines a
spatial automorphism of (81, G), which we call the extension of c? € Aut 81.

If H is a semidirect product, we can obtain an even stronger result.

THEOREM 4.3. Let 81 be a W*-algebra and assume the semi-direct
product G(§)ίί of the countable discrete groups G and H acts on 81 as a

δ
^+~

Λ _.Λ .... ^ . ..„ , ®H"
invariant. Then H extends to a group S(H} of spatial automorphisms of
(81, G) and (9l,G®H) αnJ ((SI, G), 5(H)) are spatially isomorphic.

PROOF. The semi-direct product G®H is the system of all pairs (<?, 2)

with cr € jf/ and 2 € G. Multiplication is given by (σ, 2)(p,/8) = (?p, 2s(/β)),

where 5 € Aut G is associated to σ € /ί. For σ £ H we therefore define its
extension a$

I7,) = Π(σ[α])C7.,.,



AUTOMORPHISMS OF CROSSED PRODUCTS 591

Since φ is //-invariant, Sσ is even spatial on JC®12(G), given by

To see the remainder we define an operator U from JC® /2(G)® /2(*S(//)) onto
J£(g)/2(G (§)//) by C7Σ[?β,σ<8)θ«]<8)θs - Σf α > σ ® £(σ>α). (7 is obviously unitary,
and a simple computation shows

and

C7Π(α) = Π(α)C7

where

U^ Siζ.,..® εa] <g> eίff, = 2£[r..σ<<8> e.] <g> fiVσ, .

This proves the theorem.

DEFINITION. A group of automorphisms G of a W^'-algebra 31 acts
ergodically, if it leaves only multiples of the identity invariant.

THEOREM 4.4. Let 31, G, H and φ be as in Lemma 4.1. A subgroup

S(H') of S(H) acts ergodically on (31, G), if H' acts ergodically on 21 and

if all nontrίvial H' orbits in G are infinite. These two conditions are

also necessary. Here S(fl) denotes the extension of H to a group of

automorphisms of (SI, G) as given in Lemma 4.1.

PROOF. Assume A € (81, G) is S(H') invariant and let A~~(aa). Then the
vector Aξ® £e = ΣΠ(αα)|(g) £„ is invariant under S(ίΓ) too, i.e.

Σ Π(αα) ξ ® £a = Σ U(σ[aa]) ξ ® £σασ-: \/<r ^ H'

Since all non trivial H' orbits in G are infinite, we must have A£®£e==Π(α)£(g}£g
or A = H(a) = Π(σ[α]). This finally implies A = λl, because H' acts ergodically

on 81. If conversely H' does not act ergodically on 81, then there exists an

α^Sl with α=σ[α] V < r €//'. Then Π(α) is H' invariant. If there exists a

finite £Γ orbit O in G, 0 - {σaσ~l\σ^H}9 then £[/7 is 5(ίf) invariant.

In particular we shall say that an automorphism cί acts ergodically on 3ί if
the group [an] acts ergodically on 81.
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5. This section is devoted to application of our results in Section 4 to
the left regular representation of countable discrete groups. The left regular
representation, or the left ring, of a countable discrete group G, can be
considered a cro^sad product of the complex numbers C with G. (C, G) is
traditionally denoted by ^G). Our results in Section 4 yield immediately

THEOREM 5.1. Any outer automorphism of G extends to a spatial
automorphism of (̂G). This extension is an outer automorphism of CU(G\
if one of the following conditions holds

a) G is an R- group
b) G has no normal subgroup of finite index
c) All nontrivial conjugacy classes in G are infinite
d) GO agrees with the center of G.

COROLLARY 1. Any countably infinite group H has an ergodic and a
nonergodic outer automorphic representation on the hyperfinite factor of
type II. The nonergodic automorphic representation can be chosen in such
a way that all automorphisms leave a given subf actor M of type In of the
hyperfinite factor elementwise invariant.

PROOF. Let N be a countably infinite set. By cSoo = S^N) we denote
the group of all permutations of N9 whereas Π00 = Π00(N) stands for the group
of all finite permutations of N. Since ΓL is locally finite, ^(ΓL) is the
hyperfinite factor of type II^

1) Let us assume the group H has a representation σ — > Pσ \fσ € H as a
group of infinite permutations of N. Then cr->sσ with sσ(ά) = PσoiPάl

\/cc € Πoo determines uniquely a representation of H as a group of outer
automorphisms of Πoo. By Theorem 5.1. c the sσ extend uniquely to spatial
outer automorphisms Sσ of ^(Πoo).

2) In order to find a representation of H as a group of permutations of
Nj let H be any countable group which contains H as a subgroup. Set N—H'
and for any σ € H let Pσ be given by Pσ(τ) = σr for all r € ίf . It is easy to
see that the group [Sσ\σ £ H} acts ergodically on ^(ILo) if H is infinite.
Since there are continuously many nonisomorphic countable discrete groups
if, we have determined in this way continuously many outer automorphic
representations of H. However it is not clear whether some of these
representations are not equivalent, i.e. whether there exists an automorphism
T of ^(Πoo) such that T SσT~l = S'σ for two automorphic representations S
and S' of H. So far I have been unable to determine when two automorphic
representations S and S' are equivalent in the above sense.

3) To find nonergodic outer automorphic representations of H we split
v/V into two disjoint parts N — N{ U N% such that ΛΓ2 is infinite. Now we
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represent /-/ as a group of permutations of N, which operate on N2 only.
The extensions of these permutations the leave invariant all elements in ^(ILo),
whose Πoo(JV) support consists of permutations, which operate on Nv only.
These elements constitute a regular representation of the group of permutations
of NI. Thus by appropriately choosing the cardinality of Nγ we can achieve

that a certain subfactor M of type In is elementwise invariant under all Sσ,
σ € H. By [13, Lemma 3.3.] there exists an inner automorphism T connecting
M and Λf, M = T(M). Then <r — > T-S^T"1 is the desired nonergodic outer
automorphic representation of H on CU(I100\ which leaves M elementwise
invariant.

This corollary gives a new and more general proof of a result by Suzuki
[2]. In the next chapter we shall see a still more general result than this.

COROLLARY 2. Corollary 1 is also valid for at least one finite non-
hyper finite factor of type II lt

PROOF. Let Fn be a free product of couήtably (infinite) many cyclic
groups of order n^2 and let al9 aZ9 be the generators of Fn. Any
permutation of the generators extends to an outer automorphism of Fn and
then by Theorem 5.1. c to an outer automorphism of ^(F71). Now proceed as
in the previous corollary.

The results in Corollary 1 show that ^(ΓL) is an ideal candidate for
constructing crossed products. To those constructions we can then apply our
results in Section 3 and Lemma 4.1 easily.

The corollary of Theorem 4.1 can be applied as follows.

THEOREM 5.2. Let λα, cί^G be a set of complex numbers of absolute
value 1 with λα/3 = λαλ/3 then S(Ua) = \aUa defines a spatial automorphism
of (̂G). The group of these automorphisms is isomorphic to (G/CG)*.
Any inner automorphism of this type is of finite order. This group is a
group of outer automorphisms if G0 is the center of G.

PROOF. The first part is already clear from the corollary. Assume now

this automorphism is inner, induced by S^^G)^ Then SUaS* = λα[/«, and

for S~~(bβ) we have bx3x-ι = λ«&^. This implies imiiediately that G-supp 5cG0.
Let now β £ G-supp S and assume a belongs to the centralizer Sbβ of /β, then

baβa-ι = bβ •=• \abβ or λα = 1. Since βz G-supp S cG0 the centralizer 2>β of β is
of finite index. Thus the kernel of the homomorphism at — > λα of G into the
circle group is of finite index. This shows that S is of finite order.

In particular our results show that factors ^G) possess outer automorphisms
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if G is not complete or if G is not perfect.

6. Now we want to apply the results of Section 4 to certain factors
which have been introduced by von Neumann [8] and which have been studied
by Pukanszky [14] and Schwartz [15]. The construction is based on the
following : Let N be a countably infinite set. For any n € N let (Xn, Σn, μpn)
be the finite measure space with Xn = {0,1), ΣΛ the discrete Borel structure of
Xn and ft,n({0}) = A /*pn( {!}) = !-/>= q with 0 < />rg 1/2. Then let (X, Σ, μp)
— (®Xn, ®Σn, ®/v) be the product Borel structure of the (Xw, Σn, /vJ. The
measure space (X, Σ, /4p) is familiar from probability theory, where it describes
infinitely repeated coin tossing. X can also be considered the space of functions
on N with values 0 and 1. The set of functions on N with values 0 and 1
and finite support will be denoted by Δ = Δ(JV). Δ becomes an abelian group
if we define

(δ + δ'Xw) - 8(n) + $'(ri) (mod 2)

Δ admits a representation as a group of free, ergodic Borel automorphisms, of
(X, Σ, μ p) which leave μp quasi-invariant [14]

[Sx](n) = x(n) + 8(w) (mod 2) (34)

-"" (35)

where x S = Σ:r(z)δ(z). The action of Δ can be extended to -C"(X, Σ, μ) —
and _Γ2(X,Σ,/*) = -Γ by

(36)

As in section 1 (3) we now define the operators Π(α) and Uδ on J?2 ® /2(Δ)
the only thing that has been altered are the Radon-Nikodym factors. The
operators Π(<z) and ί7a, α 6 ^C", δ ^ Δ span the W*-algebra 3ttp, which again
is called the crossed product of £°° and Δ. ,5KP is a factor for any 0<^>^l/2,
because Δ acts freely and ergodically on (X, Σ, μ p), [8]. J/f/i. is the hyperfinite
factor of type II, whereas the JHP 0<p<l/2 are noniso Ήorphic factors of
type III [13, 14]. Let us now turn to automorphisms of 5MP. We shall extend
in steps any permutation Pσ of N to an automorphism of uttp. First we
extend Pσ to X and Δ.

(«:)(*) = x(P^ n) , (σδ)(n) - S(P"1 n) (37)
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It is easy to see that this extension σ of Pσ defines a Borel automorphism of
(X, Σ, pp), which leaves μ p invariant, and an automorphism σ of Δ respectively.
The extension of σ to J7°° and X1 is as easy as before.

(σa)(x) = a(σ~lx} \'a£ £~ (38)

The spatial automorphisms Sσ of <3ttp can now be defined

5V(Π(a)tf,) = Π(σ*)LU (39)

Sσ Σ ξδ <g) sδ = Σ uσ ξδ ® aσ(a) (40)

The necessary computations to check (39) and (40) are easy to perform and are
therefore omitted.

THEOREM 6.1. Soo(N) has a representation as a group of sp.τtial
automorphisms of the hyper finite factors 5Ϋ/P given by (37) — (40). Sσ (39)
defines an outer automorphism of the u\ p iff Pσ £ <5oo — ΓL.

PROOF. The first part is already clear from above. Now let Pσ^Soo — ΠTO

and assume Sσ is an inner automorphism of JAV with Sσ^(b^). Then SσUδSσ

= Uσ(δ) implies bδ>+σ(δ>)+δ — σ(δ')(£δ). Arguments analogous to those in Theorem
4.2 show that {δ'+σδ' δ' € Δ) must be a finite set. This however is impossible
since Pσ € S*, — ΓL.

Now let Pσ ^ Πoo, then we can split N into a finite set Λ^ and a set N'2
such that Pσ leaves N% elementwise fixed and operates only on Nλ. Then
consider Xt — ® Xn> Σt = ® Σn and μ pί = (g) μpn i — 1, 2 . We have obviously

n e Ni nzNi nzNi

X = X1ξξ> X2, Σ = Σ! ® Σ2 and /AP = μpl ® ^2- This also implies a factorization
of c5Kp as JMP = 3Mpί ® ^ίp2 with JWpi = (^T(X4, 2*, ̂  Δ4) ί - 1, 2 [13].
Since Pσ operates only on N19 Sσ will leave -..5f/p2 elementwise invariant. It is
known [16] that ^ίpl is a factor of type I2«, where /z is the cardinality of N^.

Therefore Sσ\^ίpί is an inner automorphism, induced by Sσί. Then Sσί® 1
induces Sσ.

As in Section 5 one shows now :

COROLLARY. Any countable discrete group admits an ergodic and
nonergodic outer automorphic representation of the hy per finite factor u\ /!

p,
0 < p < 1/2. The nonergodic representation can be chosen in such a τvay
that a given subfactor of type ln is elementwise invariant.
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This corollary generalizes a result by T. Saitό [3], however the proof is
different and more straightforward. For p—\./2 this is just the corollary of
Theorem 5.1. The corollary shows that the ,CMΨ are ideal candidates for
constructing crossed products.

Let G be a countable discrete group and let P: a— >Pa be a representation
of G as a group of infinite permutations of N. Then P(G) extends by (37)-(40)
to a group S(G) of outer automorphisms of 3MP. All Sa, a € G, leave the
vector 1 ® £0 € J^2 (g) /2(Δ) invariant. Thus we can form the crossed product
of 3ttp and G, which we denote by (<3MP,G9P) since it also depends on the
permutation representation P of G. The corollary of Lemma 3.1 shows that
all (JMp, G, P) are factors, regardless of P. Since JHP 0 < p < 1/2 is a factor
of type III, (JHP, G, P) are factors of type III [17]. However the (,5J/ι, G, P)
are finite factors. This gives us a large source of continuous factors, because
not only is p variable, but also P can be changed. On the basis of the recent
results by Powers [13] one would conjecture that all (c5J/p, G, P) are non-
isomorphic for different p. It is also probable that distinct P will lead to
nonisomorphic factors for certain groups.

In (37) we had seen that a permutation representation P of G on N leads
to a representation of G as a group of automorphisms of Δ, (aS)(n) = δ(P~1n)
\/δ € Δ, a £ G. This allows us to construct the semidirect product of Δ and G.
Δ(g)PG= {(a, 8)\oL€ G, δ £ Δ} and the multiplication is defined by

, δ +

Theorem 4.3 now suggests :

THEOREM 6.2. (JMP,G, P) is spatially isomorphic to ( J7°°, Δ(g)PG).
TΛ.£ action of Δ (§)PG orc (X, Σ, μ p) z's given by

[(a, δ) φi) = XP;1 w) + δ(n) (mod 2) (41)

arid extended to £°° and J?2 as

(42)

[U(a,δ) ξ](x)

The proof proceeds as in Theorem 4.3. A particular permutation representation
PO, the Cayley representation can be obtained by identifying N and G and by
defining

P«aβ = aβ a,βzG = N. (43)
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Then Theorem 6.2 shows that ( JΛ^ G, P0) are just the factors which have
heen constructed by von Neumann [8], Pukanszky [14] and Schwartz [15|.
Since CMP is already a crossed product in its own right, (t5f/p, G, P0) can he
considered a "doubly crossed" product.

THEOREM 6.3. Any nontrivial automorphism μ of G extends to an
outer spatial automorphism Sμ of (J?°°, Δ(g)PoG). The extension of μ
ft £ Aut J7°° and uμ are given by (37) and (38). The corresponding auto-
morphism m of Δ(§)p0G is given as

(44)

and Sμ is defined as

5μ(Π(α)C7(α>J)) = Π(/T(α)) [/.,<..„ (45)

and

3μΣ£ ® S(a,δ} = Zuμξ ® fim(α.a) (46)

PROOF. The equations (32) are easy to check and thus (45) defines an

automorphism of (j~°°, Δ®PoG). Sμ is obviously a unitary operator and a

simple computation shows that Sμΐl(a)U(a,δ)Sμ = Tl(βά)Um(eXtδ). If μ is an outer
automorphism of G, Sμ is an outer automorphism of (<JKP, G, P0) by Lemma 3.1.
Thus we can assume that μ is inner on G, μ(ά) — βoίβ~l. Instead of Sμ

consider now the automorphism T: A — > ϊ7(/3-ιto)*5μ(A)t7(/Q,o). In particular
T(C7(βiί)) = ί/(α,ί/3) with 8β(ά) = S(aβ\ Standard arguments (33) now show that
T is an outer automorphism, unless β—e.

Similar methods can also be applied to other factors (<3MP,G,P\ where
P ^ PQ. If G ̂  CG the group ® (Theorem 3.1) is nonempty and a group of
outer automorphisms of (^5HP9 G, P) regardless of p or P.

We shall now turn to the construction of certain finite factors which
apparently have not been considered before. Again this construction is based
on the crossed product.

Let G' be a countably infinite discrete group and G a countably infinite
subgroup of G ' . For G — N we construct again (X, Σ, μ>p) and Δ as we did
earlier in this section.

LEMMA 6.1. G acts as a group of free, ergodic and measure preserving
Borel automorphisms on (X, Σ, μp) by

[βx](ά) = x(β~l a) V/8 € Gc G', a € G (37)
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The μ.p are inequίvalent for different 0 < p 5g 1/2.

PROOF. It is easy to see that the point transformations β € G as defined
above define Borel automorphisms of (X, Σ, /*/,) which leave the μp invariant.
G acts freely on (X, Σ, /AP) if for /#^<? the set £# = {.r &r=:α:} has ^-measure
zero. We have to consider two cases.

a) β € G has infinite order. Then we write

Eβ = E$> u E$> = {xzEβ\ x(e) = 1} u {x € E, | .τ(e) = 0}

C {x\x(e) = x(β^ = . = *Gβ-») = l] U U:|*00 = - . . = *<£-») = 0} .

This shows that μv(E^) ^ pn + q" for any n < oo.
b) β&G has finite order m Ξϊ 2. Then find w elements rtj, , ocn such

that ak ±t βjdι for all j <m and & =¥ /. We write

(cύ = 8(0} c \J {x\
δeΔ 7 1 δ € Δ "

where Δw is the set of all n- tuples with 0 and 1 as entries. This shows that

with |8| = 2δ(/) Since pm + qm < 1 we see again that (̂£,3) = 0. To show
the ergodicity of G let a € J?°°(X, Σ, /A) such that

α = β(a) MβzG, with /8 given by (38) .

Since (X, Σ, /A) is a finite measure space a € J?2 and a has an expansion with
respect to the orthonormal basis [ωδ \ δ £ Δ] [14] with

w > (44)

a = Σ λ»5 ω5 .

It is easy to see that βωδ = ωβδ where (βS)(ά) = 8(β~lά). We therefore have
λ5 — λ^(δ). Since the set {βδ\βζ G} is infinite if δ ^= 0, <z must be of the form
a = λω0 = constant.

Assume now that for p^ f> μp)> /v Then the Radon-Nikodym theorem
tells us that μ>P'=f μ>P Since μp> and μ<p are G-invariant, f is G-invariant.
But G acts ergodically on (X, Σ, μp). Hence f is constant and μp = μp>, which
is easily seen to be impossible.
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COROLLARY. The crossed products (j?°°(X, 2, μp\ G) are factors of type

In view of the recent results by Powers [13J it would be interesting to
find out if for certain groups G these factors are nonisomorphic for distinct
p. For G = G denote (£~(X, 2, μp\ G) by 71Ώ(G) then one can easily show

THEOREM 6.5. Every automorphism μ of G extends to a spatial outer
automorphism Sμ of 32P(G)..

(μ ̂ (ά) = x(μ~} a\ (μa)(x) = a(^ x). \/α z X~ (45)

(u,ςχx) = ξ(μ-lx) (46)

Sμ(U(ά) C7β) = Π(μά) Uμ(a} (47)

S, Σ ξa Θ £a = Σ u, ξa ® θμ(β) (48)

PROOF. It is easy to show that Sμ, defines an automorphism of 3ΊP(G)9

which is induced by Sμ,. If Sβ is an inner automorphism with Sμ,^'(bβ) then

SμΠ(α) = Π(βa)Sμ or 6^ = 60/Eα, \/a € X00. Thus the set {Λ:|^(Λ:) ^F 0} is
contained, modulo a /AP zero set, in the set Eμtβ = [x\β~lx = μ~lx}. As in
Lemma 6.1 one shows that μ^E^β) = 0 unless β = e and yu is the identity
automorphism of G. Along similar lines one can also construct outer
automorphisms of (X",G) if G' ^ G. For certain groups G also & will lead to
outer automorphisms of 32P(G).

I would like to thank my advisor, Professor M. E. Mayer, for his valuable
comments and his constant encouragement.
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