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Introduction. Some results concerning outer automorphisms of continuous
factors have been known for some time. Notably for the hyperfinite factor Dixmier
[1], Suzuki [2], Saito [3] and Blattner [4] showed that it has a large set of
outer automorphisms. Dealing with the hyperfinite factor has the advantage
that there are many distinct realizations for it, in each of which a particular
class of groups is shown to be representable as groups of outer automorphisms.
For non-hyperfinite continuous factors far fewer results are known. In fact
the example by Kadison [5, 6] seems to be the only one in the published
literature. A more systematic attempt to study automorphisms of W*-algebras
has been made by I. M. Singer [7]. He considered automorphisms of certain
finite W¥*-algebras, which are crossed products of a commutative W#*-algebra
and ‘a countable discrete group. In certain respects the present study of auto-
morphisms of crossed products can be considered a sequel to Singer’s paper.
In fact in Section 2 we present generalizations of some of his results. Following
this we give a complete description of the group of automorphisms of the
crossed product of a factor 2 and a countable discrete group G, which leave A
invariant. These results suggest to study automorphisms of crossed product
(%, G) which are combinations of automorphisms of % and G. Criteria are
given in Section 4 for such automorphisms to be outer. The remainder is
devoted to the study of particular examples. Among other results we show
that outer automorphisms of groups extend under very general conditions to
outer automorphisms of the corresponding left rings. In Section 6 we study
factors of type II and III, which have been introduced by von Neumann [8].
All these examples possess outer automorphisms. We further consider
automorphisms of certain finite factors, which apparently have not been studied
before. Our results lend further credibility to the hypothesis that continuous
factors possess outer automorphisms in contradistinction to factors of type I.

Part of this paper is drawn from the thesis of the author submitted to
Indiana University.

*) The research in this paper was partially supported by the U.S. Army Research Office,
Durham and the N.S.F. Grant GF-SO59.
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1. Crossed products have been introduced by Turumaru [9] and have been
studied by Suzuki [10], Zeller-Meier [11], Leptin [12] and other authors. The
construction of crossed products is analogous to that of semi-direct products of
groups. Let A be a W¥*-algebra and G a countably infinite discrete group,
which has a representation G—G as a group of s-automorphisms of L.
Elements of % will be denoted by a,b,--- and elements of G by a,8,---.
e will denote the identity of G and @a will stand for the image of ac¥
under the automorphism &, with a€ G. Throughout this paper automorphism
will always mean %-automorphism. The group of automorphisms of A and G
will be denoted by Aut¥% and AutG respectively. Let @ be a normal
G-invariant state of %A. For our construction we can assume without loss
of generality that ¢ is faithful. The faithful normal state @ leads by the
Gelfand-Segal construction to a faithful W¥*-representation 7= of 2 on a Hilbert
space K. (W) has the cyclic and separating vector £ € K with

<m(a)E|E > =g(a) Yaec. (1)

Since @ is G-invariant we also have a unitary representation # of G on K.
This representation satisfies

unm(a)u} = n(da) (2)

The representations 7 and # can be extended to K& ((G) by

(a)3.® & =32n(a) 8. Q &

(3)
Uﬁzga® ga = 2u3§a® 8[301

Here ¢, X and & <€ H(G) with &(B) =3,5 The WH-algebra on KX ® XG)
generated by all operators II(a) and U, is then called the crossed product of 2
and G, induced by @. If will be denoted by (¥,G). (A,G) can also be
considered the weak closure of the %*-algerba (%, G),, which consists of all finite
linear combinations of elements II(a)U,. Multiplication and involution in (U, G)
are given by

(@)U, I(B) Uy = [(ad@b) U.e

(4)
(@) U)* = U7 Ti(a*) = I(@ ' a¥) U

Since hardly any confusion is possible we shall identify the algebra #()® 1
and % in the sequel. As in [10] one shows :
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LEMMA 1.1. To cach Ae(N,G) there is associated a wunique family
{a,} c U such that

At ® & = Sm(a)u. & D Eug (5)
and

Spara.) < co. (6)

This correspondence will be denoted by A ~ (a,) and we call the set of all
aeG with @(a¥a,) >0 the G-support of A, for short G-supp A. It is easy
to see that for A ~ (a,) and B ~ (b,) we have:

A + AB~ (as+ab,), A* ~(@ak)

(7)
AB~ (Sa,8b,.,)

The sum in the last correspondence is taken in the sense of strong convergence
in K. It is easy to see that the vector £® €&, is cyclic and separating for
(A, G). We further have for A~(a.)

|A] = |a.| VaecG.

If A is a W*-algebra U, will denote the group of unitary elements of ¥ and
Z(U) will mean the center of U. Since we are dealing with automorphisms
of crossed products it is advantageous to introduce a particular notation for
automorphisms. Assume S < Aut(¥,G) is a spatial (inner) automorphism, then
S will denote the unitary operator (a suitable element of (2, G)) which induces

S, ie.

~

SAS* = S(A) (8)

2. In [7] Singer considers automorphisms of crossed products (%, G)
with A = (X, 3, p), where (X, 3, u) is a finite separable nonatomic measure
space on which G acts as a group of measure-preserving, free and ergodic
automorphisms. However it is apparent that his proofs carry over also to the
case when (X, 3, p) is o-finite and where G leaves g only quasi-invariant. Thus
his results can be extended also to a certain class of infinite factors. Since
the proofs require only minor modifications we shall not state these extended
results here. Instead we shall try to apply some of his methods to the
noncommutative case. Before we state the generalization of his key lemma,
let us begin with a few general remarks.

Let T e (¥, G),, the unitary group of (A,G), such that TUAT* = A and
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T*UAT=A, ie. T induces an automorphism 7 on U, then
TH(a)T* = I(ra), T*(a)T = II(t7'a) Yaec¥. (9)

We assume that T~(bg). After rewriting (9) as

Tl(a) = (ra) T, T*1l(a) = (v~ a) T*
and applying Lemma 1.1 we obtain

bsBa = m(a)bs, B (bfa)=7"(a)B (%) (10)
A simple computation finally shows that (10) is only possible if bsb% and bjb,

belong to the center Z(A) of A. At this point it is advantageous to introduce
the polar decomposition of bp.

bg = vs|bgs) . (1)
Since bgb}, bibsc Z(N), vy satisfies
Ve Vf = vivg = Ege Z). 12)

Thus the vz are even partial unitary operators. This allows us to rewrite (10)
as

veB@)vs = (@) Es B (v5)B (@B (vs) = 7(@)B (Ep) 13)

So far we have been very general and we have not yet used any particular
hypotheses on G or .

LEMMA 2.1. Let U, G, @ be as in Section 1 and assume G acts freely
on the center Z(N) of A. Then any T < (N,G),, T~(bs), which satisfies (9)
has a unique decomposition

T=1UbT', be, (14)

and
T ~ (Eg), beb} = b} by = Ez< Z(N) (15)
EoE, = 8,Es B (Es) 7 (E,) = 8,8 '(Es) (16)

SE, =S8 E;,=1. (17)
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Conversely any such Te,G) is a wunitary operator which leaves 2
invariant

T W) ]"* = (S EyBla)) . (18)

PROOF. As before let by = vs]bs| be the polar decomposition of &g (13)
shows that for any a e Z(U) with support contained in 8 -I(EH)W—I(E,,) we have

Ba=¥a. Since G operates freely on Z() this is only possible if the 8 —IEB are
orthogonal central projections. The other half of (16) is shown similarly.
Since 7" is unitary we have 1 = 3bzb} = 3 Ez|bs|% Since all E; are orthogonal
this implies |bg| = Eg, bg = vz and (17). Now set b = by, then & is obviously
unitary and T = II(b*)T ~ (b*by) = (Eg). The converse can be shown easily
by considering

THa)T*¢R & =S EBa)t R E, .

COROLLARY. A N(YA,G) = Z) and (A,G) is a factor if G is a group
of ergodic automorphisms of Z(N).

PROOF. Let Te A'N(A,G), and assume T~ (bg). Then (13) shows that
for a € Z(NA) we have EsBa = aE, Since G operates freely on Z(2), this is
only possible if Eg =0 for 8xe. Thus 7 = II(b) and obviously &< Z(A). If
furthermore II(b) € Z(A, G) then U(5)=U,II(b)U*=TI(&b), and this shows the
remainder.

As in Singer’s paper let S be the group of all automorphisms of (U, G)
which leave U invariant. & will denote the group of all automorphisms which
leave ¥ elementwise invariant.

THEOREM 2.1. Let U,G,p be as in Section 1 and assume that G
operates freely and ergodically on U, then any S < & satisfies :

STl(a) = l(a), SU, = (a,)U. (19)

with

a. € ZN), and a.=a.dag. (20)
PROOF. The equation
(SU.) (a)(SU H* = SU.IM(a)U¥) = ST(da) = U (a)U¥*

implies that U;'S(U,) commutes elementwise with 9. The above corollary
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shows then that U;'S{U,) = II{(& 'a,). The remainder is a consequence of
the multiplicativity of .S.

COROLLARY. Se<8& is an inner automorphism if a, = bab* for some
b e ZA),.

PROOF. Apply the corollary of Lemma 2.1.

THEOREM 2.2. Any S< S8 satisfies

S(a) = M(eca) o< Aut (21)
SU, = (") B* b e, (22)

B* B* = B, TI(b**) = I1(b") B*TI(b*)B"* (23)
B*~(E35) and B* satisfies (15)—(17) (24)
cdo'a = SE5b"Ba)b* (25)

E E} = 8., Ej (26)

Further S is spatial, whenever o is spatial, in particular & is a group of
spatial automorphisms.

PROOF. Tt is easy to realize that SU, is a unitary operator in (U, G)
which leaves % invariant. The decomposition (22) as well as (24) are therefore
consequences of Lemma 2.1. The multiplicativity of S implies (23), whereas
(21) holds by definition of S. By definition (21) and by (4) we have

Mocas'a) = SU (e a) U¥] = S(U.,) I(a)S(U.)*

= I(b*) (S, E3 Bla)) LI(b*)* .

This shows (25).

This equation means that restricted to & ”(Eg) the automorphism ocao™!
looks like 5*8[ - - - 16**. This shows that oc@o~' and ¢%¥o~! act alike on all
central elements with support in 8 —I[Eg 1. Since G operates freely on Z()
also 0Go~! has this property. This shows (26). Assume o€ Aut¥ is induced
by u#, on X, then define St® &, = II(b*) B u,u:'t® &,. Using (21)—(26) it
is easy to see that S is a unitary operator on K ® [%(G), which satisfies (8).

The inner automorphisms of S have already been described in the:lemma.
Again we can single out a subgroup §; of S, which consists of all Se€ S with
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S(U,) = B*~ (E3). However only if 9 is commutative can we assert that S
is the semi-direct product of & and §,. This can already be seen for inner
automorphisms.

3. In the last section the relevant conditions were given on the center
of A. Now we shall study the opposite case. In particular we shall assume
A to be a factor and G to be a group of outer automorphisms. The latter
condition seems to be the most suitable replacement for the free action of G
on Z(A), which we had assumed previously.

LEMMA 3.1. Let U be a factor and G a countable discrete group of
outer automorphisms of . Then any T<(U,G), which satisfies (9) is of
the form T=I1I(b)U,; with be¥,.

PROOF. Assume T ~ (bg); since U is a factor we either have in (13)
E;=0o0r E;=1. Assume E; =1 = E, for y=8, then (13) implies

BV (a) = viv,avv, for all ae¥.

This however is impossible, because G is a group of outer automorphisms.
Thus there exist only one 8¢ G with Ez;=1 and T = II(6)Us,.

COROLLARY. UNQLG) = (A1} and A, G) is a fuctor.

Proor. Tb)Ugll(a)Uf 11(6*) = 11(a) implies B=e and b € Z(A) = {r].

This corollary generalizes a result by Suzuki [10], who proved it for the
case where 2 is a finite factor and ¢ its trace.

Again let S be the group of all automorphisms of (U,G), leaving A
invariant, and let again & denote the fixgroup of .

THEOREM 3.1. Any S<& satisfies

ST(a) = (a), SU, = NU., N complex numbers 27
’A’al = 1’ 7\'a7\‘,6 = )\aﬂ (28)
R = (G/CG)*. (29)

Here CG denotes the commutator subgroup of G, and (G/CG)* stands for
the dual group of the abelian group G/CG. Moreover & is a group of
spatial outer automorphisms.
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PROOF. As before we use the fact that U;'S(U,) belongs to the relative
commutant of A. Lemma 3.1 shows then (27), and the multiplicativity of S
yields (28). This formula also shows that any S<®& thus induces a homo-
morphism A, of G into the circle group. Since the circle group is abelian CG
will be in the kernel of any such homomorphism. With these remarks (29) is
now nearly obvious. We only have to remember that for S,, S, <€ & the induced
homomorphism is @ — A.Aw., when S, corresponds to Ay and S, to A To
see that these automorphisms are spatial we define the unitary operator S on
K@ G) by SSE.RE = SN E.DE. Then Sa)U,.S* = {a)\U, is easy
to check. The corollary to Lemma 3.1 shows that & is a group of outer
automorphisms.

THEOREM 3.2. Any Se§ satisfies
S(II<a)) = H(O‘[[l]), S(Ua) = H<aa)U.s'('1) (30>

with s€ AutG, o< Aut, a, <, and

Aup = aas(a)agl, a.s(a) - olalak = o+ alal (31)

Vae.

Conversely any such S defines an automorphism of (U, G),. If ¢ is moreover
o-invariant, this S extends to a spatial automorphism of (U, G).

PROOF. We proceed as in Theorem 2.2. Since S leaves U invariant and
because the S(U,) leave U invariant (30) follows easily. Equation (31) is a
consequence of the multiplicativity of S. Conversely let s<€ AutG, o< Aut 2
and {a.}C U, be given such that (31) holds. Then it is easy to see that
S(Il(a)U,) = Il(o{a))Il(a,) Uy, defines an automorphism of (A, G),. If @ is
even o-invariant, then there exists a unitary operator #, on K with u,n(a)§

~

= n(olal)é and u,w(a)u} = n(s(a)). In this case we define an operator .S on
KR PG) by SZ2E.Q & = S7(a) sy thetts* €a®@ . A tedious but simple
computation shows then that S is unitary and that STa)U.S* = SILa)U.).

We should add here that as a consequence of Lemma 3.1 all inner
automorphisms of & are induced by elements of the form TI(b)Ugs  This
shows, in particular, that an inner automorphism of S will lead to an inner
automorphism s€ AutG. Theorem 3.1 shows that & does not only leave A
elementwise invariant, but also the much larger subalgebra (2, CG), which
consists of all elements A € (U, G) with G-supp ACCG. This indicates that it
will be impossible in general to prove Galois-like theorems in this connection.
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4. Our results in the previous section suggest to consider automorphisms
of (U, G), which are combinations of automorphisms of 2 and of automorphisms
of G. Of course we can no longer hope to describe completely the group S of
arbitrary crossed products (%,G), but a number of useful results can still be
derived for certain subgroups of .

THEOREM 4.1. Let N, G and ¢ be as in Section I and assume we are
given o< Aut ¥, s€ AutG and {a.} C U, such that

Aop = ags(A)agl, a.s(a) - alala¥ = o - ala] (32)
Vaed
then S(Il(a)U,) = (c(a))Il(a,)Usw, defines an automorphism of (N, G),. This

automorphism extends to a spatial automorphism of (U, G) if @ is even
o-invariant.

The proof follows along the lines of the proof of Theorem 3.2 and is
therefore omitted.

It is obvious that all automorphisms S € S described by (32) form a group,
which we call S;. A very simple method of satisfying (32) is given by the
following corollary.

COROLLARY. Let {No}acs be a family of complex numbers of absolute
value 1, which satisfy Nes = Mahg, then SSE.RE = SALt.® & defines a
spatial automorphism of (A, G) with SI(a)U,S™' = N1(a)U.. The group
of all such automorphisms is isomorphic to (G/CG)*.

This corollary is shown as Theorem 3.1.
It is now of interest to determine, which automorphisms of S, are actually
inner automorphisms of (U, G).

THEOREM 4.2. Let A, G and @ be as in Section 1 and let S< S, be an
automorphism, which is described by (32). If S is an inner automorphism
induced by Se(U,G), then Be G-supp S implies

E;, = {s(a)Ba'|ac G} is a finite set. (33)

PROOF. We have by assumption SVUuSv*:[I(aa)Um) or gU,,le(a.,)Us(,,)g
Yo
Assume S~(b,) and use Lemma 1.1, then b, = a.s(2)[6s]. However, since
S is unitary, we must have
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~ r~ r~~
1=|S¢®E&|*=2pbiby) = St ey P(S(@)0p)* @l aas(@)(bs))
= card EB . ¢(bz;k bﬁ) .

This proves the theorem.

We should remark here that only the condition S(U,) = (a,)U,u., was
used. Otherwise the theorem is quite general.

COROLLARY 1. Let G be an R-group and S<S as described by (32),

then S is an outer automorphism of (U,G), whenever s is an outer auto-
morphism of G.

PROOF. We assume that S is an inner automorphism of (%,G). Let
B ¢ G-supp S, then by Theorem 4.2 E, must be finite. This implies in
particular that for all @ <G the set {s(a)"Ba™"|n=0, +1,---} is finite. Thus
there exists a positive integer & with s(@)**Ba~* =8 or s(a)*=Ba*B'=(BaB")*.
Since G is an R-group s(a)=BaB~", and s is an inner automorphism of G.

COROLLARY 2. Let G be a group with no normal subgroups of finite

index and assume s is an outer automorphism of G, then S as described
(32) is an outer automorphism of (U, G).

PROOF. We assume that S is an inner automorphism of (A, G). For
B € G-supp S we know that E; is finite (33), Ez= {8, s(a,)Bas*, - - -, s(a,) Bat;'}.
This shows that for any @€ G there exists an a; =1, +++,7n such that s(a)Ba™!
= s(a;)Bai* or ai'ae Ny = {y|s(v)By™* = B}. Thus the subgroup N, is of

finite index. Therefore also the subgroup N = mM(a,)ﬂa,-l = ﬂNS(,,)ﬁ,,-; is of
i=1 aeG
finite index. However it is easy to see that N is a normal subgroup of G.

By assumption N=G=N,, and this implies s(y) = ByB8~! Yy G

COROLLARY 3. Let G be an R-group or a group with no normal
subgroups of finite index and assume the center of G is trivial, then any
inner automorphism S as described by (32) is of the form S = I(b)U,.

PROOF. In Corollary 1 and 2 we had seen that S can only be inner on
(A, G), if it extends the inner automorphism s of G. By modifying S we
can assume that s(@) = a YaeG. Then for 8<G-suppS we must have that
Ey= {aBa™'|a e G} is finite. Since G is an R-group or has no normal subgroups
of finite index 8 must lie in the center of G, which by assumption is e.
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COROLLARY 4. Let S be an inner automorphism of (N, G) as described

by (32), then G-supp S lies in a coset of G,. G, denotes the normal subgroup
of G consisting of all elements in G with finite conjugacy classes.

PROOF. Let a<G-suppS and modify S by U;!, ie. instead of the
automorphism S we consider the automorphism induced by U;'S = S. Thus
we can assume without loss of generality that ee G-suppS. Let also
B<G-supp S, then we have for the conjugacy class Cs of 8 Cs = {aBa™
= [as(a) '[s(x)Ba']|ac G} C E;' Es. Since both E, and E; are finite by (33),
Cs; must be finite.

This corollary shows in particular that if all nontrivial conjugacy classes in
G are infinite any inner automorphism of S, is induced by some II()U, It
is now easy to prove related results along similar lines as above. However
we want to study now means of satisfying the conditions in (32).

LEMMA 4.1. Let ¥ be a W*-algebra and let H be a group of auto-
morphisms of U, such that the normal faithful state @ is H-invariant. Let

G be a normal subgroup of H. Then any &< H extends to a spatial
automorphism S of (U, G).

PROOF. For & < H define for all @ <G s(a) = @
A’I;hen FeAut¥, se AutG and for all a€ ¥ we have - dla]= & 7 ' 7la]
= s(a) ola], which shows (32). Thus S[II(a)U.] = I(7[a])Usw- defines a

spatial automorphism of (%, G), which we call the extension of o € Aut 2.

If H is a semidirect product, we can obtain an even stronger result.

THEOREM 4.3. Let U be a W¥-algebra and assume the semi-direct
product G H of the countable discrete groups G and H acts on U as a
group of automorphisms such that the normal faithful state ¢ is GQH

invariant. Then H extends to a group S(H) of spatial automorphisms of
(U, G) and (U,GO® H) and (Y, G), S(H)) are spatially isomorphic.

PROOF. The semi-direct product G®H is the system of all pairs (&, &)
~ ~ ~ ~ Y
with & € H and @& € G. Multiplication is given by (&, @)(p,8) = (o p, ds(B)),

where s € AutG is associated to & € H. For @€ H we therefore define its
extension as

SG(H(a) Uc) = H(E[a]) Us(a)
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Since @ is H-invariant, S, is even spatial on K®[(G), given by

S,3C ® €u = Sthatay ot Ea @ Exgay »

To see the remainder we define an operator U from K ® (G)® L2(S(H)) onto
HRQPGOH) by UZ[8:,e® &R E =3280o® Eo,y- U is obviously unitary,

and a simple computation shows

UUSO. = U(U'e)U, UU« = U(g‘a) U
and
Ull(a) = H(a)U

where
(_].\'dz[ga,a'® 80:] ® 8:5'(7/ = 23\0‘[(1}1,0" ® 8:1] ® SSGSG, .

This proves the theorem.

DEFINITION. A group of automorphisms G of a W¥-algebra U acts
ergodically, if it leaves only multiples of the identity invariant.

THEOREM 44. Let U,G,H and @ be as in Lemma 4.1. A subgroup
S(H) of S(H) acts ergodically on (A, G), if H acts ergodically on ¥ and
if all nontrivial H' orbits in G are infinite. These two conditions are
also necessary. Here S(I) denotes the extension of H to a group of
automorphisms of (U, G) as given in Lemma 4.1.

PROOF. Assume A< (U, G) is S(H') invariant and let A~(a,). Then the
vector AER &, = ZTl(a,)ER &, is invariant under S(H") too, i.e.

SHa)ER & = ST(o]a))ER Evars Voe H

Since all nontrivial H' orbits in G are infinite, we must have A{RE,=TI(a)f RE,
or A=Il(a) = I(s{a]). This finally implies A=A1, because H acts ergodically
on A. If conversely H does not act ergodically on %, then there exists an
a<cW with a=70[al \'&eH. Then II(a) is H' invariant. If there exists a
finite H orbit @ in G, @ = {cac™'|occ H}, then Y U, is S(H) invariant.

T 0O
In particular we shall say that an automorphism @& acts ergodically on U if

the group {&"} acts ergodically on .
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5. This section is devoted to application of our results in Section 4 to
the left regular representation of countable discrete groups. The left regular
representation, or the left ring, of a countable discrete group G, can be
considered a crosszd product of the complex numbers C with G. (C,G) is
traditionally denoted by U G). Our results in Section 4 yield immediately

THEOREM b5.1. Any outer automorphism of G extends to a spatial
automorphism of U(G). This extension is an outer automorphism of U(G),
if one of the following conditions holds

a) G is an R-group

b) G has no normal subgroup of finite index

c) All nontrivial conjugacy classes in G are infinite

d) G, agrees with the center of G.

COROLLARY 1. Any countably infinite group H has an ergodic and a
nonergodic outer automorphic representation on the hyperfinite factor of
type II. The nonergodic automorphic representation can be chosen in such
a way that all automorphisms leave a given subfactor M of type I, of the
hyperfinite factor elementwise invariant.

PROOF. Let N be a countably infinite set. By &.. = S.(IN) we denote
the group of all permutations of N, whereas I, =II,(N) stands for the group
of all finite permutations of N. Since II. is locally finite, 9U(II,) is the
hyperfinite factor of type II,.

1) Let us assume the group H has a representation o — P, Yoc H as a
group of infinite permutations of N. Then o—s, with s,(a) = P,aP;!
Va €Il. determines uniquely a representation of H as a group of outer
automorphisms of II.. By Theorem 5.1.c the s, extend uniquely to spatial
outer automorphisms S, of U(IL.).

2) In order to find a representation of H as a group of permutations of
N, let H be any countable group which contains H as a subgroup. Set N=H’
and for any o€ H let P, be given by P,(7) = o7 for all re H'. It is easy to
see that the group {S,|c€ H} acts ergodically on U(IL.) if H is infinite.
Since there are continuously many nonisomorphic countable discrete groups
H', we have determined in this way continuously many outer automorphic
representations of H. However it is not clear whether some of these
representations are not equivalent, i.e. whether there exists an automorphism
T of U(L.) such that T'S,T~' =S, for two automorphic representations S
and S" of H. So far I have been unable to determine when two automorphic
representations S and S” are equivalent in the above sense.

3) To find nonergodic outer automorphic representations of H we split
N into two disjoint parts N = N,UN, such that N, is infinite. ~Now we
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represent H as a group of permutations of N, which operate on N, only.
The extensions of these permutations the leave invariant all elements in U(IL.),
whose II.(N) support consists of permutations, which operate on N, only.
These elements constitute a regular representation of the group of permutations
of N,.. Thus by appropriately choosing the cardinality of N, we can achieve
that a certain subfactor M of type I, is elementwise invariant under all S,,
oce H By [13, Lemma 3.3.] there exists an inner automorphism 7' connecting
M and M, M = T(M). Then o —TS,T"" is the desired nonergodic outer
automorphic representation of H on 9XII.), which leaves M elementwise
invariant.

This corollary gives a new and more general proof of a result by Suzuki
[2]. In the next chapter we shall see a still more general result than this.

COROLLARY 2. Corollary 1 is also valid for at least one finite non-
hyperfinite factor of type II,.

PROOF. Let F" be a free product of countably (infinite) many cyclic
groups of order =2 and let a,, a,, -+ be the generators of F". Any
permutation of the generators extends to an outer automorphism of F™ and
then by Theorem 5.1.¢ to an outer automorphism of U(F™). Now proceed as
in the previous corollary.

The results in Corollary 1 show that U(II.) is an ideal candidate for
constructing crossed products. To those constructions we can then apply our
results in Section 3 and Lemma 4.1 easily.

The corollary of Theorem 4.1 can be applied as follows.

THEOREM 5.2. Let \.,, a€ G be a set of complex numbers of absolute
value 1 with N.g = NNg then S(U.) = N U, defines a spatial automorphism
of U(G). The group of these automorphisms is isomorphic to (G/CG)¥*.
Any inner automorphism of this type is of finite order. This group is a
group of outer automorphisms if G, is the center of G.

PROOF. The first part is already clear from the corollary. Assume now
this automorphism is inner, induced by Se UG),. Then SU,S* = MU., and
for S~(bs) we have b.5,« = M bs. This implies immediately that G-supp ScG..
Let now B¢ G-suppS and assume a belongs to the centralizer %z of 8, then
bapat = bg = Nubg or A, =1. Since B < G-supp Sc G, the centralizer &z of 8 is
of finite index. Thus the kernel of the homomorphism a«— A, of G into the
circle group is of finite index. This shows that S is of finite order.

In particular our results show that factors UG) possess outer automorphisms
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if G is not complete or if G is not perfect.

6. Now we want to apply the results of Section 4 to certain factors
which have been introduced by von Neumann [8] and which have been studied
by Pukanszky [14] and Schwartz [15]. The construction is based on the
following : Let N be a countably infinite set. For any ne N let (X,, 3, ppn)
be the finite measure space with X, = {0, 1}, 3, the discrete Borel structure of
X, and p,,({0}) = P, ppn({1})=1—p=¢q with 0 < p=1/2. Then let (X, 3, p,)
=(® Xn, @2, @ ppn) be the product Borel structure of the (X,, =, gym). The
measure space (X, 3, u,) is familiar from probability theory, where it describes
infinitely repeated coin tossing. X can also be considered the space of functions
on N with values 0 and 1. The set of functions on N with values 0 and 1
and finite support will be denoted by A = A(NN). A becomes an abelian group
if we define

(5+8)n) = 8(n) + §(n) (mod 2)

A admits a representation as a group of free, ergodic Borel automorphisms, of
(X, =, w,) which leave u, quasi-invariant [14]

[8xl(n) = x(n) + 8(n) (mod 2) (34)
(dpys/ dpy)x) = (p/ Q)77 (35)

where x-8 = 3x()8(7). The action of A can be extended to _L=(X, 3, w)=_1
and (X, 3, p) = L* by

(®a)(x) = a(dx) Vae [~
(36)
(uE)(x) = (Aphps/ App)*(2) E@x) Y §e L2

As in section 1 (3) we now define the operators 1I(a) and U, on [*® [}(A);
the only thing that has been altered are the Radon-Nikodym factors. The
operators II(a) and U,, ae L~, §< A span the W¥*-algebra ., which again
is called the crossed product of = and A. .9, is a factor for any 0 < p=1/2,
because A acts freely and ergodlcally on (X, 2, py), [8]. My is the hyperfinite
factor of type II, whereas the ., 0 < p<<1/2 are nonisomorphic factors of
type III [13,14]. Let us now turn to automorphisms of ,. We shall extend

in steps any permutation P, of N to an automorphism of ¥, First we
extend P, to X and A.

(0x)(n) = 2(P:'n),  (o8)(n) = &(Ps'n) (37)
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It is easy to see that this extension o of P, defines a Borel automorphism of
(X,3, u,), which leaves g, invariant, and an automorphism & of A respectively.
The extension of ¢ to £~ and _£? is as easy as hefore.

(3a)z) = a(c'x)  Yae L” (38)
(us5)(x) = E(@™' x) VEe L
The spatial automorphisms S, of M, can now be defined
S,(l(a)U;) = 1I(7 a) U, (39)
So26® & =3, 6 ® Eon) (40)

The necessary computations to check (39) and (40) are easy to perform and are
therefore omitted.

THEOREM 6.1. S.(N) has a representation as a group of spatial
automorphisms of the hyperfinite factors M, given by (37)—(40). S, (39)
defines an outer automorphism of the i, iff P,< S.—IL..

PROOF. The first part is already clear from above. Now let P, ¢ S.—Il.
and assume S, is an inner automorphism of %, with 3,,~(b,3). Then E,U,; S,
=Uyg, implies by y501y45 = F(8)(b;). Arguments analogous to those in Theorem
4.2 show that {8+ 8|8 € A} must be a finite set. This however is impossible
since P, € S,.—II..

Now let P, <Il,, then we can split N into a finite set N, and a set N,
such that P, leaves N, elementwise fixed and operates only on N,. Then
consider X; = ® X, 3, = ® 3, and p, =n@N My 2 =1,2. We have obviously

neNy neN;

X=XQ® X,, 2=3,Q® 3, and p, = p,; ® p,s. This also implies a factorization
of M, as My, = Mp @ My, with M, = (L(Xi, 2, up), D) 7 =1,2 [13].
Since P, operates only on N,, S, will leave #,, elementwise invariant. It is
known [16] that ., is a factor of type I,,, where n is the cardinality of N,.
Therefore S,|{ %, is an inner automorphism, induced by ggl. Then S, ® 1
induces S,.

As in Section 5 one shows now :

COROLLARY. Any countable discrete group admits an ergodic and
nonergodic outer automorphic representation of the hyperfinite factor ¥,
0 < p<1/2. The nonergodic representation can be chosen in such a way
that a given subfactor of type 1, is elementwise invariant.
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This corollary generalizes a result by T. Saité [3], however the proof is
different and more straightforward. For p=1/2 this is just the corollary of
Theorem 5.1. The corollary shows that the .9, are ideal candidates for
constructing crossed products.

Let G be a countable discrete group and let P: @« — P, be a representation
of G as a group of infinite permutations of N. Then P(G) extends by (37)-(40)
to a group S(G) of outer automorphisms of %, All S., a <G, leave the
vector 1 @ & € .L? @ (A) invariant. Thus we can form the crossed product
of M, and G, which we denote by (M,, G, P) since it also depends on the
permutation representation P of G. The corollary of Lemma 3.1 shows that
all (M,, G, P) are factors, regardless of P. Since ¥, 0 < p<<1/2 is a factor
of type IIl, (M,, G, P) are factors of type III [17]. However the (.3, G, P)
are finite factors. This gives us a large source of continuous factors, because
not only is p variable, but also P can be changed. On the basis of the recent
results by Powers [13] one would conjecture that all (¥, G, P) are non-
isomorphic for different p. It is also probable that distinct P will lead to
nonisomorphic factors for certain groups.

In (37) we had seen that a permutation representation P of G on N leads
to a representation of G as a group of automorphisms of A, (ad)(n) = &(P;'n)
V8e A, acG. This allows us to construct the semidirect product of A and G.
A®rG={(a,d)|acG,8<c A} and the multiplication is defined by

(a,8)(a’, &) = (aat, & + a(d))

Theorem 4.3 now suggests:

THEOREM 6.2. (HM,, G, P) is spatially isomorphic to (L=, AQrG).
The action of A®rG on (X,3, p,) is given by

(a, d) xl(n) = x(P:'n) + 8(n) (mod 2) (41)
and extended to [~ and _[* as

[(@d)alx) = a((@, ) 'x)  Vaec L
(42)
(a2 ENx) = (Afppian/Apy) () E(et, 8)'x) Ve L7
The proof proceeds as in Theorem 4.3. A particular permutation representation

P,, the Cayley representation can be obtained by identifying N and G and by
defining

Pu.B=aB aB<G=N. (43)
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Then Theorem 6.2 shows that ( #,,G, P,) are just the factors which have
been constructed by von Neumann [8], Pukanszky [14] and Schwartz [15].
Since M, is already a crossed product in its own right, (M, G, P,) can he
considered a “doubly crossed” product.

THEOREM 6.3. Any nontrivial automorphism p of G extends to an
outer spatial automorphism S, of (L=, AQ®prG). The extension of p

EeAut L~ and w, are given by (37) and (38). The corresponding auto-
morphism m of AQrG is given as

m(a, 8) = (pa, ud) (44)
and S, is defined as
S, (@)U (a,3) = TI((a)) U, m(a, 5) (45)
and
S8 R Ewpy = 2§ D Engansy (46)

PROOF. The equations (32) are easy to check and thus (45) defines an
automorphism of (=, AQpG). §u is obviously a unitary operator and a
simple computation shows that EH(a)U(a,a)Eu = I(Za)Upas. If p is an outer
automorphism of G, S, is an outer automorphism of (H,, G, P;,) by Lemma 3.1.
Thus we can assume that p is inner on G, wa) = BaB™'. Instead of S,
consider now the automorphism 7T : A—Ug.oS(A)Ugqyn In particular
T(U s) = Ut with 8%(a) = 8aB). Standard arguments (33) now show that
T is an outer automorphism, unless B=e.

Similar methods can also be applied to other factors (.H,, G, P), where
Px P, 1f GxCG the group & (Theorem 3.1) is nonempty and a group of
outer automorphisms of (H,, G, P) regardless of p or P.

We shall now turn to the construction of certain finite factors which
apparently have not been considered before. Again this construction is based
on the crossed product.

Let G’ be a countably infinite discrete group and G a countably infinite

subgroup of G'. For G' = N we construct again (X, 3, p,) and A as we did
earlier in this section.

LEMMA 6.1. G acts as a group of free, ergodic and measure preserving
Borel automorphisms on (X, 3, p,) by :

[Bxla) = z(B' o) VBeGcG, acG 37
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The p, are inequivalent for different 0 < p=1/2.

PROOF. It is easy to see that the point transformations 8¢ G as defined
above define Borel automorphisms of (X, 3, p,) which leave the p, invariant.
G acts freely on (X, 3, u,) if for Bxe the set E; = {x|Bxr=x] has p,measure
zero. We have to consider two cases.

a) B<G has infinite order. Then we write

Ey = EPUEP = {x < Eg|lx(e)=1} U [z < F| x(e) =0}
C {zlx(e)=2(B") =+ =2(B")=1} U z|x(e) =+ - - = 2(B87)=0] .

This shows that p?(Ep) < p" + ¢" for any n << oo,
b) BeG has finite order m = 2. Then find # elements «,,+++,a, such
that a, = B’a, for all j <m and k= [ We write

E, =\ (zeEs|x(a) =@} c \ ) {zlz@) = 2B 'a) = -+ = 8@)}

seA” deA”

where A™ is the set of all n-tuples with 0 and 1 as entries. This shows that

pEg) = 3 pnlPm glim = (prgm)"
deAn
with |8] = Z8(). Since pPm+q™ <1 we see again that p,(Eg) = 0. To show
the ergodicity of G let a< (X, 3, u) such that

a=PBa) VYBeG, with 8 given by (38).

Since (X, 3, u) is a finite measure space a<€ £? and a has an expansion with
respect to the orthonormal basis {w,|8< A} [14] with

w(x) = (=1)"(p/q) """ (44)

a = 2)\«5(05 .

It is easy to see that Bw, = wz where (Bd) ) = 8(B~'a). We therefore have
N = Mgy Oince the set {88|8 <G} is infinite if § 3 0, @ must be of the form
a = Mw,=constant.

Assume now that for p= p u,» p,. Then the Radon-Nikodym theorem
tells us that p, =f-pu, Since p, and p, are G-invariant, f is G-invariant.
But G acts ergodically on (X, 3, u,). Hence f is constant and g, = g, Which
is easily seen to be impossible.
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COROLLARY. The crossed products (L=(X, 3, p,), G) are factors of type
11,

In view of the recent results by Powers [13] it would be interesting to
find out if for certain groups G these factors are nonisomorphic for distinct

p. For G=G" denote (L>(X, 3, u,), G) by J1,(G) then one can easily show

THEOREM 6.5. Every automorphism p of G extends to a spatial outer
automorphism S, of J1,(G)..

(pr)(a) = 2(p~'a), (Fa)x) = a(p™'x) Yae L~ - (45)
(u.O)(x) = E(p "' ) (46)

S((a)U.) = H(@Ea)U (47)

Si38® & =3u,t. ® &uay (48)

PROOF. It is easy to show that S, defines an automorphism of J7,(G),
which is induced by 3,, If S, is an inner automorphism with S,~(b,) then
SII(a) = I(7Za)S, or byBa = bsfia, Yae £>. Thus the set {x|byx) = 0} is
contained, modulo a w, zero set, in the set E,z= {z|B8'x =p'x}. As in
Lemma 6.1 one shows that u,(E,z) =0 unless 8 =¢ and p is the identity
automorphism of G. Along similar lines one can also construct outer
automorphisms of (L>,G) if G = G. For certain groups G also ® will lead to
outer automorphisms of J7,(G).

I would like to thank my advisor, Professor M. E. Mayer, for his valuable
comments and his constant encouragement.
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