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ON GCR-OPERATORS
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We may call an operator acting on a Hilbert space a GCR-operator if it
generates a GCR-algebra. The purpose of this paper is to examine GCR-
operators. Two results are shown. One of them asserts that the product of
two GCR-operators which commute doubly is also a GCR-operator and the
other that any von Neumann algebra of type I acting on a separable Hilbert
space is generated by a GCR-operator. The latter is extremely connected with
the result of C. Pearcy [10].

1. Definitions and Theorem 1. Throughout this paper, we mean by an
operator a bounded linear operator on a Hilbert space and by a representation
of a *-algebra a *-representation as an algebra of operators. Given families
F, G, - - of operators on a Hilbert space H, A(F,G,--+) means the smallest
C*-algebra of operators on H containing F,G, -+ and the identity operator I
on H; and R(F,G,--+) the smallest von Neumann algebra on H containing
F,G,- - and, automatically, I. A C¥*-algebra A on H is said to be generated
by F,G,--- if A(F,G,-+--)=A; and a von Neumann algebra R on H is said
to be generated as a von Neumann algebra, or simply to be generated
unless we are thrown into confusion, by F,G,--- if R(F,G,-++)=R.

We call a C*-algebra A a GCR-algebra if any representation of A is of
type I, in other words, if for any representation = of A the von Neumann
algebra R(7(A)) is of type I ([3], [6], [7], and [12]). On the other hand, by
an NGCR-algebra we mean a C*-algebra in which there are no non-zero closed
two-sided ideals which are GCR-algebras ([3], [6]). It is known that several
C*-algebras of interest are GCR-algebras and Glimm’s uniformly hyperfinite
algebras are NGCR-algebras ([5]).

Now we define a notion of GCR-operators together with that of NGCR-
operators: An operator T on a Hilbert space is said to be a GCR-operator,
an NGCR-operator, if the C*-algebra A(T) generated by T is a GCR-algebra,
an NGCR-algebra, respectively. When we say, following some authors, that
an operator 1" is of type I, of type II, of type III if the von Neumann algebra
R(T) generated by T is of type I, of type II, of type I, respectively, we can
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assert that all GCR-operators are of type I and, as Prof. J. Tomiyama kindly
remarked to the author, that operators of type I and of type III are NGCR-
operators. The reason of the latter is as following. If R(T) has no portions
of type I and if a non-zero closed two-sided ideal J in A(T) is a GCR-algebra,
then the weak closure J of J in R(T") becomes a weakly closed two-sided ideal
in R(T) which produces a portion of type I contradicting the assumption.

Normal operators, compact opzrators and isometries are GCR-operators (for
isometries, [14] for instance), and there are NGCR-operators since operators of
type II and of type III exist ([15], [20]). Moreover, it must be remarked that
there is an NGCR-operator of type I. This fact is known immediately from D.
Topping’s result which says that there is an operator 7" such that A(T) is
uniformly hyperfinite (see [18]).

Hereafter we see

THEOREM 1. If S and T are GCR-operators on a Hilbert space such
that ST=TS and S¥T'=TS¥*, then ST is a GCR-operator.

The proof is easy from the following lemma, because in general any sub-

C*-algebra of a GCR-algebra is a GCR-algebra (4.3.5 in [3)).

LEMMA 1. Let A and B be C*-algebras on a Hilbert spuce which
commute elementwise. Then, A(A, B) is a GCR-algebra if and only if A
and B are GCR-algebras.

In the proof, some parts of arguments of tensor products of C*-algebras
are employed, so we recall here them. The a-norm in the algebraic tensor

product A(OB of A and B is defined by
Xl = 1Zm(Se) @ mo(Ty)ll for X =3%5:@ T, in AQOB,

using arbitrarily chosen faithful representations =, 7, of A, B, respectively, and

the v-norm in AC)B by
1 X1, = sup{||m(X)| : = taken over all representations = of A()B such that
[7(SRT)| = ISIT}

(cf. [9]). The following are known: The a-norm coincides with the v-norm
if Ais a GCR-algebra ([16]); and the a-product A®.B of A and B, the
completion of A()B with respect to the a-norm in A(MB, is a GCR-algebra
if and only if A and B are GCR-algebras ([17]).
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PROOF. Suppose that A and B are GCR-algebras in which we may
assume the identity operator is contained. Since the a-norm in A()B coincides
with the v-norm, the *-homomorphism

28 Q@ Ty ——> 2 S T,

of A()B to the smallest *-algebra containing A and B can be extended to a

- as
*-homomorphism ¢ of the a-product AR .B of A and B to A(A, B). When
a representation @ of A(A, B) is given, the composition w o @ of @ and 7 is a

representation of a GCR-algebra A@aB, then it is of type I and also, so is 7.
Therefore A(A, B) is a GCR-algebra. The converse is trivial and the proof
is completed.

Here remark that an analogous argument shows that A(A, B) is a CCR-
algebra (see (3], [6]) if and only if A and B are CCR-algebras.

If an operator T' commutes with T#*T, T is said to be nearly normal.
Since such T is written in the form 7= SV with S a self-adjoint operator
and with V' an isometry commutes with S ([1]), we know that a nearly normal
operator is a GCR-operator (cf. [21]), as an application of Theorem 1.

2. Theorem 2. In [10] C. Pearcy showed that any von Neumann algebra
of type I on a separable Hilbert space is generated by an operator. On the
other hand, it is seen that any von Neumann algebra of type I contains a
weakly dense sub-C*-algebra which is a GCR-algebra, though itself is sometimes
not a GCR-algebra (cf. [13]). Then there arises a question whether we can
find on a separable Hilbert space a GCR-operator by which a given von Neumann
algebra of type I is generated. In the following we answear this affirmatively.

The next lemma is a key to our discussion. Its proof is essentially same
as that of a lemma in [4].

LEMMA 2. Let {A;} be a sequence of C¥*-algebras with identities. If
each A, is generated by an operator, then the C¥-algebra obtained by
adjoining the identity to the C¥*(co)-sum of A/s is generated by an operator.

The C¥(c0)-sum P A, of A.s means the C¥-algebra of all formal
sums @71, with T,< A, and with all but finite number of ||T.,|’s less than
& for any &€>0, in which algebraic operations are defined coordinatewise and
in which norm is defined by |2@®T.| = sup|/T.].

PROOF. We may prove only the case when the sequence {A,} is infinite
because an easy modification proves the other case.

We regard each A; as a C*-algebra acting on some Hilbert space H; on
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which identity operator always denoted by I coincides with the identity of A,.
Then, A=3®%*A, is a C*-algebra on the direct sum H=3@H, of Hs.

For each ¢, let 7, be an operator such that A(T;)=A;. We can choose
sequences {A;}, {#;} of complex numbers and {K;} of closed discs in the complex
plane which satisfy the following conditions :

(a) A # 0 for each <.

(b) Let us put S; =N, T,+p, I, then the spectrum o(S;) of S; is contained
in the interior of K, for each 7, and

(¢) {S;} converges uniformly to O.

(d) KinK;=¢ if i +j.

(e) Let v, be the center of K; and 8, the radius, then each v; is positive
real, and

(f) {v} and {8} converge monotone to 0.

Let Z, be any positive integer and put L =3@.;H; and Q = 3.5
Then we know that

o(Q) = \_J o(S)u {0} .

i>1p

In fact, Theorem 1.6.17 in [11] teaches us that, for any neighborhood V of the
origin 0, there is a 8 >0 such that o(Q) cC o(P) + V for any operator P
commutes with Q and satisfies |P—Q| < 8, and we can choose Q,=3S;, D - - -
DS, BOBOD--- as the above P when 7 is sufficiently large, then

o(Q) c o(Q) + Ve |\ JaSHu () +V,

i>19

therefore, together with the obvious inclusion, the desired identity is obtained.
Next choose a closed disc K with its center at 0, disjoint with K if z = ¢,

and containing K; if ¢ > ¢,. Define a function f on M = UKi UK as

. >

0, if 2$Kio;

/e :{1, if 2¢K,.

Then, from the theorem of Mergelyan (for instance [19]), there is a sequence
{#x} of polynomials which converges to f uniformly on M. Since

1
2ni

(2 =f(2)N=I=8) " dz = p(S))  for 7 <y,

3K,
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1 gl oS
omi [ ORI e = 4D = 3D pulS),

and
e f (Pu) =Nl =S™ dx = puS) = I
we have
1u(S)I = 8 pe—F | suplzI-S)~| for i<,
164801 = 12dQ)] = 8lpe—F 1 supl(eI—Q)"|  for i >,

where 8 denotes the radius of K, and
| 2:(Si)—I|| = 8,[ p—f |l gglgll(zl =S

Thus, we know that {p.(S;)} converges as £— oo uniformly to O when 7 # 7,
and to I when 7 =14, while these convergences are uniform with respect to #’s.

So that {3 @ p«(S;)} converges as k— oo uniformly to E;, =+--- DO D jEB o
DOD---. Put here S=3ZBS,. Since =D p(S;) = p(S) is in A(S) for
each k&, we have E; € A(S) and also -« ®OP S, POPOD - -+ = SE,;, € A(S).
Therefore, --- @O DP A, DPODHOD--- is contained in A(S). Since 7, is
arbitrary, we have finally A=A(S) and the proof is completed.

LEMMA 3. Any homogeneous von Neumann algebra on a separable
Hilbert space is generated as a von Neumann algebra by a GCR-operator.

PROOF. We may regard a von Neumann algebra given in the lemma as
ZQ B(L), where Z is an abelian von Neumann algebra on a separable Hilbert
space and L separable ([2]).

There is an invertible positive operator P in Z such that R(P)=Z by von
Neumann’s generation theorem in [8], and it is easy to see that the operator

1, if dimL=1;

o
o
(=

, if 2=dimL < R,;
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0 0
1

. , if dimL = N,;

satisfies that R(S)=B(L).

Next let us put 7'= P® S, then this is a GCR-operator because P and S
are GCR-operators. We want to see that R(T)) = R. When dimL =1, it is
trivial. When 2 = dim L < R,, by direct computations we have

NT*T E+ /TT* =P®1 and TPRX)'=IRS,

1 0
0
where E = 0 . Since E is in R(1"), we know that P® 1 is in R(1")
0 0
and so is I®S. Therefore, R(T)=R(PRX1,IRQS)=R. At last, when dim L= Y,,

we have
NT*T=PRI1 and TPRD'=1IRQ S,
so R(T) = R as above. Now the proof is completed.
LEMMA 4. Any C¥*(co)-sum of GCR-algebras is a GCR-algebra.

PROOF. Let {A,} be an indexed family of GCR-algebras and A their
C*(c0)-sum. We may assume for our purpose that each A, has an identity I

For each a put Eaz---@O@IUEBO@OGB---, then we can identify A,

and AE, in a trivial way. If m is a representation of A, then
(1) = n(TE,) for TeA,

is a representation of A, and n(X) = 2 @ 7 (XE,) for all X in A. Since #(k,)
makes an orthogonal family of projections in the center of #(A) and each
R(m(A,)) is of type I, R(z(A)) =% P R(w.(A.)) is of type I. Then the proof

is completed.

Now we show

THEOREM 2. Any von Neumann algebra of type I on a separable
Hilbert space is generated as a von Neumann algebra by a GCR-operator.
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PROOF. We can find a family {R;} of von Neumann algebras indexed by

a suitable set of cardinals =, with each R; i-homogeneous such that the von
Neumann algebra given in the theorem is identified with the direct sum Z®R;

of R/s ([2]).

By Lemma 3, there is a GCR-operator T; with R(T,)=R,. Let

A be the C*-algebra obtained by adjoining the identity to 3@ A, where

A, =

A(T,). Then, by Lemma 4, A is a GCR-algebra ;and weakly dense in R.

Finally by Lemma 2, there is a operator T such that A(T)=A. It is of course
a GCR-operator and the proof is completed.
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