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It is well-known that on Stein manifolds the solution of the Cousin I
problem is always possible and the obstruction to the solution of the Cousin I1
problem is only topological. Here we use Hormander’s L*-estimates for the g
operator to investigate the problem of finding normal families of solutions for
given normal families of Cousin I and II data on Stein manifolds. In [8] Stoll
proved that, if M= C” with p>1, then the following two theorems hold :

(1) Let N be a normal set of non-negative divisors on M and =z, € M.
Suppose x, dose not belong to the support of any non-negative divisor which
is the limit of a net in N. Then there exists a continuous map v from N to
the set of all holomorphic functions on M such that for » € N () defines the
divisor » and y(¥)(x,) = 1.

(2) Let N be a normal set of non-negative divisors on M and G be an
open subset of M. Then there is a normal family {f)},.» of holomorphic
functions on M such that for » € N f, defines the divisor v and f.(c,) =1 for
some ¢, € G.

Later (1) and (2) were proved for M =a polydisc by McGrath in [6]. We
prove in this paper that on a Stein manifold M a normal family of solutions
for a given normal family of Cousin I data can always be found and, if
HWM,R/Z)=H*(M, R) =0, then a normal family of solutions for a given
normal family of Cousin II data can always be found. As a consequence, (2)
holds for Stein manifolds M satisfying H'(M, R/ Z) = H*(M, R) = 0 and thus
a problem proposed by Stoll (problem 17, p. 307, [1]) is solved for such Stein
manifolds. The method we use also enables us to prove (1) for M = the
product of C? and the unit ball of C” and a slightly weaker version of (1)
for Stein manifolds M satisfying =, (M) = H¥ M, R) = 0.

In what follows M is a connected positive-dimensional Stein manifold.

*) Supported partially by NSF Grant GP-7265.
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O, 0%, M, and M* denote respectively the sheaves of germs of holomorphic,
nowhere zero holomorphic, meromorphic, and non-identically-zero meromorphic
functions on M. ,O = the structure sheaf of C*. If G is an open subset of
M (or C*), then 1(G,0O) (or I'(G,,0)), is given the topology of uniform
convergence on compact subsets. A normal family in IYG, O) (or 1'(G, ,0)) is
a relatively compact subset of I(G,0) (or I(G,,0)). N = the set of all natural
numbers. If U = {U,};c; is an open covering of a topological space, then
Uiy, denotes Uy, N NUy, ey o eayer = Uanery [ Moy ooy Ny € LUgpeea, # 01,

and 2;0,...‘11,51 = 210,...';‘,51’1710."1 #pe
P

DEFINITION 1. Suppose G is an open subset of M.

(1) A net {fi}ses € I(G, M) is said to converge to f e ING, M) if for
every x € G there exist an open neighborhood U of x in G and g, A, g,, hs €
I'U,0), o € S, such that f,|U = g,(h,)™", fI|U =gh™', and g, and A,
converge respectively to ¢ and A2 in I'(U, O).

(ii) A normal family F in I(G, H) is a subset of I(G, M) such that, if
{foloes is @ net in F, then there is a subnet {f,.}..r converging to some

e G, M.

(ili)) A normal family F in I(G, H¥*) is a subset of T(G, M*) such that,
if {fs}ses is a met in F, then there are a subnet {f,}..r and an f € I'(G, H*)
with fg(,) —>f in I‘(G, W).

REMARKS.
(i) If feT(G,0) and {f,} .5 is a net in I(G, O), then f,—f in I(G,0O)
if and only if f, — f in I(G, M) (Lemma 1 below).

(i1) The convergence defined for I'(G, M) in Def. 1 (i) does not define a
topology for I'(G, ) corresponding to it as is seen in the following counter-
example : On C define meromorphic functions f{(z) =1,

-fn(z) =1 > fn,'m(z) = (Z =+ krl':[ )" <Z - 71,1: >_n:

m,n < N. Let S= {(n,h)|n € N, h is a map from N to N} be directed by
the following ordering: (n, h) = (', k") if and only if n =7  and A(m) =< h'(m)
for all m € N. Let gun = furm for (n,h) € S. Then f,—f as n— co and
for fixed n € N f, . — fn as m — co. However, the net {gu.n}wm.ns does not
converge to f.
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DETFINITION 2.
(i) A Cousin I datum f on M is an element ol 1'(M, M /0O), where O
is regarded as a subsheaf of the additive sheaf M.

(ii) A solution of a Cousin I datum f on M is an element of 1'(M, M)
which is mapped to f under the quotient map M — M /0.

(iii)) A normal family of Cousin I data {f“},., is a set of Cousin I data
on M with the following property: for every point x of M there exist an
open neighborhood U of x in M and a normal family {g“}... in TU, H)
such that ¢ is a solution of f@ | U for a € A.

DEFINITION 3. .

(i) A Cousin II datum (or a divisor) f on M is an element of T'(M, H*/O%),
where O is regarded as a subsheaf of the multiplicative sheaf H*. f is
called non-negative if every point of M has a connected open neighborhood U
such that f| U is the image of some non-zero element cf I'(U,©®) under the
quotient map M* — M* /O,

(ii) A solution of a Cousin II datum f on M is an element of I'(M, H*)
which is mapped to f under the quotient map JH* — H* /O*.

(iii) A normal family of Cousin II data {f*},., is a set of Cousin II
data on M with the following property: for every point x of M there exist
an open neighborhood U of x in M and a normal family {¢™}.., in 1 U, H¥)
such that ¢ is a solution of f*|U for a < A.

REMARK. The definition given here of a normal family of non-negative
Cousin II data agrees with the definition given in [8] of a normal family of
non-negative divisors.

DEFINITION 4. A normal family of non-negative divisors F on M is called
small if we can find an open covering U = {U,};.; of M and a subset K of
M such that (1) intersections of finite subcollections of U are empty or
contractible open subsets of M, (2) U; is a compact subset of an open subset
of M which is biholomorphic to a ball in a complex number space, (3)
KnUyu+0 iU, NnU,+ @, (4) KN U, is pathwise connected for A € I,
and (5) if a non-negative divisor f on M is the limit of a net in F, then
K N Supp f= @ (where the set of non-negative divisors is given the topology
defined in [8] and Supp f denotes the support of the section f of the sheaf
M*/O% on M).
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The following three theorems are the main results:

THEOREM 1. Every normal family of Cousin I data on M admits a
Samily of solutions which is normal in (M, H).

THEOREM 2. If HWM,R/Z)= H*M,R) =0, then every normal
family of Cousin II data on M admits a family of solutions which is
normal in (M, M¥). '

THEOREM 3. If m(M)= H*(M,R) =0 and F is a small normal family
of non-negative divisors on M, then there is a continuous map v: F— T'(M, O)
such that v(f) is a solution of f for every f € F.

REMARKS. (i) Suppose G is an open subset of M. Th. 2 implies that every
normal family of non-negative divisors admits a normal family of solutions F such
that for every f € F there exists x € G with f{x) = 1. The reason is the following :
For the given family of non-negative divisors we first find a normal family of
solutions H. ForzeGandneN let D,,= {f € T(M,0O)| | f(x)| >1/n}. Since
the closure F~ of H in I'(M, O) is compact and H Cc U{D,.|xz<G, ncN},
H c vt D,, ., for some z,+--,zpcGand n,,---,n,eN. For he H he D, ,,
for some i. Define f, = h(x;)"*h. The normal family of solutions F = {f,}scn
satisfies the requirement.

(ii) Under the assumptions of Th. 3, if x,€ M such that x,& Supp f for
fe F~, then we can choose v such that v(f)(x,) = 1. The reason is the following :
We first find a continuous map ¥: F~— I'(M, O) such that ¥(f) is a solution
of f. Then define v: F— (M, O) by v(f) = flx,)~* ¥(f).

LEMMA 1. Suppose G is a connected open subset of M. Suppose
£,9=0e1(G,0) and {fi}oes, {goloes are nets in 1(G,0O) such that (1)
fgs) eI (G,0),0¢€S, and (2) fo—fand g,— g in (G, O). Then fg~' < I(G,0)
and f,(g,)'—fg~' in ING, O).

PROOF. Let Z be the zero-set of g. We have to prove that every point
of G has an open neighborhood in which f¢™' is holomorphic and on which
f+(gs)™' converges uniformly to fg™'. Fix 2°eG. If ¢ Z, then f.(¢,)"
converges uniformly to f¢g~' on any compact neighborhood of 2° in G disjoint
from Z. Suppose 2°€ Z. We can assume w.l.o.g. that (1) G is an open
subset of C*, (2) 2°=0, (3) K= {(z*** 22)€C"| || =1, 1 =7 =n}CG,
and (4) L= {(2,*°*2,)€ K| |2,] =1} is disjoint from Z. Then f,(g9,)"
converges uniformly to f¢g~' on L. By considering the coefficients of the negative
powers of 2z, in the Laurent series of fg~' with respect to z,, we conclude that
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Jfg~' is holomorphic in the interior of K. Hence f,(¢,)~' converges to fg!
uniformly on the interior of K. .e.d.

LEMMA 2. Suppose G is an open subset of M and K is a compact subset
of G. If Fis a normal family in 1\G, O), then F is uniformly bounded on
K.

PROOF. This follows from the fact that the map ®: IG,®) — [0, o)
defined by ®(f) = |AK)| for feI(G, ) is upper semi-continuous. q. e. d.

LEMMA 3. Suppose {a,}..y and {b,} ..y are two non-decreasing sequences
of points in [0, 00) such that a, — oo. Then there exists a C® real-valued
Sunction p on [0, o0) such that p'=0, p”" =0, and p(a,)=b, for ne N (where
P and p” are respectively the first and second derivatives of p).

PROOF. Define p, on [0, o) by py(x) = b, for a,_, =x < a, (where a_,=0).

r+1

Define p;, ,(x) = pit)dt for 0=:=2. Then p = p, satisfies the requirement.
0

q.e.d.

LEMMA 4. Suppose Q is a connected Stein open subset of C* and {K,}..x
is a locally finite sequence of com pact subsets of Q. Suppose {cp}nen C [0, o).

Then there exists a C* plurisubharmonic function @ on Q such that inf
{p(x)] € Ky} =cn, neN.

PROOF. Let f: Q— C?" be an embedding of Q as a closed complex submanifold
of C¥'. For n€N let a, be the largest integer such that f(U Km> is disjoint

from the ball of C¥ centered at O and with radius a,. Since {K,},.y is locally
finite, @, — co. Let b, = supjcm=n €n, 7€ N. By Lemma 3 there existsa C?
real-valued function p on [0, o) such that P >0 p” =0, and p(an)>bn, neN.

Define &(2) = p(]2}?) for 2 C¥. Since Z a—z—éz- (2) €, 8,=p"(]2]?)] Zf“l

1,J=1
v
+p'(]2]%) (Z |, |2> =0 for £,---,Ey.€C, @ is plurisubharmonic on C?".
i=1
@ = @ o f satisfies the requirement. q.e.d.
LEMMA 5. Suppose H, and H, are Hilbert spaces and @ : H,—H, is a

continuous linear surjection. Then there exists a continuous linear map
H,— H, such that @ o~ = the identity map on H,.
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PROOF. Let L be the orthogonal complement of Ker @ in H,. Define
Vi Hy,— H, as follows: for x< H, set J(x) to be the unique element in L
such that @(y(x)) = x. The open mapping theorem implies that 4 is continuous.
q.e.d.

LEMMA 6. Su;bposé E and F are Fréchet spaces and @: E—F is a
continuous linear surjection. If K is a compact subset of F, then there exists
a compact subset L of E such that (L) = K.

PROOF. This {follows from §22.2(7),p.281,[5] and the open mapping
theorem. q.e.d.

LEMMA 7. Suppose H (M, R) = 0 and U = {U,},.x is an open covering
of M such that intersections of finite subcollections of U are empty or
contractible open subsets of M. Suppose K is a compact subset of Z*U, R).

(1) There exists a continuous linear map ¢: K— C(U, R) such that
8o @ = the identity map on K.

(ii) Ifin addition K c ZXU,Z) and H(M, R/ Z) = 0, then there exists
a compact subset L of C'(U,Z) such that 3(L) = K.

PROOF. (i) There exists §,,,>0 for U,,, # @ such that
(3) |d1uul é :g—luv fOI' {a/mv};,u,veN € K~

Since 6: C(U, R)—> Z* (U, R) is surjective, by Lemma 6 there exists 7,,>0 for
A+p+v
Uy,# @ such that, if a= {au);.ev € ZXU,R) and |ay,| =2 ° &,., then
there exists b= {b,}:,.ve C(U,R) with 8b=a and |b,,| =n,,. Let H = {b
= {budiuwen € CU, R) | 2 e 2770 m50 [ 03 1P+ Bipew 27747 E30L [ (8030 |* < o0 )
and H,= {a= {a}ipey € 22U, R) |a|® = %, ex 2777 EGl [ @ | << o0} H,
and H, are Hilbert spaces. We claim that the map @,: H, — H, induced
by & is surjective. Fix a = {a.}i.cv€ Hy, and we want to find b€ H, such

Aty
that @,(b) =a. We can assume w. l.0.g that |a| =1. Then |a,.| =2 * &,
There exists b = {8}, C'(U, R) with 8 =a and|b,,| =7,,. Hence b<c H,
and @,(b) = a. By Lemma 5 there exists a continuous linear map @,: H,— H,
such that @,@, = the identity map on H,. Let i{,: K— H, and i,: H,—»C'U, R)
be inclusion maps. ¢, is continuous because of (3). @ =1,p, 7, satisfies the
requirement.

(i) Let G be the multiplicative group {z<€ C|| z| =1}. Since G=R/Z,
H'(M,G) =0. Let K= {a®},cs. Let @(@a™)=0" = {(b{2}] .cn. exp (27t b
exp (271 b)) exp (277 b§P)=1 for U,,,# . Hence there exists 0=b"<1 for U,
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# ¢ and a< A, such that for U,,# @ exp (277 b) exp (— 271 bi”)=exp (27ib{).

Let ¢ =6 + b2 —b®. Then ¢ = {c};,.yeC(U,Z), ac A. The closure
L of {¢“},cq in C'(U, Z) satisfies the requirement. q.e.d.

LEMMA 8. Suppose Q is a Stein open subset of C¥. Suppose U= {U},.r
is a locally finite open covering of Q such that U, is relatively compact in
Q,n el Supprse Fc Z\(U,O) and a,,.>0, N, p<l, such that | f1,(Un)| = ay,
Jor {filiner€ F. Then there exists a continuous map v: F— C(U, O) such

that 8(y(f)) = f for f < F.

PROOF. Let {p;},.; be a partition of unity subordinate to U. Let

| (
b, = sup1§i§N\;§g (Q)\and a=3%{ba,/UNU,# @B}, nel. Let k beaC~ positive-

valued function on Q such that e = f kdx < oo (where dx is the Euclidean

Q
volume element of C¥). Since Q is o-compact, {N€I|U,# ¢} is countable. By
Lemma 4 there is a C® plurisubharmonic function @ on Q such that inf
{p(z)] 2 € U7} = log (Ne3) + | (logk™H)U;)| for U, # ¢. Let ¥(2) = ¢(=)
+ 2log(1 + |=z|?) on Q. Let H, = {n|7n is a locally square integrable function
on Q and g7 is an (0, 1)-form on Q with locally square integrable functions as
coefficients such that ||7|*, 4+ [S7[} < oo} and let H, = {0|® is a (0,1)-form on
Q with locally square integrable functions as coefficients such that e =0 and
|@l,<co}, where 3 is in the distribution sense and the norms | - |, and | - ||,
are as defined on pp. 77-78 of [3]. H, and H, are Hilbert spaces. We are going
to define a map v,: F— H, Take f={fulp.cr€F. Let h?=3,0, where o,
is the trivial extension of p,f.; on U,. Then f,, =AY — h{” on U,,. 0=235h)"
—2h{” on U,,. There is a unique C* (0, 1)-form ® on Q such that 0o=3A{" on
U, Then 30=0 and |w|, =< /e. Hence we H,, Set y(f)=w. 1, is
continuous.
Let 6: H,— H, be induced by &
Then # is a continuous linear surjection (Lemma 4, p. 945,[4]). By Lemma
5 there eXists a continuous linear map v,: H,—H, such that 6oy, = the
identity map on H, Define v: F— C(U, ©) as follows: Take f e F. Let
A — vy, (v, (NIU,, where h{" is as defined above. Set v(f)= {g.};cr Then
fy satlsﬁes the requirement. q.e.d.

THEOREM 4. Suppose U={U,},.; and V = {V,},.; are open coverings
of M such that V is locally finite and V; is a compact subset of U;, Nel
Suppose F is a compact subset of Z'(U,O). Then there exists a continuous
map v: F—C(V,0) such that §(v(f))=f on V.

PROOF. M is a closed complex submanifold of C* for some N. There
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exists an open neighborhood Q, of M in C" and a holomorphic retraction p, :
Q,— M(VIIL C. 8., p. 257,[2]). There exists a Stein open neighborhood Q of M

in O, (Th.2,p.380,[7]). Let p=p,|Q. Let V = {V,},.;, where V,=p=(V,).
Let p*: ZY(U, O) — Z\(V, yO) bz induced by p, i.e., if {fi}iper€ Z'(U, ), then
P(f) = {fiu}ﬁ.m e ZY(V, yO), where fi,=(fi, o p)| V... p* is linear and continuous.
Let F= p*(F). By Lemma 2 there exists a,, > 0, A, u € I, such that | (V)| Zas.
for {fi)iuerc F. Hence |?M(T/m)\ = a,, for {ﬁ“}},”sle F. By Lemma 8 there
exists a continuous map 7: F— CAV,yO) such that §@F@))=F for fe F.
Define v: F— C%V, () as follows: Take feF. Let 7 (p*(f)) = {gi}ier Let
g;z@\V;. Set Y(f) = {g.}icrr Then v satisfies the requirement. q.e.d.

REMARK. The map v constructed in the proofs of Lemma 8 and Th.4
satisfies the following linearity conditions: v(f + f ) =v(f) + ¥(f") and v(af)=ay(f)
if aeCand f,f,f+f, af € F.

PROOF OF THEOREM 1. Suppose F = {f®},.4 is a normal family of
Cousin I data on M. There exists an open covering U = {U,};.; of M and
i e CW, M), ac A, such that (1) f{® is a solution of f@|U, ac A,
Mel, and (2) for fixed Ael {f"}.cs is a normal family in TYU,, HM). We can
suppose w.l.o.g. that U is locally finite and there is an open covering
V={V,}licr of M such that Vi is a compact subset of U,, M€ L

Let A =(f — fiNU ac A, N, pel. B9={hE}, ,cr e Z(U,0). By
Lemma 1 for fixed N, pe I {hi3}aca is a normal family in I'(U,,, O). By Th. 4
there exists & = (£}, C°(V,0), ac A, such that 8k“ =h® on V, ac A,
and for fixed A € I {k{*},.4is a normal family in I'(V;, ©). Define g e I'(M, M),
ac A, by setting g9=f"—k” on V;,, acA. {g“}.c. is a normal family in
(M, M) and g is a solution of f, ¢ A. q.e.d.

PROOF OF THEOREM 2. Suppose F= {f“},.4 is a normal family of
Cousin II data on M. There exist an open covering U = {U,};c; of M and
{(fiN e CWU, M*),ac A, such that (1) £ is a solution of f@| U, acA,
nMel, and (2) for fixed Ne I {f{*},c4 is a normal family in I'U,, H*). We
can suppose w.l.o0.g. that (1) intersections of finite subcollections of U are
empty or contractible open subsets of M, (2) U is locally finite, and I=N and
(3) there exists an open covering V = {V,},.; of M such that V7 is a compact
subset of U,,n¢e L.

Let Al = f(f) " Uy ac A,n,pel. By Lemma 1 for fixed A, p
€l {h{}ca is a relatively compact subset of I'(U,,, C*) (where I(U,,, O%) is
given the topology induced from (U, 0)). Fix x,,€U,, for U,,# @#. Since
Ui is empty or contractible, for U,,# @ and M<<p there exists a unique
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k2 e (U,,, ) such that exp (2rik{®)=h{2 and the real part of £{*(x;,) is in [0 1).
Set kly =—k{ and &P =0. E9={kZ},,,cCU,O). Then 8k“eZXU,Z)
and for fixed N, pel {kP}.ca is a normal family in U, ©). By Lemmas 2
and 7 there exists u@ e C'(U, Z) a< A, such that du® =8k and {#},., is a
relatively compact subset of C'(U, Z). Let v =k“—#®, Then {v®},c4 is a
relatively compact subset of Z'(U, ). By Th. 4 there exists w® = {w{®};.,
€eC(V,0), a<c A, such that dw™ =9 and {w™},., is a relatively compact
subset of C°(V,0). Define g e I'(M, M*) by setting g = f{* exp (—2miw™)
on V,. Then {g®}.c4 is a normal family in D(M, H*) and g is a solution
of f@ acA. q.ed.

PROOF OF THEOREM 3. Suppose F'= {f*},., is a small normal family
of non-negative divisors on M. We can assume w.l.o.g. that F is compact in
the topological space of all non-negative divisors. There exist an open covering
U ={U;cr of M and a subset K of M such that (1) to (5) of Def. 4 are
satisfied. We can assume w.l.o0.g. that U is countable. Fix x,¢ KNU, for
U,#9. Fix xp=x,c KNU,, for U,nU,#@. By Ths. 1.9 (p.168) and 2.25
(p- 188) of [8] there exists A e IU,, (), a< A, A€, such that (1) A is a
solution of f@|U,, (2) h(x;) =1, and (3) for fixed A<l the map from F
to INU,, ) defined by f“ -— h{® is continuous.

For U,nU,# @ choose a continuous map &,,: [0,1]->KNU, such that
£,.0) =x, and £,1) =x,. For acA and U,NU,# @ there is a unique
continuous map 7§’ : [0,1] - R such that 7{®(0) =0 and exp (27iny (H))
= hP(EWO)| A(E(0) 71 for 6€[0,1]. Let &5 = hP(he) Uy ac AN, e L
There is a unique holomorphic function #{% on U,, such that exp (27iuy) = A
and the real part of «{(x;,) is 7P(1)—7{(1). Let «'= {&f}; pcr ' € ZXU, Z).
The map from F to C'(U, O) defined by f — ™ is continuous. B= {§u'"},. 4
is a compact subset of ZXU,Z). By Lemma 7 there exists a = {a;?}; c1
eC(U,R), a<A, such that 6a” =28 and the map from B to C'(U,R)
defined by &u'® —a™ is continuous. Let v = —a. Then C={v'“}, 4 is
a compact subset of Z'(U, O).

Let ¢ = exp(—27iai®). Then

(4) C(n)c(ﬂ)c(“) =1 fOr U}uv * g

Fix U,# (. Since M is connected, for every U,# ¢§ we can find Ay, -+, N, €1

m-—1

such that A, = A and Ul,ﬂUl,lqb g for 0=j <m. Let d”= ][ ¢{%.. Since

j=0
7 (M)=0, (4) implies that d{” is independent of the choice of Ay, =+« <, Ap_;.
Ay = e for Up# 9.

We can choose a locally finite open covering V ={V,},.; of M such that
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Vi is a compact subset of U,, A€l By Th.4 there exists w{® = {w{®};;
e C(V,0) such that 8w™ =v* on V and the map from C to CYV,0)
defined by v —w is continuous.

Define g € I'(M, O) by setting ¢'* = d{”h{* exp (—2miw{®) on V,. ¢ is
well-defined, because exp (—27iw{®) exp (2miw®) = exp 2miv{y) = exp (2miu(®)
exp (—2mialy)) = kPcly) = hP(h?)'d(d{”)™ on V,,. The map v: F—->I(M, O)
defined by v(f) = g satisfies the requirement. q.e.d.

COROLLARY. (1) holds for M = the product of C* and the wunit ball
of C”.

PROOF. We can assume w.l.o.g. that x, = 0, because any point of M
can be mapped to the origin by some biholomorphic map of M onto M. Let
I=N. For el let U, = {(z, w) e C*' X C*| N 2| "+ (M + DN 2| w|? < 1}. U,
is biholomorphic to a ball in C?*? and is relatively compact in M. U = {U,},.;
covers M. Let K = {0}. Then (1) to (5) of Def. 4 are satisfied with F= N.
N is a small normal family of non-negative divisors on M. q.e.d.
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