Tôhoku Math. Journ. 21(1969), 548-557.

NORMAL FAMILIES OF COUSIN I AND II DATA

YUM-TONG SIU*)

(Received December 12, 1968; revised February 27, 1969)

It is well-known that on Stein manifolds the solution of the Cousin I problem is always possible and the obstruction to the solution of the Cousin II problem is only topological. Here we use Hörmander's L^2 -estimates for the $\overline{\partial}$ operator to investigate the problem of finding normal families of solutions for given normal families of Cousin I and II data on Stein manifolds. In [8] Stoll proved that, if $M = C^p$ with p > 1, then the following two theorems hold:

(1) Let N be a normal set of non-negative divisors on M and $x_0 \in M$. Suppose x_0 dose not belong to the support of any non-negative divisor which is the limit of a net in N. Then there exists a continuous map γ from N to the set of all holomorphic functions on M such that for $\nu \in N \gamma(\nu)$ defines the divisor ν and $\gamma(\nu)(x_0) = 1$.

(2) Let N be a normal set of non-negative divisors on M and G be an open subset of M. Then there is a normal family $\{f_{\nu}\}_{\nu \in N}$ of holomorphic functions on M such that for $\nu \in N$ f_{ν} defines the divisor ν and $f_{\nu}(c_{\nu}) = 1$ for some $c_{\nu} \in G$.

Later (1) and (2) were proved for M = a polydisc by McGrath in [6]. We prove in this paper that on a Stein manifold M a normal family of solutions for a given normal family of Cousin I data can always be found and, if $H^{1}(M, \mathbb{R}/\mathbb{Z}) = H^{2}(M, \mathbb{R}) = 0$, then a normal family of solutions for a given normal family of Cousin II data can always be found. As a consequence, (2) holds for Stein manifolds M satisfying $H^{1}(M, \mathbb{R}/\mathbb{Z}) = H^{2}(M, \mathbb{R}) = 0$ and thus a problem proposed by Stoll (problem 17, p. 307, [1]) is solved for such Stein manifolds. The method we use also enables us to prove (1) for M = the product of \mathbb{C}^{q} and the unit ball of \mathbb{C}^{p} and a slightly weaker version of (1) for Stein manifolds M satisfying $\pi_{1}(M) = H^{2}(M, \mathbb{R}) = 0$.

In what follows M is a connected positive-dimensional Stein manifold.

^{*)} Supported partially by NSF Grant GP-7265.

 $\mathcal{O}, \mathcal{O}^*, \mathcal{M}, \text{ and } \mathcal{M}^*$ denote respectively the sheaves of germs of holomorphic, nowhere zero holomorphic, meromorphic, and non-identically-zero meromorphic functions on \mathcal{M} . $_n\mathcal{O}$ = the structure sheaf of \mathbb{C}^n . If G is an open subset of \mathcal{M} (or \mathbb{C}^n), then $\Gamma(G, \mathcal{O})$ (or $\Gamma(G, _n\mathcal{O})$), is given the topology of uniform convergence on compact subsets. A normal family in $\Gamma(G, \mathcal{O})$ (or $\Gamma(G, _n\mathcal{O})$) is a relatively compact subset of $\Gamma(G, \mathcal{O})$ (or $\Gamma(G, _n\mathcal{O})$). \mathbf{N} = the set of all natural numbers. If $\mathbf{U} = \{U_\lambda\}_{\lambda \in I}$ is an open covering of a topological space, then $U_{\lambda_0 \dots \lambda_p}$ denotes $U_{\lambda_0} \cap \dots \cap U_{\lambda_p}, \{f_{\lambda_0 \dots \lambda_p \in I} = \{f_{\lambda_0 \dots \lambda_p} | \lambda_0, \dots, \lambda_p \in I, U_{\lambda_0 \dots \lambda_p} \neq \emptyset\},$ and $\Sigma'_{\lambda_0, \dots, \lambda_p \in I} = \Sigma_{\lambda_0, \dots, \lambda_p \in I, U_{\lambda_0 \dots \lambda_p} \neq \emptyset}$.

DEFINITION 1. Suppose G is an open subset of M.

(i) A net $\{f_{\sigma}\}_{\sigma \in S} \subset \Gamma(G, \mathcal{M})$ is said to converge to $f \in \Gamma(G, \mathcal{M})$ if for every $x \in G$ there exist an open neighborhood U of x in G and $g, h, g_{\sigma}, h_{\sigma} \in$ $\Gamma(U, \mathcal{O}), \sigma \in S$, such that $f_{\sigma} | U = g_{\sigma}(h_{\sigma})^{-1}, f | U = gh^{-1}$, and g_{σ} and h_{σ} converge respectively to g and h in $\Gamma(U, \mathcal{O})$.

(ii) A normal family F in $\Gamma(G, \mathcal{M})$ is a subset of $\Gamma(G, \mathcal{M})$ such that, if $\{f_{\sigma}\}_{\sigma \in S}$ is a net in F, then there is a subnet $\{f_{\sigma(\tau)}\}_{\tau \in T}$ converging to some $f \in \Gamma(G, \mathcal{M})$.

(iii) A normal family F in $\Gamma(G, \mathcal{M}^*)$ is a subset of $\Gamma(G, \mathcal{M}^*)$ such that, if $\{f_{\sigma}\}_{\sigma \in S}$ is a net in F, then there are a subnet $\{f_{\sigma(\tau)}\}_{\tau \in T}$ and an $f \in \Gamma(G, \mathcal{M}^*)$ with $f_{\sigma(\tau)} \to f$ in $\Gamma(G, \mathcal{M})$.

Remarks.

(i) If $f \in \Gamma(G, \mathcal{O})$ and $\{f_{\sigma}\}_{\sigma \in S}$ is a net in $\Gamma(G, \mathcal{O})$, then $f_{\sigma} \to f$ in $\Gamma(G, \mathcal{O})$ if and only if $f_{\sigma} \to f$ in $\Gamma(G, \mathcal{M})$ (Lemma 1 below).

(ii) The convergence defined for $\Gamma(G, \mathcal{M})$ in Def. 1 (i) does not define a topology for $\Gamma(G, \mathcal{M})$ corresponding to it as is seen in the following counterexample: On C define meromorphic functions $f(z) \equiv 1$,

$$f_n(z) \equiv 1$$
, $f_{n,m}(z) = \left(z + \frac{1}{m}\right)^n \left(z - \frac{1}{m}\right)^{-n}$,

 $m, n \in \mathbb{N}$. Let $S = \{(n, h) | n \in \mathbb{N}, h \text{ is a map from } \mathbb{N} \text{ to } \mathbb{N}\}$ be directed by the following ordering: $(n, h) \leq (n', h')$ if and only if $n \leq n'$ and $h(m) \leq h'(m)$ for all $m \in \mathbb{N}$. Let $g_{(n,h)} = f_{n,h(n)}$ for $(n, h) \in S$. Then $f_n \to f$ as $n \to \infty$ and for fixed $n \in \mathbb{N}$ $f_{n,m} \to f_n$ as $m \to \infty$. However, the net $\{g_{(n,h)}\}_{(n,h) \in S}$ does not converge to f.

Y. .T. SIU

DEFINITION 2.

(i) A Cousin I datum f on M is an element of $I'(M, \mathcal{M}/\mathcal{O})$, where \mathcal{O} is regarded as a subsheaf of the additive sheaf \mathcal{M} .

(ii) A solution of a Cousin I datum f on M is an element of $\Gamma(M, \mathcal{M})$ which is mapped to f under the quotient map $\mathcal{M} \to \mathcal{M}/\mathcal{O}$.

(iii) A normal family of Cousin I data $\{f^{(\alpha)}\}_{\alpha \in A}$ is a set of Cousin I data on M with the following property: for every point x of M there exist an open neighborhood U of x in M and a normal family $\{g^{(\alpha)}\}_{\alpha \in A}$ in $\Gamma(U, \mathcal{M})$ such that $g^{(\alpha)}$ is a solution of $f^{(\alpha)} | U$ for $\alpha \in A$.

DEFINITION 3.

(i) A Cousin II datum (or a divisor) f on M is an element of $\Gamma(M, \mathcal{M}^*/\mathcal{O}^*)$, where \mathcal{O}^* is regarded as a subsheaf of the multiplicative sheaf \mathcal{M}^* . f is called non-negative if every point of M has a connected open neighborhood Usuch that $f \mid U$ is the image of some non-zero element of $\Gamma(U, \mathcal{O})$ under the quotient map $\mathcal{M}^* \to \mathcal{M}^*/\mathcal{O}^*$.

(ii) A solution of a Cousin II datum f on M is an element of $\Gamma(M, \mathcal{M}^*)$ which is mapped to f under the quotient map $\mathcal{M}^* \to \mathcal{M}^* / \mathcal{O}^*$.

(iii) A normal family of Cousin II data $\{f^{(\alpha)}\}_{\alpha \in A}$ is a set of Cousin II data on M with the following property: for every point x of M there exist an open neighborhood U of x in M and a normal family $\{g^{(\alpha)}\}_{\alpha \in A}$ in $\Gamma(U, \mathcal{M}^*)$ such that $g^{(\alpha)}$ is a solution of $f^{(\alpha)} | U$ for $\alpha \in A$.

REMARK. The definition given here of a normal family of non-negative Cousin II data agrees with the definition given in [8] of a normal family of non-negative divisors.

DEFINITION 4. A normal family of non-negative divisors F on M is called small if we can find an open covering $U = \{U_{\lambda}\}_{\lambda \in I}$ of M and a subset K of M such that (1) intersections of finite subcollections of U are empty or contractible open subsets of M, (2) U_{λ}^{-} is a compact subset of an open subset of M which is biholomorphic to a ball in a complex number space, (3) $K \cap U_{\lambda\mu} \neq \emptyset$ if $U_{\lambda} \cap U_{\mu} \neq \emptyset$, (4) $K \cap U_{\lambda}$ is pathwise connected for $\lambda \in I$, and (5) if a non-negative divisor f on M is the limit of a net in F, then $K \cap$ Supp $f = \emptyset$ (where the set of non-negative divisors is given the topology defined in [8] and Supp f denotes the support of the section f of the sheaf $\mathcal{M}^*/\mathcal{O}^*$ on M).

The following three theorems are the main results:

THEOREM 1. Every normal family of Cousin I data on M admits a family of solutions which is normal in $\Gamma(M, \mathcal{M})$.

THEOREM 2. If $H^{1}(M, \mathbf{R}/\mathbf{Z}) = H^{2}(M, \mathbf{R}) = 0$, then every normal family of Cousin II data on M admits a family of solutions which is normal in $\Gamma(M, \mathcal{M}^{*})$.

THEOREM 3. If $\pi_1(M) = H^2(M, \mathbf{R}) = 0$ and F is a small normal family of non-negative divisors on M, then there is a continuous map $\gamma : F \to \Gamma(M, \mathcal{O})$ such that $\gamma(f)$ is a solution of f for every $f \in F$.

REMARKS. (i) Suppose G is an open subset of M. Th. 2 implies that every normal family of non-negative divisors admits a normal family of solutions F such that for every $f \in F$ there exists $x \in G$ with f(x) = 1. The reason is the following: For the given family of non-negative divisors we first find a normal family of solutions H. For $x \in G$ and $n \in N$ let $D_{x,n} = \{f \in \Gamma(M, \mathcal{O}) \mid |f(x)| > 1/n\}$. Since the closure H^- of H in $\Gamma(M, \mathcal{O})$ is compact and $H^- \subset \bigcup \{D_{x,n} \mid x \in G, n \in N\}$, $H^- \subset \bigcup_{i=1}^k D_{x_i,n_i}$ for some $x_1, \cdots, x_k \in G$ and $n_1, \cdots, n_k \in N$. For $h \in H$ $h \in D_{x_i,n_i}$ for some *i*. Define $f_h = h(x_i)^{-1}h$. The normal family of solutions $F = \{f_h\}_{h \in H}$ satisfies the requirement.

(ii) Under the assumptions of Th. 3, if $x_0 \in M$ such that $x_0 \notin$ Supp f for $f \in F$, then we can choose γ such that $\gamma(f)(x_0) = 1$. The reason is the following: We first find a continuous map $\tilde{\gamma}: F^- \to \Gamma(M, \mathcal{O})$ such that $\tilde{\gamma}(f)$ is a solution of f. Then define $\gamma: F \to \Gamma(M, \mathcal{O})$ by $\gamma(f) = f(x_0)^{-1} \tilde{\gamma}(f)$.

LEMMA 1. Suppose G is a connected open subset of M. Suppose $f, g \equiv 0 \in \Gamma(G, \mathcal{O})$ and $\{f_{\sigma}\}_{\sigma \in S}$, $\{g_{\sigma}\}_{\sigma \in S}$ are nets in $\Gamma(G, \mathcal{O})$ such that (1) $f_{\sigma}(g_{\sigma})^{-1} \in \Gamma(G, \mathcal{O}), \sigma \in S$, and (2) $f_{\sigma} \rightarrow f$ and $g_{\sigma} \rightarrow g$ in $\Gamma(G, \mathcal{O})$. Then $fg^{-1} \in \Gamma(G, \mathcal{O})$ and $f_{\sigma}(g_{\sigma})^{-1} \rightarrow fg^{-1}$ in $\Gamma(G, \mathcal{O})$.

PROOF. Let Z be the zero-set of g. We have to prove that every point of G has an open neighborhood in which fg^{-1} is holomorphic and on which $f_{\sigma}(g_{\sigma})^{-1}$ converges uniformly to fg^{-1} . Fix $z^{0} \in G$. If $z^{0} \notin Z$, then $f_{\sigma}(g_{\sigma})^{-1}$ converges uniformly to fg^{-1} on any compact neighborhood of z^{0} in G disjoint from Z. Suppose $z^{0} \in Z$. We can assume w.l.o.g. that (1) G is an open subset of C^{n} , (2) $z^{0} = 0$, (3) $K = \{(z_{1}, \dots, z_{n}) \in C^{n} | |z_{i}| \leq 1, 1 \leq i \leq n\} \subset G$, and (4) $L = \{(z_{1}, \dots, z_{n}) \in K | |z_{n}| = 1\}$ is disjoint from Z. Then $f_{\sigma}(g_{\sigma})^{-1}$ converges uniformly to fg^{-1} on L. By considering the coefficients of the negative powers of z_{n} in the Laurent series of fg^{-1} with respect to z_{n} , we conclude that fg^{-1} is holomorphic in the interior of K. Hence $f_{\sigma}(g_{\sigma})^{-1}$ converges to fg^{-1} uniformly on the interior of K. q.e.d.

LEMMA 2. Suppose G is an open subset of M and K is a compact subset of G. If F is a normal family in $\Gamma(G, \mathcal{O})$, then F is uniformly bounded on K.

PROOF. This follows from the fact that the map $\Phi: \Gamma(G, \mathcal{O}) \to [0, \infty)$ defined by $\Phi(f) = |f(K)|$ for $f \in \Gamma(G, \mathcal{O})$ is upper semi-continuous. q. e. d.

LEMMA 3. Suppose $\{a_n\}_{n \in N}$ and $\{b_n\}_{n \in N}$ are two non-decreasing sequences of points in $[0, \infty)$ such that $a_n \to \infty$. Then there exists a C^2 real-valued function ρ on $[0, \infty)$ such that $\rho' \ge 0$, $\rho'' \ge 0$, and $\rho(a_n) \ge b_n$ for $n \in \mathbb{N}$ (where ρ' and ρ'' are respectively the first and second derivatives of ρ).

PROOF. Define ρ_0 on $[0, \infty)$ by $\rho_0(x) = b_n$ for $a_{n-1} \leq x < a_n$ (where $a_{-1}=0$). Define $\rho_{i+1}(x) = \int_0^{x+1} \rho_i(t) dt$ for $0 \leq i \leq 2$. Then $\rho = \rho_3$ satisfies the requirement. q. e. d.

LEMMA 4. Suppose Ω is a connected Stein open subset of \mathbb{C}^N and $\{K_n\}_{n \in \mathbb{N}}$ is a locally finite sequence of compact subsets of Ω . Suppose $\{c_n\}_{n \in \mathbb{N}} \subset [0, \infty)$. Then there exists a \mathbb{C}^2 plurisubharmonic function φ on Ω such that inf $\{\varphi(z) \mid z \in K_n\} \geq c_n, n \in \mathbb{N}$.

PROOF. Let $f: \Omega \to \mathbb{C}^{N'}$ be an embedding of Ω as a closed complex submanifold of $\mathbb{C}^{N'}$. For $n \in \mathbb{N}$ let a_n be the largest integer such that $f\left(\bigcup_{m=n}^{\infty} K_m\right)$ is disjoint from the ball of $\mathbb{C}^{N'}$ centered at 0 and with radius a_n . Since $\{K_n\}_{n \in \mathbb{N}}$ is locally finite, $a_n \to \infty$. Let $b_n = \sup_{1 \le m \le n} c_m$, $n \in \mathbb{N}$. By Lemma 3 there exists a \mathbb{C}^2 real-valued function ρ on $[0, \infty)$ such that $\rho' \ge 0$, $\rho'' \ge 0$, and $\rho(a_n^2) \ge b_n$, $n \in \mathbb{N}$. Define $\widehat{\varphi}(z) = \rho(|z|^2)$ for $z \in \mathbb{C}^{N'}$. Since $\sum_{i,j=1}^{N'} \frac{\partial^2 \widehat{\varphi}}{\partial z_i \partial \overline{z}_j}(z) \xi_i \overline{\xi}_j = \rho''(|z|^2) |\sum_{i=1}^{N'} \xi_i \overline{z}_i|^2$ $+ \rho'(|z|^2) \left(\sum_{i=1}^{N'} |\xi_i|^2\right) \ge 0$ for $\xi_1, \dots, \xi_{N'} \in \mathbb{C}$, $\widetilde{\varphi}$ is plurisubharmonic on $\mathbb{C}^{N'}$. $\varphi = \widetilde{\varphi} \circ f$ satisfies the requirement. q. e. d.

LEMMA 5. Suppose H_1 and H_2 are Hilbert spaces and $\varphi: H_1 \rightarrow H_2$ is a continuous linear surjection. Then there exists a continuous linear map $\psi: H_2 \rightarrow H_1$ such that $\varphi \circ \psi =$ the identity map on H_2 .

PROOF. Let L be the orthogonal complement of Ker φ in H_1 . Define $\psi: H_2 \to H_1$ as follows: for $x \in H_2$ set $\psi(x)$ to be the unique element in L such that $\varphi(\psi(x)) = x$. The open mapping theorem implies that ψ is continuous. q. e. d.

LEMMA 6. Suppose E and F are Fréchet spaces and $\varphi: E \to F$ is a continuous linear surjection. If K is a compact subset of F, then there exists a compact subset L of E such that $\varphi(L) = K$.

PROOF. This follows from § 22.2(7), p. 281, [5] and the open mapping theorem. q. e. d.

LEMMA 7. Suppose $H^2(M, \mathbf{R}) = 0$ and $\mathbf{U} = \{U_{\lambda}\}_{\lambda \in N}$ is an open covering of M such that intersections of finite subcollections of \mathbf{U} are empty or contractible open subsets of M. Suppose K is a compact subset of $Z^2(\mathbf{U}, \mathbf{R})$. (i) There exists a continuous linear map $\varphi : K \to C^1(\mathbf{U}, \mathbf{R})$ such that

 $\delta \circ \varphi = the identity map on K.$

(ii) If in addition $K \subset Z^2(U, \mathbb{Z})$ and $H^1(M, \mathbb{R}/\mathbb{Z}) = 0$, then there exists a compact subset L of $C^1(U, \mathbb{Z})$ such that $\delta(L) = K$.

PROOF. (i) There exists $\xi_{\lambda\mu\nu} > 0$ for $U_{\lambda\mu\nu} \neq \emptyset$ such that

$$(3) |a_{\lambda\mu\nu}| \leq \xi_{\lambda\mu\nu} \text{ for } \{a_{\lambda\mu\nu}\}'_{\lambda,\mu,\nu\in N} \in K.$$

Since $\delta: C^{i}(\boldsymbol{U}, \boldsymbol{R}) \to Z^{2}(\boldsymbol{U}, \boldsymbol{R})$ is surjective, by Lemma 6 there exists $\eta_{\lambda\mu} > 0$ for $U_{\lambda\mu} \neq \emptyset$ such that, if $a = \{a_{\lambda\mu\nu}\}'_{\lambda,\mu,\nu\in N} \in Z^{2}(\boldsymbol{U}, \boldsymbol{R})$ and $|a_{\lambda\mu\nu}| \leq 2^{\frac{\lambda+\mu+\nu}{2}} \xi_{\lambda\mu\nu}$, then there exists $b = \{b_{\lambda\mu}\}'_{\lambda,\mu\in N} \in C^{1}(\boldsymbol{U}, \boldsymbol{R})$ with $\delta b = a$ and $|b_{\lambda\mu}| \leq \eta_{\lambda\mu}$. Let $H_{1} = \{b = \{b_{\lambda\mu}\}'_{\lambda,\mu\in N} \in C^{1}(\boldsymbol{U}, \boldsymbol{R}) \mid \sum_{\lambda,\mu\in N} 2^{-\lambda-\mu} \eta_{\lambda\mu}^{-2} \mid b_{\lambda\mu} \mid^{2} + \sum_{\lambda,\mu,\nu\in N} 2^{-\lambda-\mu-\nu} \xi_{\lambda\mu\nu}^{-2} \mid (\delta b)_{\lambda\mu\nu} \mid^{2} < \infty\}$ and $H_{2} = \{a = \{a_{\lambda\mu\nu}\}'_{\lambda,\mu,\nu\in N} \in Z^{2}(\boldsymbol{U}, \boldsymbol{R}) \mid \|a\|^{2} = \sum_{\lambda,\mu,\nu\in N} 2^{-\lambda-\mu-\nu} \xi_{\lambda\mu\nu}^{-2} \mid a_{\lambda\mu\nu} \mid^{2} < \infty\}$. H_{1} and H_{2} are Hilbert spaces. We claim that the map $\varphi_{1} \colon H_{1} \to H_{2}$ induced by δ is surjective. Fix $a = \{a_{\lambda\mu\nu}\}'_{\lambda,\mu,\nu\in N} \in H_{2}$ and we want to find $b \in H_{1}$ such that $\varphi_{1}(b) = a$. We can assume w. l. o. g that $\|a\| \leq 1$. Then $|a_{\lambda\mu\nu}| \leq 2^{\frac{\lambda+\mu+\nu}{2}} \xi_{\lambda\mu\nu}$. There exists $b = \{b_{\lambda\mu}\}'_{\lambda,\mu\in N} \in C^{1}(\boldsymbol{U}, \boldsymbol{R})$ with $\delta b = a$ and $|b_{\lambda\mu}| \leq \eta_{\lambda\mu}$. Hence $b \in H_{1}$ and $\varphi_{1}(b) = a$. By Lemma 5 there exists a continuous linear map $\varphi_{2} \colon H_{2} \to H_{1}$ such that $\varphi_{1}(\varphi) = a$. By Lemma 5 there exists a continuous linear map $\varphi_{2} \colon H_{2} \to H_{1}$ such that $\varphi_{1}\varphi_{2} =$ the identity map on H_{2} . Let $i_{1} \colon K \to H_{2}$ and $i_{2} \colon H_{1} \to C^{1}(\boldsymbol{U}, \boldsymbol{R})$ be inclusion maps. i_{1} is continuous because of (3). $\varphi = i_{2} \varphi_{2} i_{1}$ satisfies the requirement.

(ii) Let G be the multiplicative group $\{z \in C \mid |z| = 1\}$. Since $G \approx \mathbf{R}/\mathbf{Z}$, $H^{1}(M,G) = 0$. Let $K = \{a^{(\alpha)}\}_{\alpha \in A}$. Let $\varphi(a^{(\alpha)}) = b^{(\alpha)} = \{b^{(\alpha)}_{\lambda\mu}\}'_{\lambda,\mu \in N}$. $\exp(2\pi i b^{(\alpha)}_{\lambda\mu})$ $\exp(2\pi i b^{(\alpha)}_{\mu\nu}) \exp(2\pi i b^{(\alpha)}_{\lambda\nu}) = 1$ for $U_{\lambda\mu\nu} \neq \emptyset$. Hence there exists $0 \leq b^{(\alpha)}_{\lambda} < 1$ for U_{λ}

Y. .T. SIU

 $\neq \emptyset$ and $\alpha \in A$, such that for $U_{\lambda\mu} \neq \emptyset \exp(2\pi i b_{\mu}^{(\alpha)}) \exp(-2\pi i b_{\lambda}^{(\alpha)}) = \exp(2\pi i b_{\lambda\mu}^{(\alpha)})$. Let $c_{\lambda\mu}^{(\alpha)} = b_{\lambda\mu}^{(\alpha)} + b_{\lambda}^{(\alpha)} - b_{\mu}^{(\alpha)}$. Then $c^{(\alpha)} = \{c_{\lambda\mu}^{(\alpha)}\}_{\lambda,\mu\in N} \in C^{1}(U, \mathbb{Z}), \ \alpha \in A$. The closure L of $\{c^{(\alpha)}\}_{\alpha\in A}$ in $C^{1}(U, \mathbb{Z})$ satisfies the requirement. q. e. d.

LEMMA 8. Suppose Ω is a Stein open subset of \mathbb{C}^{N} . Suppose $\mathbb{U} = \{U_{\lambda}\}_{\lambda \in I}$ is a locally finite open covering of Ω such that U_{λ} is relatively compact in $\Omega, \lambda \in I$. Suppose $F \subset Z^{1}(\mathbb{U}, \mathcal{O})$ and $a_{\lambda\mu} > 0$, $\lambda, \mu \in I$, such that $|f_{\lambda\mu}(U_{\lambda\mu})| \leq a_{\lambda\mu}$ for $\{f_{\lambda\mu}\}_{\lambda,\mu \in I} \in F$. Then there exists a continuous map $\gamma : F \to C^{0}(\mathbb{U}, \mathcal{O})$ such that $\delta(\gamma(f)) = f$ for $f \in F$.

PROOF. Let $\{\rho_{\lambda}\}_{\lambda \in I}$ be a partition of unity subordinate to U. Let $b_{\lambda} = \sup_{1 \leq i \leq N} \left| \frac{\partial \rho_{\lambda}}{\partial \overline{z}_{i}}(\Omega) \right|$ and $c_{\lambda} = \Sigma \{ b_{\mu} a_{\mu\lambda} | U_{\lambda} \cap U_{\mu} \neq \emptyset \}, \lambda \in I$. Let k be a C^{∞} positive-

valued function on Ω such that $e = \int_{\Omega} k dx < \infty$ (where dx is the Euclidean volume element of $\mathbb{C}^{\mathbb{N}}$). Since Ω is σ -compact, $\{\lambda \in I | U_{\lambda} \neq \emptyset\}$ is countable. By Lemma 4 there is a C^2 plurisubharmonic function φ on Ω such that inf $\{\varphi(z) \mid z \in U_{\lambda}^{-}\} \ge \log (Nc_{\lambda}^{3}) + |(\log k^{-1})(U_{\lambda}^{-})| \text{ for } U_{\lambda} \neq \emptyset.$ Let $\psi(z) = \varphi(z)$ + $2 \log (1 + |z|^2)$ on Ω . Let $H_1 = \{\eta | \eta \text{ is a locally square integrable function}$ on Ω and $\overline{\partial}\eta$ is an (0, 1)-form on Ω with locally square integrable functions as coefficients such that $\|\eta\|_{\psi}^2 + \|\overline{\partial}\eta\|_{\varphi}^2 < \infty$ and let $H_2 = \{\omega | \omega \text{ is a } (0,1) \text{-form on}$ Ω with locally square integrable functions as coefficients such that $\overline{\partial}\omega = 0$ and $\|\boldsymbol{\omega}\|_{\varphi} < \infty$, where $\overline{\partial}$ is in the distribution sense and the norms $\|\cdot\|_{\varphi}$ and $\|\cdot\|_{\psi}$ are as defined on pp. 77-78 of [3]. H_1 and H_2 are Hilbert spaces. We are going to define a map $\gamma_1: F \to H_2$. Take $f = \{f_{\mu\nu}\}'_{\mu,\nu \in I} \in F$. Let $h^{(f)}_{\lambda} = \Sigma_{\mu} \sigma_{\mu}$, where σ_{μ} is the trivial extension of $\rho_{\mu}f_{\mu\lambda}$ on U_{μ} . Then $f_{\lambda\mu} = h_{\mu}^{(f)} - h_{\lambda}^{(f)}$ on $U_{\lambda\mu}$. $0 = \overline{\partial}h_{\mu}^{(f)}$ $-\overline{\partial}h_{\lambda}^{(f)}$ on $U_{\lambda\mu}$. There is a unique C^{∞} (0, 1)-form ω on Ω such that $\omega = \overline{\partial}h_{\lambda}^{(f)}$ on U_{λ} . Then $\overline{\partial}\omega = 0$ and $\|\omega\|_{\varphi} \leq \sqrt{e}$. Hence $\omega \in H_2$. Set $\gamma_1(f) = \omega$. γ_1 is continuous.

Let $\theta: H_1 \rightarrow H_2$ be induced by $\overline{\partial}$.

Then θ is a continuous linear surjection (Lemma 4, p. 945, [4]). By Lemma 5 there exists a continuous linear map $\gamma_2: H_2 \to H_1$ such that $\theta \circ \gamma_2 =$ the identity map on H_2 . Define $\gamma: F \to C^{\circ}(U, \mathcal{O})$ as follows: Take $f \in F$. Let $g_{\lambda} = h_{\lambda}^{(f)} - \gamma_2(\gamma_1(f)) | U_{\lambda}$, where $h_{\lambda}^{(f)}$ is as defined above. Set $\gamma(f) = \{g_{\lambda}\}_{\lambda \in I}^{\prime}$. Then γ satisfies the requirement. q. e. d.

THEOREM 4. Suppose $U = \{U_{\lambda}\}_{\lambda \in I}$ and $V = \{V_{\lambda}\}_{\lambda \in I}$ are open coverings of M such that V is locally finite and V_{λ} is a compact subset of U_{λ} , $\lambda \in I$. Suppose F is a compact subset of $Z^{1}(U, \mathcal{O})$. Then there exists a continuous map $\gamma: F \to C^{0}(V, \mathcal{O})$ such that $\delta(\gamma(f)) = f$ on V.

PROOF. M is a closed complex submanifold of C^N for some N. There

exists an open neighborhood Ω_1 of M in \mathbb{C}^N and a holomorphic retraction ρ_1 : $\Omega_1 \to M(\text{VIII. C. 8., p. 257, [2]})$. There exists a Stein open neighborhood Ω of Min Ω_1 (Th. 2, p. 380, [7]). Let $\rho = \rho_1 | \Omega$. Let $\widetilde{V} = \{\widetilde{V}_{\lambda}\}_{\lambda \in I}$, where $\widetilde{V}_{\lambda} = \rho^{-1}(V_{\lambda})$. Let $\rho^* : Z^1(U, \mathcal{O}) \to Z^1(\widetilde{V}, {}_N\mathcal{O})$ be induced by ρ , i. e., if $\{f_{\lambda\mu}\}'_{\lambda,\mu \in I} \in Z^1(U, \mathcal{O})$, then $\rho^*(f) = \{\widetilde{f}_{\lambda\mu}\}'_{\lambda,\mu \in I} \in Z^1(\widetilde{V}, {}_N\mathcal{O})$, where $\widetilde{f}_{\lambda\mu} = (f_{\lambda\mu} \circ \rho) | \widetilde{V}_{\lambda\mu} \cdot \rho^*$ is linear and continuous. Let $F = \rho^*(\widetilde{F})$. By Lemma 2 there exists $a_{\lambda\mu} > 0$, $\lambda, \mu \in I$, such that $|f_{\lambda\mu}(V_{\lambda\mu})| \leq a_{\lambda\mu}$ for $\{f_{\lambda\mu}\}'_{\lambda,\mu \in I} \in F$. Hence $|\widetilde{f}_{\lambda\mu}(\widetilde{V}_{\lambda\mu})| \leq a_{\lambda\mu}$ for $\{\widetilde{f}_{\lambda\mu}\}'_{\lambda,\mu \in I} \in \widetilde{F}$. By Lemma 8 there exists a continuous map $\widetilde{\gamma} : \widetilde{F} \to C^0(\widetilde{V}, {}_N\mathcal{O})$ such that $\delta(\widetilde{\gamma}(\widetilde{f})) = \widetilde{f}$ for $\widetilde{f} \in \widetilde{F}$. Define $\gamma : F \to C^0(V, \mathcal{O})$ as follows: Take $f \in F$. Let $\widetilde{\gamma}(\rho^*(f)) = \{\widetilde{g}_{\lambda}\}'_{\lambda \in I}$. Let $g_{\lambda} = \widetilde{g}_{\lambda}|_{V_{\lambda}}$. Set $\gamma(f) = \{g_{\lambda}\}'_{\lambda \in I}$. Then γ satisfies the requirement. q. e. d.

REMARK. The map γ constructed in the proofs of Lemma 8 and Th. 4 satisfies the following linearity conditions: $\gamma(f+f')=\gamma(f)+\gamma(f')$ and $\gamma(af)=a\gamma(f)$ if $a \in C$ and $f, f', f+f', af \in F$.

PROOF OF THEOREM 1. Suppose $F = \{f^{(\alpha)}\}_{\alpha \in A}$ is a normal family of Cousin I data on M. There exists an open covering $U = \{U_{\lambda}\}_{\lambda \in I}$ of M and $\{f_{\lambda}^{(\alpha)}\}'_{\lambda \in I} \in C^{0}(U, \mathcal{M}), \alpha \in A$, such that (1) $f_{\lambda}^{(\alpha)}$ is a solution of $f^{(\alpha)}|U_{\lambda}, \alpha \in A$, $\lambda \in I$, and (2) for fixed $\lambda \in I$ $\{f_{\lambda}^{(\alpha)}\}_{\alpha \in A}$ is a normal family in $\Gamma(U_{\lambda}, \mathcal{M})$. We can suppose w.l.o.g. that U is locally finite and there is an open covering $V = \{V_{\lambda}\}_{\lambda \in I}$ of M such that V_{λ}^{-} is a compact subset of $U_{\lambda}, \lambda \in I$.

Let $h_{\lambda\mu}^{(\alpha)} = (f_{\mu}^{(\alpha)} - f_{\lambda}^{(\alpha)}) | U_{\lambda\mu}, \alpha \in A, \lambda, \mu \in I.$ $h^{(\alpha)} = \{h_{\lambda\mu}^{(\alpha)}\}_{\lambda,\mu\in I} \in Z^{1}(U, \mathcal{O}).$ By Lemma 1 for fixed $\lambda, \mu \in I$ $\{h_{\lambda\mu}^{(\alpha)}\}_{\alpha\in A}$ is a normal family in $\Gamma(U_{\lambda\mu}, \mathcal{O}).$ By Th. 4 there exists $k^{(\alpha)} = \{k_{\lambda}^{(\alpha)}\}_{\lambda\in I} \in C^{0}(V, \mathcal{O}), \alpha \in A$, such that $\delta k^{(\alpha)} = h^{(\alpha)}$ on $V, \alpha \in A$, and for fixed $\lambda \in I$ $\{k_{\lambda}^{(\alpha)}\}_{\alpha\in A}$ is a normal family in $\Gamma(V_{\lambda}, \mathcal{O}).$ Define $g^{(\alpha)} \in \Gamma(M, \mathcal{M}), \alpha \in A$, by setting $g^{(\alpha)} = f_{\lambda}^{(\alpha)} - k_{\lambda}^{(\alpha)}$ on $V_{\lambda}, \alpha \in A.$ $\{g^{(\alpha)}\}_{\alpha\in A}$ is a normal family in $\Gamma(M, \mathcal{M})$ and $g^{(\alpha)}$ is a solution of $f^{(\alpha)}, \alpha \in A.$ q. e. d.

PROOF OF THEOREM 2. Suppose $F = \{f^{(\alpha)}\}_{\alpha \in A}$ is a normal family of Cousin II data on M. There exist an open covering $U = \{U_{\lambda}\}_{\lambda \in I}$ of M and $\{f_{\lambda}^{(\alpha)}\}_{\lambda \in I}' \in C^{0}(U, \mathcal{M}^{*}), \alpha \in A$, such that (1) $f_{\lambda}^{(\alpha)}$ is a solution of $f^{(\alpha)} | U_{\lambda}, \alpha \in A$, $\lambda \in I$, and (2) for fixed $\lambda \in I \{f_{\lambda}^{(\alpha)}\}_{\alpha \in A}$ is a normal family in $\Gamma(U_{\lambda}, \mathcal{M}^{*})$. We can suppose w. l. o. g. that (1) intersections of finite subcollections of U are empty or contractible open subsets of M, (2) U is locally finite, and I = N and (3) there exists an open covering $V = \{V_{\lambda}\}_{\lambda \in I}$ of M such that V_{λ}^{-} is a compact subset of $U_{\lambda}, \lambda \in I$.

Let $h_{\lambda\mu}^{(\alpha)} = f_{\mu}^{(\alpha)}(f_{\lambda}^{(\alpha)})^{-1} | U_{\lambda\mu}, \alpha \in A, \lambda, \mu \in I$. By Lemma 1 for fixed $\lambda, \mu \in I$ $\{h_{\lambda\mu}^{(\alpha)}\}_{\alpha \in A}$ is a relatively compact subset of $\Gamma(U_{\lambda\mu}, \mathcal{O}^*)$ (where $\Gamma(U_{\lambda\mu}, \mathcal{O}^*)$ is given the topology induced from $\Gamma(U_{\lambda\mu}, \mathcal{O})$). Fix $x_{\lambda\mu} \in U_{\lambda\mu}$ for $U_{\lambda\mu} \neq \emptyset$. Since $U_{\lambda\mu}$ is empty or contractible, for $U_{\lambda\mu} \neq \emptyset$ and $\lambda < \mu$ there exists a unique

Y. -T. SIU

$$\begin{split} k_{\lambda\mu}^{(\alpha)} &\in \Gamma(U_{\lambda\mu}, \mathcal{O}) \text{ such that } \exp\left(2\pi i k_{\lambda\mu}^{(\alpha)}\right) = h_{\lambda\mu}^{(\alpha)} \text{ and the real part of } k_{\lambda\mu}^{(\alpha)}(x_{\lambda\mu}) \text{ is in } [0 \ 1). \\ \text{Set } k_{\mu\lambda}^{(\alpha)} &= -k_{\lambda\mu}^{(\alpha)} \text{ and } k_{\lambda\lambda}^{(\alpha)} = 0. \quad k^{(\alpha)} = \{k_{\lambda\mu}^{(\alpha)}\}_{\lambda,\mu\in I} \in C^{1}(U,\mathcal{O}). \\ \text{ Then } \delta k^{(\alpha)} \in Z^{2}(U,\mathbb{Z}) \\ \text{ and for fixed } \lambda, \mu \in I \ \{k_{\mu\mu}^{(\alpha)}\}_{\alpha\in A} \text{ is a normal family in } \Gamma(U_{\lambda\mu},\mathcal{O}). \\ \text{ By Lemmas } 2 \\ \text{ and 7 there exists } u^{(\alpha)} \in C^{1}(U,\mathbb{Z}) \ \alpha \in A, \text{ such that } \delta u^{(\alpha)} = \delta k^{(\alpha)} \text{ and } \{u^{(\alpha)}\}_{\alpha\in A} \text{ is a relatively compact subset of } C^{1}(U,\mathbb{Z}). \\ \text{ Let } v^{(\alpha)} = k^{(\alpha)} - u^{(\alpha)}. \\ \text{ Then } \{v^{(\alpha)}\}_{\alpha\in A} \text{ is a relatively compact subset of } Z^{1}(U,\mathcal{O}). \\ \text{ By Th. 4 there exists } w^{(\alpha)} = \{w_{\lambda}^{(\alpha)}\}_{\lambda\in I} \text{ is a relatively compact subset of } Sw^{(\alpha)} = v^{(\alpha)} \text{ and } \{w^{(\alpha)}\}_{\alpha\in A} \text{ is a relatively compact subset of } Z^{1}(M,\mathcal{O}). \\ \text{ subset of } C^{0}(V,\mathcal{O}), \ \alpha \in A, \text{ such that } \delta w^{(\alpha)} = v^{(\alpha)} \text{ and } \{w^{(\alpha)}\}_{\alpha\in A} \text{ is a relatively compact subset of } Sw^{(\alpha)} = v^{(\alpha)} \text{ and } \{w^{(\alpha)}\}_{\alpha\in A} \text{ is a relatively compact subset of } Sw^{(\alpha)} = v^{(\alpha)} \text{ and } \{w^{(\alpha)}\}_{\alpha\in A} \text{ is a relatively compact subset of } C^{0}(V,\mathcal{O}). \\ \text{ Define } g^{(\alpha)} \in \Gamma(M,\mathcal{M}^{*}) \text{ by setting } g^{(\alpha)} = f_{\lambda}^{(\alpha)} \exp\left(-2\pi i w_{\lambda}^{(\alpha)}\right) \\ \text{ on } V_{\lambda}. \quad \text{Then } \{g^{(\alpha)}\}_{\alpha\in A} \text{ is a normal family in } \Gamma(M,\mathcal{M}^{*}) \text{ and } g^{(\alpha)} \text{ is a solution of } f^{(\alpha)}, \alpha\in A. \\ \text{ q. e. d.} \end{split}$$

PROOF OF THEOREM 3. Suppose $F = \{f^{(\alpha)}\}_{\alpha \in A}$ is a small normal family of non-negative divisors on M. We can assume w.l.o.g. that F is compact in the topological space of all non-negative divisors. There exist an open covering $U = \{U_{\lambda}\}_{\lambda \in I}$ of M and a subset K of M such that (1) to (5) of Def. 4 are satisfied. We can assume w.l.o.g. that U is countable. Fix $x_{\lambda} \in K \cap U_{\lambda}$ for $U_{\lambda} \neq \emptyset$. Fix $x_{\lambda\mu} = x_{\mu\lambda} \in K \cap U_{\lambda\mu}$ for $U_{\lambda} \cap U_{\mu} \neq \emptyset$. By Ths. 1.9 (p. 168) and 2.25 (p. 188) of [8] there exists $h_{\lambda}^{(\alpha)} \in \Gamma(U_{\lambda}, \mathcal{O}), \alpha \in A, \lambda \in I$, such that (1) $h_{\lambda}^{(\alpha)}$ is a solution of $f^{(\alpha)}|U_{\lambda}, (2) h_{\lambda}^{(\alpha)}(x_{\lambda}) = 1$, and (3) for fixed $\lambda \in I$ the map from Fto $\Gamma(U_{\lambda}, \mathcal{O})$ defined by $f^{(\alpha)} \to h_{\lambda}^{(\alpha)}$ is continuous.

For $U_{\lambda} \cap U_{\mu} \neq \emptyset$ choose a continuous map $\xi_{\lambda\mu}$: $[0,1] \to K \cap U_{\lambda}$ such that $\xi_{\lambda\mu}(0) = x_{\lambda}$ and $\xi_{\lambda\mu}(1) = x_{\lambda\mu}$. For $\alpha \in A$ and $U_{\lambda} \cap U_{\mu} \neq \emptyset$ there is a unique continuous map $\eta_{\lambda\mu}^{(\alpha)}$: $[0,1] \to \mathbf{R}$ such that $\eta_{\lambda\mu}^{(\alpha)}(0) = 0$ and $\exp(2\pi i \eta_{\lambda\mu}^{(\alpha)}(\theta)) = h_{\lambda}^{(\alpha)}(\xi_{\lambda\mu}(\theta)) |h_{\lambda}^{(\alpha)}(\xi_{\lambda\mu}(\theta))|^{-1}$ for $\theta \in [0,1]$. Let $k_{\lambda\mu}^{(\alpha)} = h_{\mu}^{(\alpha)}(h_{\lambda}^{(\alpha)})^{-1} |U_{\lambda\mu}, \alpha \in A, \lambda, \mu \in I$. There is a unique holomorphic function $u_{\lambda\mu}^{(\alpha)}$ on $U_{\lambda\mu}$ such that $\exp(2\pi i u_{\lambda\mu}^{(\alpha)}) = k_{\lambda\mu}^{(\alpha)}$ and the real part of $u_{\lambda\mu}^{(\alpha)}(x_{\lambda\mu})$ is $\eta_{\mu\lambda}^{(\alpha)}(1) - \eta_{\lambda\mu}^{(\alpha)}(1)$. Let $u^{(\alpha)} = \{u_{\lambda\mu}^{(\alpha)}\}_{\lambda,\mu\in I}^{\lambda}$. $\delta u^{(\alpha)} \in Z^2(U, \mathbb{Z})$. The map from F to $C^1(U, \mathcal{O})$ defined by $f^{(\alpha)} \to u^{(\alpha)}$ is continuous. $B = \{\delta u^{(\alpha)}\}_{\lambda,\mu\in I}$ is a compact subset of $Z^2(U, \mathbb{Z})$. By Lemma 7 there exists $a^{(\alpha)} = \{a_{\lambda\mu}^{(\alpha)}\}_{\lambda,\mu\in I}^{\lambda,\mu\in I} \in C^1(U, \mathbb{R}), \ \alpha \in A$, such that $\delta a^{(\alpha)} = \delta u^{(\alpha)}$ and the map from B to $C^1(U, \mathbb{R})$ defined by $\delta u^{(\alpha)} \to a^{(\alpha)}$ is continuous. Let $v^{(\alpha)} = u^{(\alpha)} - a^{(\alpha)}$. Then $C = \{v^{(\alpha)}\}_{\alpha\in A}$ is a compact subset of $Z^1(U, \mathcal{O})$.

Let $c_{\lambda\mu}^{(\alpha)} = \exp(-2\pi i a_{\lambda\mu}^{(\alpha)})$. Then

(4)
$$c_{\lambda\mu}^{(\alpha)}c_{\mu\nu}^{(\alpha)}c_{\nu\lambda}^{(\alpha)} = 1 \text{ for } U_{\lambda\mu\nu} \neq \emptyset.$$

Fix $U_{\lambda_0} \neq \emptyset$. Since M is connected, for every $U_{\lambda} \neq \emptyset$ we can find $\lambda_1, \dots, \lambda_m \in I$ such that $\lambda_m = \lambda$ and $U_{\lambda_0} \cap U_{\lambda_{j+1}} \neq \emptyset$ for $0 \leq j < m$. Let $d_{\lambda}^{(\alpha)} = \prod_{j=0}^{m-1} c_{\lambda_j \lambda_{j+1}}^{(\alpha)}$. Since $\pi_1(M) = 0$, (4) implies that $d_{\lambda}^{(\alpha)}$ is independent of the choice of $\lambda_1, \dots, \lambda_{m-1}$. $d_{\mu}^{(\alpha)}(d_{\lambda}^{(\alpha)})^{-1} = c_{\lambda\mu}^{(\alpha)}$ for $U_{\lambda\mu} \neq \emptyset$.

We can choose a locally finite open covering $V = \{V_{\lambda}\}_{\lambda \in I}$ of M such that

 V_{λ}^{-} is a compact subset of U_{λ} , $\lambda \in I$. By Th.4 there exists $w_{\lambda}^{(\alpha)} = \{w_{\lambda}^{(\alpha)}\}_{\lambda \in I}^{\prime}$ $\in C^{0}(V, \mathcal{O})$ such that $\delta w^{(\alpha)} = v^{(\alpha)}$ on V and the map from C to $C^{0}(V, \mathcal{O})$ defined by $v^{(\alpha)} \to w^{(\alpha)}$ is continuous.

Define $g^{(\alpha)} \in \Gamma(M, \mathcal{O})$ by setting $g^{(\alpha)} = d_{\lambda}^{(\alpha)} h_{\lambda}^{(\alpha)} \exp\left(-2\pi i w_{\lambda}^{(\alpha)}\right)$ on V_{λ} . $g^{(\alpha)}$ is well-defined, because $\exp\left(-2\pi i w_{\lambda}^{(\alpha)}\right) \exp\left(2\pi i w_{\mu}^{(\alpha)}\right) = \exp\left(2\pi i v_{\lambda\mu}^{(\alpha)}\right) = \exp\left(2\pi i u_{\lambda\mu}^{(\alpha)}\right) =$

COROLLARY. (1) holds for M = the product of C^{q} and the unit ball of C^{p} .

PROOF. We can assume w.l.o.g. that $x_0 = 0$, because any point of M can be mapped to the origin by some biholomorphic map of M onto M. Let I = N. For $\lambda \in I$ let $U_{\lambda} = \{(z, w) \in \mathbb{C}^q \times \mathbb{C}^p | \lambda^{-2} | z|^2 + (\lambda + 1)^2 \lambda^{-2} | w|^2 < 1\}$. U_{λ} is biholomorphic to a ball in \mathbb{C}^{q+p} and is relatively compact in M. $U = \{U_{\lambda}\}_{\lambda \in I}$ covers M. Let $K = \{0\}$. Then (1) to (5) of Def. 4 are satisfied with F = N. N is a small normal family of non-negative divisors on M. q. e. d.

References

- A. AEPPLI, E. CALABI, AND H. RÖHRL, Proceedings of the Conference on Complex Analysis (Minneapolis 1964), Springer-Verlag, New York, 1965.
- [2] R.C.GUNNING, AND H.ROSSI, Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, New Jersey, 1965.
- [3] L. HORMANDER, An Introduction to Complex Analysis in Several Complex Variables, D. Van Nostrand, Princeton, New Jersey, 1966.
- [4] L. HÖRMANDER, Generators for some rings of analytic functions, Bull. Amer. Math. Soc., 73(1967), 943-949.
- [5] G. KÖTHE, Topologische Lineare Räume I, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.
- [6] G. L. MCGRATH, Normal families of non-negative divisors on polycylinders, Ph. D. Thesis, University of Notre Dame, Indiana, 1965.
- [7] R. NARASIMHAN, On the homology groups of Stein spaces, Invent. Math., 2(1967), 377-385.
- [8] W. STOLL, Normal families of non-negative divisors, Math. Z., 84(1964), 154-218.

MATHEMATICS DEPARTMENT UNIVERSITY OF NOTRE DAME NOTRE DAME, INDIANA, U.S.A.