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Introduction. A Jacobi field was originaly defined for a geodesic in a
Riemannian manifold. It has been generalized for a minimal variety in a
Riemannian manifold by some authors. (Simons [4]). Recently intersting papers
concerning this problem have been published ([2], [3]). In the present paper we
shall shortly generalize the Jacobi field on the minimal variety and give a
sufficient condition on which the generalized one becomes trivial. In the last
section we shall give a theorem concerning the conjugate boundary on a
minimal hypersurface.

1. First we explain the notations adopted in this paper. Let Xn be an
/^-dimensional Riemannian manifold. For simplicity we assume that Xn be of
class C°°. We denote by (xl

9 , xn) a local coordinate system of Xn. The
fundamental quadratic form of Xn is denoted by

ds2 — gλμdxλdxμ .

Hereafter the Greek indices range over 1, , n. The Christoffel symbols and
the curvature tensor are given by

(l. l) I , *; } = 4- gl'(g^ + g^ - g^.,\ g^g^ = 81 ,
*ω Δ

ω ' μ i f } μω(σ7t

where for example gμσ,ω denotes dgμσ/c)xω. We write

(l 3) Rλμωπ = Q λσ R° μoiπ

It is well-known that
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Let Xm be an m-dimensional submanifold of Xn. We assume that 1 < m < n
and Xm be of class C°° and differentiably imbedded in Xn. We denote by

(yl,' * >ym) a local coordinate system of Xm. The fundamental quadratic form
of Xm is denoted by

= gi} dyi dyj(1.5)

where we put

(1.6)

Hereafter the Latin indices range over ί, , m. For simplicity we assume
that xλ-s are functions of class C°° with regard to y s. We put

(1.7) //,[ = ~iy <Jia(ffj*.k

where for example gjk,a denotes
given by

The Euler-Schouten's tensor is

(1.8)
λ
μω

where the semicolon denotes the covariant differentiation along Xιn. In this
case βί is a contrvariant vector in the sense of Xn and is a covariant vector in

the sense of Xm. Therefore we use ] [ By
(μω\

or Xm respectively. Hereafter we shall adopt this convention for the covariant
differentiation along Xm. It is well-known that

or -j . . j for the indices of Xn

(1.9)

and

(1.10)

We write

(1.11)

Hi, =

Hιv = gίμHi,, H>i} -
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2. Let G be a bounded orientable domain of Xm and let 3G be its

boundary. First we consider the case where G is covered by a pair of local

coordinate systems (yl, ,ym} and (xl, ,xn). However we can easily see

that our results hold when G is covered by several coordinate systems. The

area of G is given by

(2.1)

where \gis\ denotes the determinant whose elements are <7i/s. We consider

an infinitesimal transformation

(2. 2) •? = x\y} + Sv\y )

where £ denotes an infinitesimal constant and vλ(y) denotes any vector along Xm

which is normal to Xm and vanishes on 3G and is of class C1 with regard to

3/ ί fs. It is well-known that the first variation of the integral (2. 1) by the

infinitesimal transformation (2. 2) is given by

(2.3)

where

(2.4) L(x>,Bl)= \gti

 l'\

Therefore in order that the area of G be minimal it is necessary that

a?"~ ay

which leads to

(2.6) H' = Hl

vg» = 0.

If (2. 6) holds everywhere, such an Xm is called a "minimal variety".

3. Let Xm be a minimal variety. Let us shift it slightly by an

infinitesimal transformation of the form (2. 2) where we assume that vλ is of

class C2 and normal to Xm. Let us calculate the first variation of Hλ. By the

assumption we have
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(3.1)

First we compute the first variation of -j - , Bλ

ij9gίj9g
ίJ and . , [ . For

I pω } J k]
example we have δBlj = £v\ ίy jm We have from (1. 8) and these variations

(3-2)

where 8Hλ denotes the first variation of Hλ. Our result coincides with that
of Duschek ([!]) which was obtained by the parametric method. Meanwhile
we have from (3.1)

(3. 3) gμω v^ El + gμω v* Hi, = 0 .

Hence we have from (3. 2) and (3. 3)

j δff = 6(8i - Bί Bί) {Δt;- + (Λ'.μ, B'l B*gίs + 2Hjt H«) V} ,

I Δ ϋσ ΞΞ v^.jg" .

If

(3. 5) (δί - Bi Bk

σ) {ΔV + (ΛV Bi B* g" + 2H«} H?) V} = 0,

i. e., the normal component of the vector

(3. 6) J" = ΔV> + (RV BJ BIgl} + 2H?} H«) V

vanishes, then we say that the infinitesimal transformation (2. 2) preserves the
minimal property of the variety.

REMARK. In our notations the second variation of the intergral (2.1)
given by Duschek ([!]) becomes

(3. 7) - ~ £2 ί {(% - Bi BWΔv" + Rσ

μ<oπ Bί B? gίjv)
^ JG

J + Hγ Bί g^} v, \ grs \ ̂  dy* dy" ,
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where vλ — gλ^v'L. If vλ is normal to Xm> then (3.7) becomes

(3.8) --ί,

The same result was obtained by Simons in a different manner ([2]) p. 73).
When v* satisfies Jλ = 0 and is normal to Xm, it is called a "Jacobi field".

When vλ satisfies (3. 5) and is normal to the minimal variety Xm, we call
it a "pseudo-Jacobi field". From (3.5) and (3.8) we see that the second
variation of the area (2. 1) is zero when vλ is a pseudo-Jacobi field. Let G be
a bounded orientable domain of a minimal variety and let 3G be its boundary.
A pseudo-Jacobi field which vanishes on oG is called a "pseudo-Jacobi field on
G". Let vλ be a pseudo-Jacobi field on G. Then we have from (3. 5)

(3. 9) 0 = Γ (δi - BlBk

σ}{Δvσ + (Rσ

ωμπBlB^gij + 2Hσ

ίjHπ

ίj)vπ}vλdσ
J a

dσ ,

where dσ = \ g i j \ l / ' ί dyl dy"L. The first term of the last integral vanishes
by the theorem of Stokes and the second term is negative definete. Hence we
have the

THEOREM 1. If the quadratic form

(3. 10) (Rλωμπ B» By g» + 2Hλii H») Xλ X"

is everywhere negative semi-definite on G, τvhere Xλ denotes any vector
normal to G, then the pseudo-Jacobi field on G is identically zero.

PROOF. We have from (3. 9) and the assumption

Since vλ vanishes on oG, vλ must vanish everywhere on G. Q. E. D.
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REMARK. When Rλμωπ — K(gμωg2π — gλ(0gμπ}, i.e., the space is of constant
curvature, then the condition of the above theorem becomest\mKgλμ~\-2HλijHμ

ίj}XλXfl

is everywhere negative semi-definite on G".

4. Let us consider the case where m — n — 1, i.e. Xm is a hypersurface.
Let nλ be the unit normal vector to a minimal hypersurface Xn~ι Putting
vλ = pnλ we have from (3. 5)

(4.1) Δp + p(htj h" + Rσ^ n" n' βjf B° gij) = 0 ,

where we put

\,} = H\j = τthι» Δp = pMg», n>} = -B\h\,,

' J — nia n^ h h —— "-ab> "-i —

Meanwhile we have

(4.3) Δp2

Hence (4. 1) leads to

(4.4) -|-Δp2 - p.tpjg" + p\hiΛh
iJ 4- Rσμωπn

σn* B{B» g») = 0.

Since

(4.5) B'tB?gij =gβω -n^n*

we have from (4. 4)

(4. 6) -|- ΔP

2 - p.tpjg" + p\htj h" + Rμί n>n») = 0 .

If p = 0 on the boundary of an orientable domain D on Xn_ι and p satisfies
(4. 1) in Z), then we have from (4. 6) and Green's theorem

(4. 7) f {p.tP.jg" - P\htj h" + Rίμn> n*)} da = 0 ,
Jί>

where dσ denotes the volume element of Xn-\ and we assume that 3Z) is
gmppth and prientabje. If a relation
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(4.8) A u A' J + Λ

holds everywhere in D, then we see from (4. 7) that

(4.9) Pti = 0

everywhere in D, i. e. p = 0 everywhere in D. Thus we have the

THEOREM 2. Let D be an orientable domain of a minimal hypzrsurface
in a Riemannian space and let 3D be smooth and orientable. If

holds everywhere in D, then there is no non-trivial pseudo-Jacobi field on D.

D

REMARK. When Rλμ — gλμ< i. e. the space is an Einstein space, then

the inequality (4. 8) becomes

(4.10) Λ t j/ι" 4-^-^0.

5. In this section we shall generalize a theorem concerning the conjugate
points in the classical differential geometry. Let g be a geodesic on a surface
of the euclidean 3-space. Let P be a point on g and P be its first conjugate

Fig .1

point. The following fact is well-known : It is impossible that a point Q' on
the geodesic arc PP' be the first conjugate point of a point Q on PP'. The
proof is done by the Jacobi equation

(5.1)

where K denotes the Gaussian curvature of the surface and 5 denotes the
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arc-length of g. In this case we assume that there exists a solution of (5.1)
which vanishes at P and P' and is not zero at any point on the arc PP'. The
same thing doesn't hold for the pair of points Q,Q'. Let us generalize the
above theorem to the case of a minimal hypersurface of a Riemannian manifold.
We see from (1. 4) the tensor

(5.2)

is symmetric with regard to λ and π. Hence if there exist two pseudo- Jacohi
fields vλ and wλ, then we have from (3. 5)

- g^w^v*) g ί j ] ,, = 0 .

= 0,

t i = θψ / 3y* .

(5. 3) g*w*ixr - g

In the case of Xn-\ (5. 3) becomes

(5.4) {(φ.rt

where we put

(5. 5)

φti = 'dφ/'dy1 ,

Fig/2

Let G be an orientable domain of a minimal hypersurface Xn-\ an(3 P* be its
sub-domain. We assume that 3D be smooth and orientable. Let vλ or τvλ in
(5. 5) be a pseudo- Jacobi field on Xn_ι and vanish on 3G or 3D and be not
zero at any point in G or D respectively. Integrating (5. 4) over D we have

(5. 6) 0 = Γ
J D

= Γ
J d I)
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where dσ denotes the volume element of X n _ t and dS denotes the surface
element of 3D and Nl denotes the unit normal vector to 3D in Xn_,. The
positive direction of NL is directed outwards. Since Λ|Λ — 0 on 3D we have
from (5. 6)

(5.7)

Since ψ is not zero at any point of D, if for example ty is positive in D, then
ψ,iN'L is not positive on 3D. We assume that ^tiN

l is not zero at some point
on 3D. Considering that φ is not zero at any point on 3D, we see that the
left hand side of (5. 7) is not zero. Thus we arrive at a contradiction. Hence
we have the

THEOREM 3. Let Xn_1(n>2) be a minimal hypersurface of a Riemannian
space Xn. It is impossible that the following ( i )~-( v ) hold simultaneously :

( i ) G and D are domains of Xn.l and G D D and 3G Π 3D = φ,
(ii) G is orientable,
(ϊiί) 3D is smooth and orientable,
(iv) v* is a pseudo-Jacobi field on Xn-± which vanishes on 3G and is

not zero at any point of G,
( v) wλ = ψnλ is a pseudo-Jacobi field on Xn-\ which vanishes on 3D

and is not zero at any point of D and ψ\i Nl is not zero at some
point on 3D, where nλ denotes the unit normal vector to Xn-ι and
Nl denotes the unit normal vector to 3D in Xn-\ whose positive
direction is directed outwards.

REFERENCES

[1] A. DUSCHEK, Zur geometrischen Variationsrechnung, Math. Z., 40(1936), 279-291.
[ 2 ] S. SMALE, On Morse index theorem, J. Math. Mech., 14 (1965), 1049-1055.
[ 3 ] R. HERMANN, The second variation for minimal submanifolds, J. Math. Mech., 16

(1966), 473-491.
[4] J.SIMONS, Minimal varieties in Riemannian manifolds, Ann. of Math., 88 (1968), 62-105.

DEPARTMENT OF MATHEMATICS
UTSUNOMIYA UNIVERSITY
UTSUNOMIYA, JAPAN




