ON COMPACT COMPLEX SUBMANIFOLDS OF THE COMPLEX PROJECTIVE SPACE

Koichi Ogiue**

(Received June 30, 1969)

1. Statement of results. Let $P_{n+p}(\boldsymbol{C})$ be the complex projective space of complex dimension $n+p$ with the Fubini-Study metric of constant holomorphic sectional curvature 1 and let M be an n-dimensional compact complex submanifold of $P_{n+p}(\boldsymbol{C})$ with the induced Kaehler structure.

Using a result of Simons, S. Tanno [2] has proved the following results:

Proposition A. Let R be the scalar curvature of M. If

$$
R>n(n+1)-\frac{n+\frac{1}{2}}{4-\frac{1}{p}}
$$

then M is totally geodesic, that is, $M=P_{n}(\boldsymbol{C})$.

Proposition B. If every holomorphic sectional curvature of M is greater than $1-\frac{n+\frac{1}{2}}{2 n^{2}\left(4-\frac{1}{p}\right)}$, then $M=P_{n}(\boldsymbol{C})$.

In this note, we shall improve these results as follows:

THEOREM 1. If $R>n(n+1)-\frac{n+2}{4-\frac{1}{p}}$ everywhere on M, then $M=P_{n}(\boldsymbol{C})$.

THEOREM 2. If every holomorphic sectional curvature of M is greater

[^0]than $1-\frac{n+2}{2 n^{2}\left(4-\frac{1}{p}\right)}$, then $M=P_{n}(\boldsymbol{C})$.
2. Outline of Proofs. Let S be the square of the length of the second fundamental form of the immersion of M into $P_{n+p}(\boldsymbol{C})$. Then, in [1], we have proved the following

Proposition 1. If $S \leqq \frac{n+2}{4-\frac{1}{p}}$ everywhere on M, then either $S=0$ (i.e., M is totally geodesic) or $S=\frac{n+2}{4-\frac{1}{p}}$.

On the other hand, the equation of Gauss implies $R=n(n+1)-S$. This, together with Proposition 1, implies that if $R>n(n+1)-\frac{n+2}{4-\frac{1}{p}}$ everywhere on M, then $S=0$. This proves Theorem 1.

Let $K(X, Y)$ denote the sectional curvature determined by X and Y. If we put $\lambda=1-\frac{n+2}{2 n^{2}\left(4-\frac{1}{p}\right)}$, then the assumption of Theorem 2 implies $\lambda<K(X, J X) \leqq 1$ for every X (the right hand equality is not necessarily attained), where J denotes the complex structure of M. Let $e_{1}, \cdots, e_{n}, J e_{1}, \cdots, J e_{n}$ be an orthonormal basis for $T_{x}(M)$. Then we have

$$
R=2 \sum_{i=1}^{n} \sum_{j \neq i}\left\{K\left(e_{i}, e_{j}\right)+K\left(e_{i}, J e_{j}\right)\right\}+2 \sum_{i=1}^{n} K\left(e_{i}, J e_{i}\right) .
$$

On the other hand we have

$$
\begin{aligned}
K\left(e_{i}, e_{j}\right)+K\left(e_{i}, J e_{j}\right)= & \frac{1}{4}\left\{H\left(e_{i}+e_{j}\right)+H\left(e_{i}-e_{j}\right)+H\left(e_{i}+J e_{j}\right)\right. \\
& \left.+H\left(e_{i}-J e_{j}\right)-H\left(e_{i}\right)-H\left(e_{j}\right)\right\}
\end{aligned}
$$

where $H(*)=K(*, J *)$.

Hence we have

$$
K\left(e_{i}, e_{j}\right)+K\left(e_{i}, J e_{j}\right)>\frac{2 \lambda-1}{2}
$$

This implies

$$
R>n(2 n \lambda-n+1)=n(n+1)-\frac{n+2}{4-\frac{1}{p}} .
$$

This, together with Theorem 1, implies Theorem 2.

Bibliography

[1] K. OgIUE, Complex submanifolds of the complex projective space with second fundamental form of constant length, Kōdai Math. Sem. Rep., 21(1969), 252-254.
[2] S. TANNO, Complex submanifolds of complex projective spaces, to appear.

Department of Mathematics Tokyo Metropolitan University TOKYO, JAPAN

[^0]: *) Work done under partial support by the Sakko-kai Foundation.

