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ON COMPACT COMPLEX SUBMANIFOLDS OF THE
COMPLEX PROJECTIVE SPACE

KoicHI OGIUE®

(Received June 30, 1969)

1. Statement of results. Let P,,,(C) be the complex projective space of
complex dimension n+ p with the Fubini-Study metric of constant holomorphic
sectional curvature 1 and let M be an n-dimensional compact complex submanifold
of P,,,(C) with the induced Kaehler structure.

Using a result of Simons, S. Tanno [2] has proved the following results :

PROPOSITION A. Let R be the scalar curvature of M. If
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then M is totally geodesic, that is, M = P,(C).

PROPOSITION B. If every holomorphic sectional curvature of M is
1
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greater than 1—
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, then M = P,(C).

In this note, we shall improve these results as follows:
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THEOREM 1. If R>n(n+1)—

everywhere on M, then M= P,(C).

THEOREM 2. If every holomorphic sectional curvature of M is greater
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than 1— — 2 then M= Py(C).
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2. Outline of Proofs. Let S be the square of the length of the second
fundamental form of the immersion of M into P,,,(C). Then, in [1], we have
proved the following

PROPOSITION 1. If S= nt2 everywhere on M, then either S=0
4_i,_‘
P
(i.e., M is totally geodesic) or S = n+% .
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On the other hand, the equation of Gauss implies R =n(n+1)—.S. This,
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together with Proposition 1, implies that if R>n(n+1) — everywhere on

M, then S =0. This proves Theorem 1.

Let K(X,Y) denote the sectional curvature determined by X and Y. If we

put A =1— *L—'_Zfﬁ, then the assumption of Theorem 2 implies A<<K(X,JX)=1
2n2(4— %)

for every X (the right hand equality is not necessarily attained), where J denotes
the complex structure of M. Let e, -, e,, Je,,+ - -, Je, be an orthonormal basis

for T, (M). Then we have

R=25 3 (Klewe) + KlewJe)) +2 5 Kew Je).

iml i

On the other hand we have
K(ei, e;) + Kle, Jej) = % {H(e, + e;) + H(e, — e;) + H(e, + Jej)

where H(x) = K(x, J*).
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Hence we have

K(ewe) + Kew Je) > 2L
This implies
R>n@2nN—n+1)=n(n+1)— n-&?
3

This, together with Theorem 1, implies Theorem 2.
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