Tôhoku Math. Journ. 22(1970), 95-97.

ON COMPACT COMPLEX SUBMANIFOLDS OF THE COMPLEX PROJECTIVE SPACE

KOICHI OGIUE*)

(Received June 30, 1969)

1. Statement of results. Let $P_{n+p}(C)$ be the complex projective space of complex dimension n+p with the Fubini-Study metric of constant holomorphic sectional curvature 1 and let M be an n-dimensional compact complex submanifold of $P_{n+p}(C)$ with the induced Kaehler structure.

Using a result of Simons, S. Tanno [2] has proved the following results :

PROPOSITION A. Let R be the scalar curvature of M. If

$$R > n(n+1) - \frac{n + \frac{1}{2}}{4 - \frac{1}{p}},$$

then M is totally geodesic, that is, $M = P_n(C)$.

PROPOSITION B. If every holomorphic sectional curvature of M is greater than $1 - \frac{n + \frac{1}{2}}{2n^2\left(4 - \frac{1}{p}\right)}$, then $M = P_n(C)$.

In this note, we shall improve these results as follows:

THEOREM 1. If
$$R > n(n+1) - \frac{n+2}{4-\frac{1}{p}}$$
 everywhere on M , then $M = P_n(C)$.

THEOREM 2. If every holomorphic sectional curvature of M is greater

^{*)} Work done under partial support by the Sakko-kai Foundation.

K. OGIUE

than
$$1 - \frac{n+2}{2n^2\left(4 - \frac{1}{p}\right)}$$
, then $M = P_n(C)$.

2. Outline of Proofs. Let S be the square of the length of the second fundamental form of the immersion of M into $P_{n+p}(C)$. Then, in [1], we have proved the following

PROPOSITION 1. If
$$S \leq \frac{n+2}{4-\frac{1}{p}}$$
 everywhere on M, then either $S=0$

(i.e., M is totally geodesic) or $S = \frac{n+2}{4-\frac{1}{p}}$.

On the other hand, the equation of Gauss implies R = n(n+1) - S. This, together with Proposition 1, implies that if $R > n(n+1) - \frac{n+2}{4 - \frac{1}{p}}$ everywhere on M, then S = 0. This proves Theorem 1.

Let K(X, Y) denote the sectional curvature determined by X and Y. If we put $\lambda = 1 - \frac{n+2}{2n^2(4-\frac{1}{p})}$, then the assumption of Theorem 2 implies $\lambda < K(X,JX) \leq 1$

for every X (the right hand equality is not necessarily attained), where J denotes the complex structure of M. Let $e_1, \dots, e_n, Je_1, \dots, Je_n$ be an orthonormal basis for $T_x(M)$. Then we have

$$R = 2 \sum_{i=1}^{n} \sum_{j \neq i} \{K(e_i, e_j) + K(e_i, Je_j)\} + 2 \sum_{i=1}^{n} K(e_i, Je_i).$$

On the other hand we have

$$\begin{split} K(e_i, e_j) + K(e_i, Je_j) &= \frac{1}{4} \left\{ H(e_i + e_j) + H(e_i - e_j) + H(e_i + Je_j) \right. \\ &+ H(e_i - Je_j) - H(e_i) - H(e_j) \right\} \,, \end{split}$$

where H(*) = K(*, J*).

96

Hence we have

$$K(e_i,e_j)+K(e_i,Je_j)>\frac{2\lambda-1}{2}.$$

This implies

$$R > n(2n\lambda - n + 1) = n(n + 1) - \frac{n+2}{4 - \frac{1}{p}}$$

This, together with Theorem 1, implies Theorem 2.

BIBLIOGRAPHY

- K. OGIUE, Complex submanifolds of the complex projective space with second fundamental form of constant length, Ködai Math. Sem. Rep., 21(1969), 252-254.
- [2] S. TANNO, Complex submanifolds of complex projective spaces, to appear.

Department of Mathematics Tokyo Metropolitan University Tokyo, Japan