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AHLFORS'S CONJECTURE ON THE SINGULAR SET OF

SOME KLEINIAN GROUP
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Introduction. In the theory of automorphic functions it is important to
investigate the properties of the singular sets of the properly discontinuous
groups. Recently I proved the existence of Kleinian groups with fundamental
domains bounded by mutually disjoint circles whose singular sets have positive
(3/2)-dimensional measure ([3]). Now in the natural way the following problem
arises : To what extent does the dimension of the singular sets of Kleinian
groups climb up, when the number N of the boundary circles increase ? It is
well known that the 2-dimensional measure of the singular set is always zero
in the case that the fundamental domains are bounded by mutually disjoint
circles ([9]).

Let G be a Kleinian group which acts both on the unit ball B in the
3-dimensional space and on its boundary S. Its action on B is always discontinuous,
but its action on S will not in general be so. There is an exceptional set E of
singular points. Ahlfors [2] proved that, if the isometric polyhedron of G in
B has only a finite number of sides, then either E is all of S or the 2-dimen-
sional measure of E in S is zero. But it seems still open that the 2-dimensional
measure of the singular set of all finitely generated Kleinian groups is always
zero (Ahlfors's conjecture).

The purpose of this paper is to solve this problem in the special case.

1. Let G be a group of linear transformations

S{ z) = Ίϊϊd> ad-bc = l

of the extended complex plane. A point z0 is called a singular point of G if it
is an accumulation point of *S(2i), S £ G, for some zx. The set of singular points
will be called the singular set of G and denoted by E.

E is a closed set, and invariant under G we denote its complement by D.
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As soon as D is not empty we say that G is discontinuous, and D is its set of
discontinuity. It is easy to classify all groups for which E is void, consists of a
single point, or of two points. All other discontinuous groups will be called
Kleinian groups, that is, a Kleinian group is a discontinuous group with more
than two singular points.

A Kleinian group which leaves a circle invariant is said to be Fuchsian.
The singular set lies on the invariant circle. If E is the whole circle, the
Fuchsian group is of the first kind. If not, E is nowhere dense on the invariant
circle, and the group is of the second kind.

2. Let 7t be the quotient space D/G. It has a natural complex structure
such that the projection map P: D->π is holomorphic. Thus, the components
7ti of 7t are Riemann surfaces. We shall write D i = P~1τri. In general, the Dt

are not connected, and we denote the components of Dt by Di3.
With any Kleinian group G we have thus associated the decompositions

D= u A = ϋ A j and π — \j7Ct. Each Dt is invariant under the full group G,
and the boundary of Dt is all of E. The components Di5 are ramified covering
surfaces of Dt whose branch points are elliptic fixed points.

Now add the hypothesis that one or several A are connected, and hence
invariant under the full group G. Such groups and domains Ώi have been called
function groups and invariant regions. The fact that all invariant regions D%

have the same boundary E does not by itself preclude the existence of any
number of such regions. However, the existence of non-elliptic fixed points does
impose a severe restriction. R. Accola [1] proved the following important
theorem : there are at most two invariant regions Diy and if there are two,
they are simply connected.

3. Let G be a finitely generated Kleinian group and further add the
assumption of function group. For brevity we call it a finitely generated simple
Kleinian group and write it F. S. K-group followed by Maskit [6], Then from
No. 2 there are at most two invariant regions Dt (z = 1,2). If there are two, the
common boundary is a Jordan curve. Without loss of generality we may assume
that the infinity is an ordinary point.

Now we consider a fundamental domain Bt (z = 1, 2) for G with respect to
£). (i = 1, 2) respectively, where Dλ is a component which does not contain the
infinity. We can take a domain as a fundamental domain such that each Bt is
bounded by open arcs of circles, called sides, where the endpoints of these arcs
are called vertices and every vertex is an endpoint of precisely two sides. If the
number of sides is finite, Bt is called finitely sided.

Further we impose a restrictive condition to Bt. Let C, (/ = 1, , 2/0 be
the boundary circles which form the part of the boundary of B% (z = 1, 2). Let
Dj (j = 1, , 2/0 be a closed disc bounded by Cs (j = 1, , 2/0. Then the set
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(7* = 1, , 2p) are called a finite closed chain, if they satisfy the following
two conditions : (i) any two of the Dj have no interior point in common, and
(ii) Dj has a common boundary point with Dj+1 for7 = l, , 2p (where C2p+ι = C1).
We call such a group an F. S. K-group with finite closed chain.

Starting from an F. S. K-group, we reached the fundamental domain of it.
Conversely let us form any finite closed chain. If we can define the discontinuous
group whose fundamental domain is one of two components, which are the
complementary sets of this chain, it is known that the singular set of this group
is a Jordan curve and has a complicated shape ([5], [7]).

4. Now let G be an F. S. K-group with finite closed chain. The purpose
of this paper is to prove that the 2-dimensional measure of the singular set E
of G is zero.

Let JBX be a fundamental domain bounded by 2pcircular arcs {Ci}(z = l, y2p)
which does not contain the infinity, where Ct is a closed circular arc on the
circle Ct. Without loss of generality we can assume that the origin 0 is
contained in Bλ. The elements of G, which map some side C4l of Bx onto some
other side Ciχ of Bί9 generate G.

Let Sh denote a generating transformation which transforms the outside of
Cu onto the inside of C ,, that is, maps the side Ctl onto the side Ciχ of Bl9

where Cu and Cu are some circles of {Ct} (i = 1, , 2p). Obviously Sϊ*
transforms the outside of Ciχ onto the inside of Ciχ.

In general, we denote by ST the transformation obtained by composition of
transformations S and T, that is, ST(z) = S(T(z)). Consider the totality G of
all linear transformations in the form

(1) S = SZ S£\ St viz, S(z) = St(SU •. (Sϊ;(*)) ))

together with the identical transformation, where Xj ( 1 ^ 7 ^k) are integers and
ij-i for 7 = 2, - ,k.
We call the sum

the grade of S. The image S(Bλ) of the fundamental domain Bγ of G by S ( £ G)

with grade m (φO) is bounded by 2p mutually tangent circular arcs C[m)

(i = 1, , 2p)9 the one Cif} of which is contained in the boundary of the

image of Bι under some T ( £ G) with grade m — 1. For simplicity, we say that

the 2p— 1 circular arcs of S(B^) different from C^ ) are circular arcs of grade

m. Circular arcs {Q} (z = 1, , 2p), which bound Bl9 are of grade zero. The
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number of circular arcs of grade m is obviously equal to 2p(2p— l ) m .
The circumstance with respect to the fundamental domain B2 containing

the infinity is the same as Bx. If we denote the closure of the complementary
circular arc of the circular arc C[m) of grade m by Cim\ which is also called a
circular arc of grade m, the join Q m ) (J Cim) is a complete circle and is denoted
by C[m)

9 which is called a circle of grade m.

5. Given a set S of points in the 2-plane and a positive number δ, we
denote by /(δ, £) a family of a countable number of closed discs U of diameter
lσ^S such that every point of £ is an interior point of at least one U.

We call the quantity

the ^-dimensional measure of £.

6. Let E be the singular set of an F. S. K-group defined in No. 4. Let us
give a covering of E by using the set of circles of grade m (i^ra0) in order to
calculate the 2-dimensional measure of E.

Denote by 3)m a finite closed chain, that is, a continuum consisting of the
whole closed discs bounded by 2p(2p— l ) m circles of grade ra, which are tangent
externally in turns. Evidently {Wm}(m = 1,2, •) is a monotone decreasing

oo

sequence of continua. The set [\ Wm is consistent with E. We call Wm the

m-th net of E. Since the points of contact during circles are also singular points,
we can not give up them by the definition (2). Still more when the number of
grade m increases, the set of points of contact will have regardful strength.
Therefore we must form another covering of such points.

7. Let ξ5 (J — 1, ,2p) be the points of contact between C5 and Cj+U

where C23)+1 = Q. These ξ5 (j = 1, , 2p) are divided into some systems, which
are called parabolic cycles. Take a parabolic point, for example, ξin from a
parabolic cycle {ξiι9 ξiif , ξik}, (k ̂  2p). Suppose that ξin is the point of
contact between Cin and Cin+1. Then, from the definition of a parabolic cycle, ξin

is the fixed point of the parabolic transformation S(k) of grade k.
Let O ^ (q = 1,2, •) be the image circles, which go through ξn and are

tangent internally with Cn at ξn, by Sfc,, (q = 1, 2, •) and O^li (q = - 1 , - 2 , •)
be the image circles, which go through ξn and are tangent internally with C n + 1

at ξnf by Sfc)f ( 5 = - 1 , - 2 , . .). Circles Oϊ> (g = 1,2, . •) and OJ& (g= - l , - 2 , ..)
are called oricycles of Cn and C n + 1 at ^n, respectively. It is obvious that O$?)

and O%lχ are circles of grade \q\k. If |g | tends to infinity, both oricycles converge
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to ξn from both sides.

8. Now describe the circles Kn (n = l, , 2p) with centers ξn (n=l, , 2p)
and sufficiently small radii rn (w = l, 92p) and denote by dn (n = l, 92p)
the circular arcs of Kn (n = l, 92p) cut off by Bl9 where ξn is a parabolic
point belonging to some parabolic cycle.

Consider any transformation S(v)9 of grade v for a sufficiently large integer
v. Then the number of images Siv)(dn) of dn {n — 1, , 2̂ >) by whole
transformations S(v) of grade i> is obviously equal to (2p)\2p—I)""1. The images
S(u)(dn) (n = 1, , 2̂ >) are the 2̂ > circular arcs which join the 2/> boundary
circular arcs of the image S(V)(Bt) in turn. If we take some S(v)(dn\ then S^v)(dn)
and the boundary circular subarcs of Siv)(Bi) joined by S{v)(dn) form a circular
triangle, one of whose vertices facing S(v)(dn) is a parabolic point, that is, a
singular point. In this triangle we denote the smaller one of two euclidian
distances joining this parabolic point with the other two vertices by r^ and
describle a circle K^ of radius r&° with center at this parabolic point. There
are 2p(2p— l)v parabolic points of S(v)(z) in all. The set of these parabolic points
{ξ^} (n = l, 2, — 92p(2p —l)v) consist of the points of contact of the finite
closed chain 3)v.

The set {ξ^} (n = l, 2, 92p(2p-ί)v) are divided into two kinds in the
following.
( 1 ) If ££°is a parabolic point of some SM(z)9 but not a parabolic point of any
S(v_i)(y), that is, there is no circular arcs of grade v—1 which go through ξ{n\
we let a circle K^ of radius r£° with center at f £° correspond to ξ%\
( 2 ) If ξ{n} is a parabolic point of some S(v)(z) and still also of some S^^z),
that is, there is two externally tangent circular arcs of grade v — l which go
through ξ(n\ we get two circular triangles with common vertex ξ(n\ each of
which is formed by S{v)(dn) and two boundary circular subarcs of S^Bj) joined
by Siv)(dn). In these two triangles we denote the minimum of four euclidean
distances joining this parabolic point ξ^ with the other four vertices by r(

n

v)

and let a circle K^ of radius r^v) with center at ξ^ correspond to f#}.
For 2p(2p-l)v parabolic points {ξiv)} {n = 1, 2, , 2p(2p-ΐ)v) we form

closed discs Δ£° (n = l, 2, , 2p(2p-l)v) bounded by K^ in the above methods
( 1 ) and (2) . It is obvious that the set {Δ^} (w = l,2, , 2p(2p-l)v) forma
covering of parabolic points that are singular points. Considering the set

/2p(2p-l)v \

ΦVU ( \^J Δ&°), we get a covering of E and call this the complete z>-th

net of E.

9. In the above we got a covering of E in order to investigate the
2-dimensional measure of E. It is important to calculate the radii of discs in
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this complete i>-th net of E.
Let c(v) be a coefficient of z in the denominator of any transformation S(v)

( £ G) of grade u such that

( 3 )

We state the well known lemma, which needs later, without proof.

LEMMA 1. (Ford [4]) If the point at infinity is an ordinary point of
G, the series Σ |c ( v ) |~ 2 m converges for m^2, where in the summation the
finite number of terms for which c{v) = 0 are omitted.

10. Now let us solve the Ahlfors's conjecture in this special case by using
the complete v-ύ\ net of E formed in No. 8. Denote by R[v) (z = l, , 2p(2p-l)v)
the radii of circles of 3)v and by rί»v) (n = 1, , 2p(2p—l)v) the radii of circles
K{

n

v) to the complete z/-th net of E> respectively. In order to prove that the
2-dimensional measure m2(E) of the singular set E of an F. S. K-group G with
finite closed chain is zero, it is enough to show that

( 4 ) ί
2p(2p-l)v

Σ W)2+ Σ
ί = l 71 = 1

is less than any given small £.
At first we shall give the estimate of R[v) from the above. Let R^ be the

radius of C$v). Then C[v) is a complete circle consisting of two circular arcs
which are images of boundary circular arcs of Bλ and B2 by the transformation
£(„) of grade v in the form ( 3 ) . We describe two circles K} and Kj+ι with
small radii and centers at the points of contact ξ5 and ξj+ι of the boundary
circle C5 of Bu respectively.

Denote by C5 the join of two circular arcs of C} outside these K5 and
Kj+ι. Taking sufficiently small radii of Kό and KJ+U we can always assume
that the length of the image of C5 by S{v) on Civ) is larger than the half of
circumference of the circle Civ). Therefore we have

( 5 )

and

( 6 )

» —

2π

— f dSM(z)
dz

dz

\dz\ =
π\c

M I 2
^G,

\dz\

\dz\

z+
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oτ> i on

where Rj is the radius of C5 and Δ(j) is a quantity smaller than the distances

from Cj to the pole ^ . Since £(/) is a constant depending only on K5 and

Xj+i and there are 2p such constants in all with respect to the boundary circles
Cj (j = 1, , 2p), we can take the maximum σ of these constants and have
from ( 5 ) and ( 6 )

(7) i?r<°-j^yp.

11. Now we shall estimate ?~n

v) in (4) from the above. Let us return to the
notations of No. 8. Let In be the circular arcs, which form the two sides of
a triangle, different from dn and (/ί)(v) and ξn

v) be the images of 1% and ξn by
the transformation S(v) of grade v, respectively. The minimum of two euclidian
distances from this parabolic point ξn

v) to the endpoints of these (/ί)(v) is the
radius r(

n

v) of K™ and {Δ£*}(n = 1, .-•, 2p(2p-l)v) bounded by X ^ (n = l, •-,
2p(2p—l)v) form a covering of parabolic points of the transformations of grade v.

We can easily obtain

L
In

d{v)

( i ) First we consider the case in which Soo(oo) = ^ , that is, the pole

of Sv(z), is not contained in the domain bounded by the oricycle O$ι

1) or Ok~+l>
which is the image of Cn by S{k) or Cn+1 by Sfk)9 where Cn and Cn+ι are two
boundary circles of the finite closed chain which are tangent externally at ξn.
When z is on /J, there exists a constant JC(n) depending only on ti such that
it holds

( 9 )
700

Denoting the minimum of JC(n) {n = 1, , 2p) by

JC = min JC(n) ,

we obtain from ( 8 ) and ( 9 )
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(10) |rίΓ>|<
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m a x I/* I 1
JC

where |/J| denotes the euclidean length of /£ and JC is a constant bounded
below depending only on G.

d{v)

(ii) Secondly we.consider the case in which *Soo(°°) = oo 1S c o n tained

in the domain bounded by the oricycle O£° or O^Γ+i-

d{v)

( a ) Suppose that ^ is sufficiently close to ξn and is contained in the

domain bounded by two oricycles O^ and O^+1) (q > 0 integer), which are
the images of Cn by Sfa and 5 ^ , respectively. We put

(11)

( b ) In the case in which ^ is contained in the domain bounded by
c

two oricycles O^+f and O£+(f+1)), which are the images of Cn+ι by S ^ and 5(~*
respectively, we put

Since the discussion about ( b ) is the same as ( a ), it is enough to consider the
case ( a ) only. Then it is obvious that 5-1(oo) is in the domain Z)£t2) bounded
by two oricycles O^υ and

It is obvious that

(12) dSM(z)
dz

dS(zQ)
dzQ

dz.
dz

where zq = S and z is any point on /,ΐ.
Let us estimate the two factors of the right hand side of (12) from the

above. Since zq=S(Jt
ι

)(z) is parabolic, it is represented by the following form:

(13) + bq,
^q ζn * ζn

where b is a constant independent of q. Then we easily obtain

1 1
(14)

dz \bqV -{*--kt
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We choose the orthogonal coordinate system such that the α -axis goes

through the points ξn— -j—,(g = l, 2, •) and ξn is the origin. Then we can

deform (14) in the following form :

(15)
dzn

dz

If we consider the right hand side of (15) as the function of q, we can easily

( \2

I at g = — , T t / 9 ^ . Since
y ) \b\(*2+y)

X
z is on /J, tends to 0 for z->ξn along /J. Hence the maximum value in (15)

is bounded and there exists some positive number μ such that it holds

dzn

dz <μ for any

The discussion for each parabolic point ξn is the same as the above and
therefore we see easily that it holds for ξn (n = 1, , 2p)

(16)
dzΰ

dz
<μ for any

12. By using the estimate that was given by Myrberg [8] in the proof of
divergence of the (—2)-dimensional Poincare theta series with respect to Fuchsian
groups of the first kind whose fundamental domain is finitely sided, we obtain
the following Lemma.

LEMMA 2. Suppose that Siv)(z) = S(S{k

Q

)(z)) has the property (a) in the
case (ii), where S(z) has the following form :

(17)

Then it holds

(18)

S(z) = ctz
yz + δ '

dSOz)
dz

<s
M 2 '

where s is a constant which is bounded above.
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PROOF. We assumed that the origin 0 is contained in Bλ (No. 4). Since
S~\oo) is in the domain D£'2) bounded by two oricycles O^υ and O^2), it is
obvious that S'^O) is also in JD£t2). Denote by Ko and Kx the circles with center
at the origin whose radii r and R are sufficiently small and large, respectively,
such that Ko is contained in Bx and Kx contains the finite closed chain J2)o and
is contained in B2- Since the point of Bu which is sufficiently close to ξn> is
also mapped into the point of Dfi 2\ which is sufficiently close to ξn9 by the
parabolic transformation Sik)(z)9 we can describe a circle τ n of small radius p
with center ξn such that K0Γ\τn= 0 and the point S^iO), which is equivalent
to 0, is not contained in τn .

Then from the above we obtain

(19) = \ξn-S-\O)\>P.

Since S(ξn) is also a singular point from the invariance of the singular set by
any element of this group, it holds

(20) aξu+β a
y

It is easily seen that

(21) a = |5(oo)|>r

from the assumption that the infinity is contained in 5 2 Then we obtain, from
(19), (20), and (21), the following inequality :

(22) > P R '

We can easily find from (13) and (14)

(23)
q

~dz

Since first we took the arbitrarily small circle Kn of radius rn with center ξn

in No. 7, we can take rn so small that Kn may be contained in τ n, that is,
rn < £i < P. Then it holds from (16) and (23)
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(24) I zQ - ξn | < rn V 7 < W~7Γ

for any point 2 on /ί, Hence it implies from (22) and (24)

(25)

11

_δ^

where ω is a positive constant bounded below. Because rn is arbitrarily small
and hence Sx can be taken so small that the right hand side of (25) may be
positive. Hence we obtain from (25) the following inequality :

(26)
dS{zq)

dza | 7 | 2 '

By using (16) and (26), we have the following inequality:

1dSM(z)
dz

<s for any z 6 /ί,

where s = μ/ω2 is a constant bounded above. q. e. d.

Thus we have from (18) of Lemma 2 the following inequality :

„ s
(27)

dz max I/s | .

Put 8 = max \s,~ψι I, where JC is a constant given in (10). If we correspond
\ ^ /

tf(z)\ (q = 0,1,2,-—) to SM, we obtain, by arranging (10) and (27),

(28) »| < δ max |/*|

13. Thus we get from ( 7 ) and (28) the following estimate of ( 4 ) from
the above :

( 2 9 )

where S denotes the summation with respect to terms corresponding to (28),
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Since it holds from Lemma 1 that ]Γ] η—μ < oo for all transformations

except ones satisfying γ = 0, the first summation ^Z ι (*)u °f (29) tends to

zero for z;—»oo. We note that γ = 0 arises only in the case of the identical
transformation, since the point at infinity is an ordinary point and G does not
contain the elliptic transformation in this case. Hence we can determine a
sufficiently large v depending only on any given small number £ such that the

£ ' r 1
firs term in the brace does not exceed ~ςΓ Since Σ Ί—\l *s finite* w e c a n

s i *y I
make the radii of circles Kn (n = 1, , 2p) with centers ξn (n — 1, , 2p)
sufficiently small for such fixed v such that the second term in the brace is

smaller than - 5 - . Thus we obtain the following inequality:
o

( 3 0 )

Since £ is an arbitrary small number, this leads to the conclusion that m2(E)
is equal to zero in our special case.

Therefore we have the following

THEOREM. Let G be an F. S. K-group whose fundamental domain is
bounded by the boundary circular arcs of a finite closed chain. Then the
2-dimensional measure of the singular set of G, which is a Jordan curve
and a common boundary of two invariant regions, is zero.

14. REMARK. We treated the case of a finite closed chain consisting of
2p boundary circles thus far. Generally the case of the odd number of boundary
circles may occur and in this case the group has at least one elliptic transformation
with period 2 as a generator. But if we take a reflection with respect to this
circle, we shall obtain a subgroup G' of G formed by the even number of
generators. It is easily seen that the singular set of G is consistent with one
of G. Hence it is sufficient to consider the group G with 2p generators as the
case we treated.
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