SOME REMARKS ON MINIMAL SUBMANIFOLDS

Katsuei Kenmotsu

(Received Jan. 26, 1970)

This note consists of three topics for minimal submanifolds. M denotes an n-dimensional manifold which is minimally immersed in an $(n+p)$-dimensional Riemannian manifold $\bar{M}^{n+p}[c]$ of constant curvature c. In the section 1 we study a linear connection $\widehat{\nabla}$ on the normal vector bundle $N(M)$ which is naturally induced from the connection of the ambient space $\bar{M}^{n+p}[c]$. Let \widehat{R} be the curvature tensor of $\hat{\nabla}$ and let σ be the square of the length of the second fundamental form of this immersion. Then it is proved that if M is compact, orientable and $\widehat{R}=0$, then

$$
\int_{M} \sigma(\sigma-n c) d v \geqq 0,
$$

where $d v$ denotes the volume element of M. It follows that if $\sigma \leqq n c$ everywhere on M, then either

$$
\begin{equation*}
\sigma=0 \text { (i. e., } M \text { is totally geodesic), } \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma=n c . \tag{2}
\end{equation*}
$$

The purpose of the section 1 is to determine all minimal submanifolds in a unit sphere $S^{n+p}[1]$ satisfying $\sigma=n$ and $\widehat{R}=0$. The result can be found in Theorem 3.

In the section 2, we study a minimal hypersurface M in $S^{n+1}[1] . R$ and R_{1} denotes the curvature tensor and Ricci tensor of M, respectively. We will prove that if the Ricci tensor R_{1} of M satisfies the condition $R(X, Y) \cdot R_{1}=0$, then, within rotations of $S^{n+1}[1], M$ is an open submanifold of one of the Clifford minimal hypersurfaces:

$$
M_{k, n-k}=S^{k}\left(\sqrt{\frac{\bar{k}}{n}}\right) \times S^{n-k}\left(\sqrt{\frac{n-k}{n}}\right), \text { for } k=0,1, \cdots,\left[\begin{array}{l}
n \\
2
\end{array}\right] .
$$

If R_{1} is parallel, then R_{1} satisfies $R(X, Y) \cdot R_{1}=0$. Thus this result is a generalization of a result of [4].

In the last sestion we remark that a pseudo-Jacobi field which is defined by Y. Tomonaga [10] is identical with a Jacobi field which is defined by J.Simons [7].

1. Normal connection of minimal submanifolds. We choose a local field of orthonormal frames $\left\{e_{1}, \cdots, e_{n+p}\right\}$ in $\bar{M}^{n+p}[c]$ such that, restricted to M, the vectors e_{1}, \cdots, e_{n} are tangent to M. The following ranges of indices will be used throughout this paper:

$$
\begin{gathered}
1 \leqq A, B, C, \cdots \leqq n+p \\
1 \leqq i, j, k, \cdots \leqq n \\
n+1 \leqq \alpha, \beta, \gamma, \cdots \leqq n+p
\end{gathered}
$$

With respect to the frame field of $\bar{M}^{n+p}[c]$ chosen above, let w^{1}, \cdots, w^{n+p} be the field of dual basis and let (w_{B}^{A}) be the connection form of $\bar{M}^{n+p}[c]$. Since $w^{\alpha}=0$, we can put

$$
\begin{equation*}
r v_{i}^{\alpha}=\sum_{j} h_{i j}^{\alpha} w^{j}, \quad h_{i j}^{\alpha}=h_{j i}^{\alpha} . \tag{1}
\end{equation*}
$$

Since (w_{β}^{μ}) defines a linear connection on the normal vector bundle $N(M)$ in $\bar{M}^{n+p}[c]$, we call it the normal connection of M. When $R_{\beta k l}^{\alpha}$ denotes the curvature tensor of (w_{β}^{α}), by the structure equation of $\bar{M}^{n+p}[c]$:

$$
d w_{B}^{A}=-\sum_{c} w_{C}^{A} \wedge w_{B}^{C}+c w^{d} \wedge w^{B},
$$

we have

$$
\begin{equation*}
\widehat{R}_{\langle k l}^{\alpha}=\sum_{i}\left(h_{i k}^{\alpha} h_{i l}^{\beta}-h_{i l}^{\alpha} h_{i k}^{\beta}\right) . \tag{2}
\end{equation*}
$$

Throughout this section, we assume that
(*) the normal connection $\hat{\nabla}$ is trivial, i. e., $\widehat{R}_{\beta k l}^{\alpha}=0$.

By (3.1) of [2], we have
(3) $-<h, \Delta h>=\sum_{\substack{\alpha, \beta, i \\ j, k ; i}}\left(h_{i k}^{\alpha} h_{k j}^{\beta}-h_{i k}^{\beta} h_{k j}^{\alpha}\right)\left(h_{i l}^{\alpha} h_{i j}^{\beta}-h_{i l}^{\beta} h_{i j}^{\alpha}\right)+\sum_{\substack{\alpha, \beta, i, i \\ j, k, i}} h_{i j}^{\alpha} h_{k i}^{\alpha} h_{i j}^{\beta} h_{k l}^{\beta}$

$$
-n c \sum_{a, i, j}\left(h_{i j}^{\alpha}\right)^{2} .
$$

By (2), (*) and (3), one obtains

$$
\begin{equation*}
-<h, \Delta h>=\sum_{\alpha, \beta} S_{\alpha \beta}^{2}-n c \sigma, \tag{4}
\end{equation*}
$$

where $S_{\alpha \beta}=\sum_{i, j} h_{i j}^{\alpha} h_{i j}^{\beta}$ and $\sigma=\sum_{i, j, \alpha}\left(h_{i j}^{\alpha}\right)^{2}$. Since the $(p \times p)$-matrix $\left(S_{\alpha \beta}\right)$ is symmetric, it can be assumed to be diagonal for a suitable choice of e_{n+1}, \cdots, e_{n+p}. Setting $S_{\alpha}=S_{\alpha \alpha}(\geqq 0)$, (4) may be rewritten as follows:

$$
\begin{align*}
-<h, \Delta h> & =\sum_{\alpha} S_{\alpha}^{2}-n c \sigma \tag{5}\\
& =\left(\sum_{a} S_{a}\right)^{2}-\sum_{\alpha \neq \beta} S_{\alpha} S_{\beta}-n c \sigma \\
& \leqq \sigma^{2}-n c \sigma .
\end{align*}
$$

Thus we have
THEOREM 1. Let M be an n-dimensional compact oriented manifold which is minimally immersed in an $(n+p)$-dimensional Riemannian manifold of constant curvature c. If the normal connection of M is trivial, then

$$
\int_{M} \sigma(\sigma-n c) d v \geqq 0 .
$$

Proof. This follows immediately from (5) and the Lemma 2 of [2] or (6.18) of [1].

From the Theorem 1 we have easily the following Corollary 1.
COROLLARY 1. Let M be a compact oriented manifold minimally immersed in a space $\bar{M}^{n+p}[c]$ of constant curvature c. If $\widehat{R}_{\beta k l}^{\alpha}=0$, then either M is totally geodesic in $\bar{M}^{n+p}[c]$, or $\sigma=n c(>0)$ or at some point $x \in M, \sigma(x)>n c$.

When we study minimal submanifolds with $\sigma=n c(>0)$ in $\bar{M}^{n+p}[c]$ we may assume that $c=1$ and $\sigma=n$. To state the proposition 1 we prepare the notion of M-index of a minimal submanifold which is defined by T. \bar{O} tsuki: For any $x \in M$, we denote the normal space to M_{x} in $\bar{M}^{n+p}[c]_{x}$ by N_{x}. For a frame $b=\left(x, e_{1}, \cdots, e_{n}, \cdots, e_{n+p}\right)$ we define a linear mapping ψ_{b} from N_{x} into the space of all $n \times n$ symmetric matrices by

$$
\psi_{b}\left(\sum_{\alpha} \xi_{\alpha} e_{\alpha}\right)=\left(\sum_{\alpha} \xi_{\alpha} h_{i j}^{\alpha}\right) .
$$

Then we call $\operatorname{dim}\left(\psi_{b}\left(N_{x}\right)\right) M$-index of a minimal submanifold M in $\bar{M}^{n+p}[c]$ at x.

Proposition 1. Let M be an n-dimensional minimal submanifold immersed in an $(n+p)$-dimensional Riemannian manifold $\bar{M}^{n+p}[1]$ of constant curvature 1 . If M satisfies the condition (*) and $\sigma=n$, then M-index is 1 everywhere.

Proof. Since $\sigma=$ constant we have (see, p. 42 of [1])

$$
\begin{equation*}
h_{i j k}^{\alpha}=0 \quad \text { and } \quad<h, \Delta h>=0 \tag{6}
\end{equation*}
$$

where $h_{i, k}^{\alpha}$ is, by the definition,

$$
\begin{equation*}
\sum_{k} h_{i j k}^{a} w^{k}=d h_{i j}^{\alpha}-\sum_{l} h_{i l}^{\alpha} w_{j}^{l}-\sum_{l} h_{i, j}^{\alpha} w_{i}^{l}+\sum_{\beta} h_{i j}^{\beta} w_{\beta}^{\alpha} . \tag{7}
\end{equation*}
$$

By (5), (6), $c=1$ and $\sigma=n$ we have

$$
\begin{equation*}
\sum_{\alpha \neq \beta} S_{\alpha} \cdot S_{\beta}=0 \tag{8}
\end{equation*}
$$

From (8), $\sigma=n$ and $S_{\alpha} \geqq 0$, we may assume that $S_{n+1}=n$ and $S_{\alpha}=0$ for $\alpha>n+1$. By the definition of S_{α}, one obtains

$$
\left\{\begin{array}{l}
\sum_{i, j}\left(h_{i j}^{n+1}\right)^{2}=n, \tag{9}\\
h_{i j}^{\alpha}=0 \text { for any } \alpha>n+1 \text { and any } i, j
\end{array}\right.
$$

Taking account of (9) and the definition of M-index, Proposition 1 follows.
Q. E. D.

Using the Proposition 1, Theorem 1 of [6] and Theorem 2 of [2] we have
Theorem 2. Under the same assumption as the Proposition 1,
(i) there exists an $(n+1)$-dimensional totally geodesic submanifold N^{n+1} in $\bar{M}^{n+p}[1]$ containing M as a minimal hypersurface
and
(ii) M is locally a Riemannian direct product $M \supset U=V_{1} \times V_{2}$ of spaces V_{1} and V_{2} of constant curvature, $\operatorname{dim} V_{1}=m \geqq 1$ and $\operatorname{dim} V_{2}=n-m \geqq 1$.

Now we have easily the following global version of Theorem 2.
THEOREM 3. Let M be an n-dimensional compact connected minimal submanifold in an $(n+p)$-dimensional unit sphere $S^{n+p}[1]$. If M satisfies the conditions that the normal connection of M is trivial and $\sigma=n$, then there exists an $(n+1)$-dimensional unit sphere $S^{n+1}[1]$ containing M as a Clifford minimal hypersurface $M_{k, n-k}$ for $k=1,2, \cdots,\left[\frac{n}{2}\right]$.

Proof. By Theorem 2 there exists a totally geodesic submanifold N^{n+1} which is of constant curvature 1 in $S^{n+p}[1]$. Since it is well-known [5] that the totally geodesic maximal integral submanifold of an involutive distribution on a complete Riemannian manifold is also complete for the induced metric, N^{n+1} is complete for the induced metric. Therefore we have $N^{n+1}=S^{n+1}[1]$. The latter half of the Theorem 3 follows from the following Theorem C ([2], [4]):

ThEOREM C. Let M be an n-dimensional hypersurface immersed in $S^{n+1}[1]$. If $\sigma=n$, then M is an open submanifold of one of the $M_{k, n-k}$ for $k=1,2, \cdots,\left[\begin{array}{l}n \\ 2\end{array}\right]$.

REMARK 1. By (2) a hypersurface in a Riemannian manifold of constant curvature have always $\widehat{R}_{\beta k l}^{\alpha}=0$. It follows that Theorem 3 is a generalization of Theorem 1 in [4].
2. Classification of minimal hypersurfaces with $R(X, Y) \cdot R_{1}=0$ in $\boldsymbol{S}^{n+1}[1]$. For any tangent vectors X and $Y, R(X, Y)$ is an endomorphsm of the tangent space at each point. $R(X, Y)$ acts on R_{1} as a derivation of the tensor algebra at each point of M. Hypersurfaces with $R(X, Y) \cdot R_{1}=0$ is studied by S. Tanno [7] and S. Tanno and T.Takahashi [8]. The following Theorem 4 is
essentially a Corollary of Theorem 1 in [8].
Theorem 4. Let M be a connected minimal hypersurface with $R(X, Y) \cdot R_{1}$ $=0$ in $S^{n+1}[1],(n \geqq 3)$. Then, within rotations of $S^{n+1}[1], M$ is an open submanifold of one of the $M_{k, n-k}$ for $k=0,1, \cdots,\left[\frac{n}{2}\right]$.

Proof. we set $h_{i j}=h_{i j}^{n+1}$. We choose our frame field in such a way that

$$
\begin{equation*}
h_{i j}=0 \text { for } i \neq j . \tag{10}
\end{equation*}
$$

and we set $h_{i}=h_{i i}$. Then the condition $R(X, Y) \cdot R_{1}=0$ is written as

$$
\begin{equation*}
\left(1+h_{i} h_{j}\right)\left(R_{i i}-R_{j j}\right)=0, \tag{11}
\end{equation*}
$$

where $R_{i n}=R_{1}\left(e_{i}, e_{h}\right)$, (see 1.3 of [9$]$). Taking account of the Gauss equation of M, since M is a minimal hypersurface, one obtains (cf. see 1.4 of [9])

$$
\begin{equation*}
R_{i j}=(n-1) \delta_{i j}-h_{i} h_{j} \delta_{i j} \tag{12}
\end{equation*}
$$

By (11) and (12), one obtains

$$
\begin{equation*}
\left(1+h_{i} h_{j}\right)\left(h_{i}^{2}-h_{j}^{2}\right)=0 \text { for any } i \neq j \tag{13}
\end{equation*}
$$

By virtue of (13), ($h_{i j}$) has at most two eigenvalues and we define h and k as $h=\max \left\{h_{i}\right\}$ (with multiplicity s) and $k=\min \left\{h_{i}\right\}$ (with multiplicity ($n-s$), respectively. Taking account of Lemma 5 in [9] and the minimality of M, if M is not totally geodesic at a point x_{0}, then M is not totally geodesic at any point of M. If $h^{2}=k^{2}(\neq 0)$ holds at any point of M, then, by (12), M is an Einstein space. Thus M is an open submanifold of $M_{n / 2, n / 2}$ (see Corollary 2 of [4]). If $h^{2} \neq k^{2}$ holds at some point $x_{0} \in M$, then we have $1+h k=0$ at x_{0} where the type number, $t\left(x_{0}\right)$, at x_{0} is n. In [9] Tanno and Takahashi proved that if $1+h k=0$ at x_{0} where $t\left(x_{0}\right)$ is n, then $1+h k=0$ and $t(x)=n$ hold on M.

Thus we have

$$
\begin{equation*}
0=\sum_{i} h_{i}=s h+(n-s) k \text { at any point } . \tag{14}
\end{equation*}
$$

By virtue of $h k=-1$ and (14) we have $h^{2}=(n-s) / s$. Therefore the square of the length of the second fundamental form $\left(h_{i j}\right)$ is equal to

$$
\sum_{i} h_{i}^{2}=s h^{2}+(n-s) \frac{1}{h^{2}}=n
$$

Theorem 4 follows immediately from the Theorem C.
Q.E.D.
3. Jacobi field on a minimal submanifold. Let \bar{M}^{n+p} be an $(n+p)$ dimensional Riemannian manifold and M an n-dimensional minimal submanifold in $\bar{M}^{n+p} . \bar{\nabla}($ resp. $\nabla)$ denotes the linear connection for the Riemannian metric \vec{g} of \bar{M}^{n+p} (resp. the induced metric g of M). In the paper [7], J.Simons defined the Laplace operator on the Riemannian vector bundle. The purpose of this section is to give a decomposition formula of the Laplace operator, $\widehat{\nabla}^{2}$, on the cross-sections in the normal vector bundle $N(M)$. The last statement in the Introduction follows easily from the decomposition formula.
$B(X, Y)$ denotes the second fundamental form, i. e., $B(X, Y)=\left(\bar{\nabla}_{X} Y\right)^{N}$. Let $\widehat{\nabla}$ be the connection induced by $\bar{\nabla}$ in $N(M):$ Let V be a cross-section in $N(M)$ and $X \in M_{x}$. Then we can set

$$
\begin{equation*}
\bar{\nabla}_{x} V=-A^{v}(X)+\hat{\nabla}_{X} V \tag{15}
\end{equation*}
$$

where $g\left(A^{r}(X), Y\right)=\bar{y}(B(X, Y), V)$. We define ΔV by

$$
\begin{equation*}
(\Delta V)^{c}=V_{i i ; j}^{c} g^{i j}, C=1,2, \cdots, n+p \tag{16}
\end{equation*}
$$

where the semicolon denotes the covariant differentiation along M. And we define $\widetilde{A}(V) \in N(M)$ by (2.2.5) in [7], i. e.,

$$
\begin{equation*}
\vec{g}(\widetilde{A}(V), W)=g_{i j} g^{s t}\left(A^{W}\right)_{s}^{i}\left(A^{V}\right)_{t}^{i} \text { for any } W \in N(M) \tag{17}
\end{equation*}
$$

Then we have
Proposition 2. Let V be a cross-section in $N(M)$. Then $\hat{\nabla}^{2} V$ for the Laplace operator $\widehat{\nabla}^{2}$ on $N(M)$ can be decomposed in the following way,

$$
\begin{equation*}
\widehat{\nabla}^{2} V=(\triangle V)^{x}+\widetilde{A}(V) \tag{18}
\end{equation*}
$$

Proof. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis in M_{x} at any point $x \in M$. Extend them to vector fields E_{1}, \cdots, E_{n} in a neighborhood of x such that $g\left(E_{i}, E_{j}\right)=\delta_{i j}$ and $\left(\nabla_{E_{i}} E_{j}\right)_{x}=0$ at x. By Proposition 1.2.1 in $\lceil 7\rceil$ we have

$$
\begin{equation*}
\left(\widehat{\nabla}^{2} V\right)_{x}=\sum_{i=1}^{n}\left(\widehat{\nabla}_{F_{t}} \hat{\nabla}_{F_{t}} V\right)_{x} \tag{19}
\end{equation*}
$$

For any cross-section W in $N(M)$ we have, using (15) ~(19),

$$
\begin{aligned}
g\left(\left(\widehat{\nabla}^{2} V\right)_{i x}, W_{x}\right)= & \sum_{i=1}^{n} g\left(\left(\widehat{\nabla}_{E_{i}} \widehat{\nabla}_{E_{i}} V\right)_{x}, W_{x}\right) \\
= & \sum_{i=1}^{n} \bar{g}\left(\left(\bar{\nabla}_{E_{i}}\left(\bar{\nabla}_{E_{i}} V\right)^{N}\right)_{x}^{x}, W_{x}\right) \\
= & \sum_{i=1}^{n} g\left(\bar{\nabla}_{E_{i}}\left(\bar{\nabla}_{F_{i}} V+A^{v}\left(E_{i}\right)\right)_{x}, W_{x}\right) \\
= & \sum_{i=1}^{n} \vec{g}\left(\left(\bar{\nabla}_{E_{i}} \bar{\nabla}_{E_{i}} V\right)_{x}, W_{x}\right) \\
& +\sum_{i=1}^{n} \bar{g}\left(B\left(E_{i}, A^{r}\left(E_{i}\right)\right)_{x}, W_{x}\right) \\
= & g\left((\triangle V)_{x}, W_{x}\right)+\sum_{i=1}^{n} g\left(\left(A^{r}\left(E_{i}\right)\right)_{x},\left(A^{\mathrm{F}}\left(E_{i}\right)\right)_{x}\right) \\
= & g\left((\triangle V+\widetilde{A}(V))_{x}, W_{x}\right) .
\end{aligned}
$$

Thus one obtains Proposition 2. Q.E.D.
A cross-section V in $N(M)$ is called a Jacobi field [7] if it satisfies

$$
\begin{equation*}
\widehat{\nabla}^{2} V=\bar{R}(V)-\widetilde{A}(V) \tag{20}
\end{equation*}
$$

where $\bar{R}(V)=\sum_{i=1}^{n}\left(\bar{R}\left(E_{i}, V\right) E_{i}\right)^{N}$.
A cross-section V in $N(M)$ is called a pseudo-Jacobi field [10〕 if it satisfies, in our terminology,

$$
\begin{equation*}
(\Delta V)^{v}=\bar{R}(V)-2 \widetilde{A(}(V) \tag{21}
\end{equation*}
$$

By (18), (20) and (21) a pseudo-Jacobi field is identical with a Jacobi field.
REMARK 2. The formula similar to (18) is seen in [3] (see (17) and (18) of [3]).

References

[1] S. S. Chern, Minimal submanifolds in a Riemannian manifold, Lecture note, 1968.
[2] S.S.Chern, M. P. Do Carmo, S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, to appear.
[3] E.T. Davies, On the second and third fundamental forms of a subspace, J. London Math. Soc., 12(1937), 290-295.
[4] H. B. Lawson, Jr, Local rigidity theorems for minimal hypersurfaces, Ann. of Math., 89 (1969), 187-197.
[5] K. NomIzU, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J., 20(1968), 46-59.
[6] T. ÖTSUKI, Minimal hypersurfaces in a Riemannian manifold of constant curvature, to appear.
[7] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math., 88(1968), 62-105.
[8] S. TanNo, Hypersurfaces satisfying a certain condition on the Ricci tensor, Tôhoku Math. J., 21(1969), 297-303.
[9] S. Tanno, T. Takahashi, Some hypersurfaces of a sphere, Tôhoku Math. J., 22(1970), 212-219.
[10] Y. TOMONAGA, Pseudo-Jacobi fields on minimal varieties, Tôhoku Math. J., 21(1969), 539-547.

Mathematical Institute
Tôhoku University
Sondai, Japan

