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SOME REMARKS ON MINIMAL SUBMANIFOLDS
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This note consists ot three topics for minimal submanifolds. M denotes an
n-dimensional manifold which is minimally immersed in an (2 + p)-dimensional
Riemannian manifold M "*?[c] of constant curvature c¢. In the section 1 we study
a linear connection e on the normal vector bundle N(M) which is/\naturally
induced from the connection of the ambient space M7"*?[c]. Let R be the
curvature tensor of /V\ and let ¢ be the square of the length of the second
fundamental form of this immersion. Then it is proved that if M is compact,
orientable and ﬁ = 0, then

f a(o — ncYdv =0,
M

where dv denotes the volume element of M. It {ollows that if ¢ = nc¢ everywhere
on M, then either

(1) o =0 (i.e, M is totally geodesic),
or
(2) o = nc.

The purpose of the section 1 is to determine all minimal submanifolds in a
unit sphere S**?[1] satisfying o = »n and IQ = 0. The result can be found in
Theorem 3.

In the section 2, we study a minimal hypersurface M in S**![1]. R and R,
denotes the curvature tensor and Ricci tensor of M, respectively. We will prove
that if the Ricci tensor R, of M satisfies the condition R(X,Y)-R, =0, then,
within rotations of S™*![1], M is an open submanifold of one of the Clifford
minimal hypersurfaces :

3 -k n- ' n-k V N n
M"""“‘:SA<\/n )XS k(\/ n >,1ork:0,1,-..,[2'].
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If R, is parallel, then R, satisfies R(X, Y)R = 0. Thus this result is a
generalization of a result of [41].

In the last section we remark that a pseudo-Jacobi field which is defined by
Y. Tomonaga [{10] is identical with a Jacobi field which is defined by J.Simons
[ 7].

1. Normal connection of minimal submanifolds. We choose a local field
of orthonormal frames {e,,«--,e,,,} in M™*?[c] such that, restricted to M, the
vectors ey, - - -, e, are tangent to M. The following ranges of indices will be used
throughout this paper :

1=A,BC,---=n+p,

1=4j,k---=n,

n+lsa,B,v,--=n+ p.

With respect to the frame field of M "*?[¢| chosen above, let w' «--, w"*” be
the field of dual basis and let (w3) be the connection form of M™*?[c]. Since
w* = 0, we can put

(1) wi = Z hiwi |, by = RS,
J

Since (w§) defines a linear connection on the normal vector bundle N(M) in
M™*[c], we call it the normal connection of M. When R$%; denotes the
curvature tensor of (w$), by the structure equation of M"*”[c]:

dws = — 3w \ wh + cw? \ w?
-
we have
( 2 ) Rdu = Z(h hu h§ihf

Throughout this section, we assume that

VAN N\
(%) the normal connection Y/ is trivial, i. e., R = O.

By (3.1) of [ 2], we have
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(3) —<hAh>= Y (hihl — hihs)(hahl — hahy) + 3 hihiuhbht,
a0 Sl
—nc Y (hy).
a, €, j

By (2), (*) and (3), one obtains

(4) “<h,Ah>=ZS?,3'—nCG',

a,B

where S.o =D_h3hf, and o = > (hg)". Since the (px p)—matrix (S.,) is
4J i a

symmetric, it can be assumed to be diagonal for a suitable choice of €,41, * * *, €445

Setting S, = S.. (=0), (4) may be rewritten as follows :

(5) —<h,ANh>=) 8 —nco

_ (ZS) 558, — nea

axf

< ¢? —nco.

Thus we have

THEOREM 1. Let M be an n-dimensional compact oriented manifold
which is minimally immersed in an (n+ p)—dimensional Riemannian
manifold of constant curvature c. If the normal connection of M is trivial,
then

f a(oc — nc)dv=0.

PROOF. This follows immediately from (5) and the Lemma 2 of (2] or
(6.18) of [1].

From the Theorem 1 we have easily the following Corollary 1.

COROLLARY 1. Let M be a compact oriented manifold minimally

oy A
immersed in a space M™*?[c] of constant curvature c. Lf R3,=0, then either M
is totally geodesic in M™*?[c], or a=nc (>0) or at some point x < M, o(x)>nc.
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When we study minimal submanifolds with ¢ = nc (>0) in M"?[c] we
may assume that ¢ =1 and o = n. To state the proposition 1 we prepare the
notion of M-index of a minimal submanifold which is defined by T.Otsuki:
For any x < M, we denote the normal space to M, in M**?[c], by N,. For a
frame b = (x, e, -, €, ++, €nsp) we define a linear mapping ¥, from N, into
the space of all 7 X n symmetric matrices by

" (;eaea) _ (; 7

Then we call dim (Y,(N,)) M-index of a minimal submanifold M in M"*?[c]
at x.

PROPOSITION 1. Let M be an n-dimensional minimal submanifold
immersed in an (n+ p)-dimensional Riemannian manifold M™*[1] of
constant curvature 1. If M satisfies the condition (*) and o = n, then
M-index is 1 everywhere.

PROOF. Since o = constant we have (see, p.42 of [1])

(6) A =0 and <h,AR>=0,

where AZy is, by the definition,

(7) S hEwt = dhy — 3 hgwh — Y hwt + 3 hws.
k 14 l B

By (5),(6), c=1 and o =n we have

(8) 5 SeSs = 0.

axf3

From (8), ¢=n and S.=0, we may assume that S,,, =7 and S, =0 for
a>n+ 1. By the definition of S,, one obtains

Do (hEY: = n,
(9) i
hi =0 for any a>n+1 and any ¢, J.

Taking account of (9) and the definition of M-index, Proposition 1 follows.
Q.E.D.
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Using the Proposition 1, Theorem 1 of [6] and Theorem 2 of [ 2] we have

THEOREM 2. Under the same assumption as the Proposition 1,
(i) there exists an (n+ 1)-dimensional totally geodesic submanifold N™*'
in M"*[1] containing M as a minimal hypersurface
and
(ii) M is locally a Riemannian direct product M DU =V XV, of spaces
V., and V, of constant curvature, dimV,=m=1 and dim V,=n—m=1.

Now we have easily the following global version of Theorem 2.

THEOREM 3. Let M be an n-dimensional compact connected minimal
submani fold in an (n+ p)-dimensional unit sphere S™*"[1]. If M satisfies
the conditions that the normal connection of M is trivial and o = n, then
there exists an (n+ 1)-dimensional unit sphere S**'[ 1] containing M as a

n

Clifford minimal hypersurface My .- for k=1, 2,--- ’[12‘]

PROOF. By Theorem 2 there exists a totally geodesic submanifold N™*!
which is of constant curvature 1 in S"*?[1]. Since it is well-known [5] that
the totally geodesic maximal integral submanifold of an involutive distribution
on a complete Riemannian manifold is also complete for the induced metric,
N**! is complete for the induced metric. Therefore we have N"*' = S**[1].
The latter half of the Theorem 3 follows from the following Theorem C

((23,14D:

THEOREM C. Let M be an n-dimensional hypersurface immersed in
S 1). If o =n, then M is an open submanifold of one of the M, i

fr k=nneee[ 2]

REMARK 1. By (2)/\3 hypersurface in a Riemannian manifold of constant
curvature have always R, = 0. It follows that Theorem 3 is a generalization
of Theorem 1 in [4].

2. Classification of minimal hypersurfaces with R(X,Y)R, =0 in
S**'[1]. For any tangent vectors X and Y,R(X,Y) is an endomorphsm of the
tangent space at each point. R(X,Y) acts on R, as a derivation of the tensor
algebra at each point of M. Hypersurfaces with R(X,Y)-R, =0 is studied by
S. Tanno [ 7] and S. Tanno and T.Takahashi [ 8]. The following Theorem 4 is
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essentially a Corollary of Theorem 1 in [ 8].

THEOREM 4. Let M be a connected minimal hypersurface with R(X,Y)-R,
=0 in S**'[1], (n=3). Then, within rotations of S*™*'[1], M is an open

submanifold of one of the M, for k=0, 1,-- ,[721]

PROOF. we set h;; = hli*'. We choose our frame field in such a way that

(10) h’ii = 0 for i i_i-

and we set /i; = h;;. Then the condition R(X,Y)-R, =0 is written as

(11) (1 + hihy)(R;; — R;;) =0,

where R, = R(e;,e,), (see 1.3 of [9]). Taking account of the Gauss equation
of M, since M is a minimal hypersurface, one obtains (cf. see 1.4 of [91))

(12) Ri_’ = (77— - l) 8” - hihjSU.

By (11) and (12), one obtains

(13) (L + hhy) (W2 — 1) =0 for any i + .

By virtue of (13), (A;) has at most two eigenvalues and we define A and % as
h = max{h;} (with multiplicity s) and % = min{A,} (with multiplicity (n — s)),
respectively. Taking account of Lemma 5 in [ 9] and the minimality of M, if M
is not totally geodesic at a point x,, then M is not totally geodesic at any point
of M. 1f h?> = k* (#0) holds at any point of M, then, by (12), M is an Einstein
space. Thus M is an open submanifold of M, .. (see Corollary 2 of [4]). If
h® + k? holds at some point x, € M, then we have 1 + hk = 0 at x, where the
type number, #(x,), at x, is n. In [9] Tanno and Takahashi proved that if
1+ hk =0 at x, where t(x,) is 7, then 1 + hk = 0 and #(x) = n hold on M.
Thus we have

(14) 0=>"h, = sh+(n—s)k at any point.

By virtue of Rk = —1 and (14) we have h® = (n—s)/s. Therefore the square
of the length of the second fundamental form (A;;) is equal to
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Zhi = Shi +(7’l—s‘)}lil = n.

Theorem 4 follows immediately from the Theorem C. Q.E.D.

3. Jacobi field on a minimal submanifold. Let M"** be an (n+ p)-
dimensional Riemannian manifold and M an 7n-dimensional minimal submanifold

in M™**, <7 (resp. V) denotes the linear connection for the Riemannian metric
g of M+ (resp. the induced metric g of M). In the paper {7 ], J.Simons defined
the Laplace operator on the Riemannian vector bundle. The purpose of this

section is to give a decomposition formula of the Laplace operator, </, on the
cross-sections in the normal vector bundle N(M). The last statement in the
Introduction follows easily from the decomposition formula.

. B(X,Y) denotes the second fundamental form, i. e, B(X,Y) = (ViY)". Let
7 be the connection induced by </ in N(M): Let V be a cross-section in N(M)
and X e M,. Then we can set

(15) TV = — AX) + U4V,
where g(A"(X),Y) = 7(B(X,Y),V). We define AV by
(16) (AVIE = Vg C=1, 2+, n+p,

where the semicolon denotes the covariant differentiation along M. And we

define A(V)e N(M) by (2.2.5) in [7], i.e.,
a7 GAWV), W) = g,,g"(AM)(A") for any W e N(M).
Then we have

PROPOSITION /2\ Let V be a cross-section in N(M). Then $2V Sor the
Laplace operator 7* on N(M) can be decomposed in the following way,

(18) G = (A VY + AV).

PROOF. Let {e;,++-,e,} be a basis in M, at any point x<€ M. Extend them
to vector fields E,, - -+, E, in a neighborhood of x such that g(E, E;)=8§; and
(V&E;)).=0 at x. By Proposition 1.2.1 in [ 7] we have

(19) (V) = (T sV)s.

i=1



SOME REMARKS ON MINIMAL SUBMANIFOLDS 247

For any cross-section W in N(M) we have, using (15)~(19),

I V)W) =S g(Vn V)0 W)

i=1

= 2§V (VYY) W)

= Z 9(6&»(6;:1‘/ + AV(EI»J, wr:r)

=1

= Z g(( 6 Etﬁ k'cV )x’ W:)

=1

+ 3 G(B(E, AEN)W,)

i=1

= J(B V)W) + 5 g(ATEDa(ATEN)

Thus one obtains Proposition 2. Q.E.D.
A cross-section V in N(M) is called a Jacobi field [ 7] if it satisfies

(20) TV = RV) - AV),

where R(V) = E”:(R(Ei,V)Ei)“’.

i=1
A cross-section V' in N(M) is called a pseudo-Jacobi field [10] if it satisfies, in
our terminology,

(21) (AV)Y = R(V)—2A(V).

By (18), (20) and (21) a pseudo-Jacobi field is identical with a Jacobi field.

REMARK 2. The formula similar to (18) is seen in [ 3] (see (17) and (18)
of [3]).
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