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SOME REMARKS ON MINIMAL SUBMANIFOLDS
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This note consists of three topics for minimal submanifolds. M denotes an
tt-dimensional manifold which is minimally immersed in an (n + £)-dimensional
Riemannian manifold Mn+P[c] of constant curvature c. In the section 1 we study
a linear connection V on the normal vector bundle N(M) which is naturally
induced from the connection of the ambient space.. Mn+P[c], Let R be the
curvature tensor of V and let σ be the square of the length of the second
fundamental form of this immersion. Then it is proved that if M is compact,
orientable and R = 0, then

r
τ(σ — nc)dv g; 0,

where dv denotes the volume element of M. It follows that if σ^nc everywhere
on M, then either

( 1 ) σ — 0 (i. e., M is totally geodesic),

or

( 2 ) σ = nc.

The purpose of the section 1 is to determine all minimal submanifolds in a
unit sphere Sn+P\l] satisfying σ — n and R = 0. The result can be found in
Theorem 3.

In the section 2, we study a minimal hypersurface M in Sn + 1[l]. R and Rx

denotes the curvature tensor and Ricci tensor of M, respectively. We will prove
that if the Ricci tensor Rx of M satisfies the condition R(X,Y)-R1 = 0, then,
within rotations of 5n + 1[l], M is an open submanifold of one of the Clifford
minimal hypersurfaces :
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If Rγ is parallel, then Rx satisfies R{X,Y) RΪ = 0. Thus this result is a
generalization of a result of [ 4 ].

In the last section we remark that a pseudo-Jacobi field which is defined by
Y. Tomonaga [10] is identical with a Jacobi field which is defined by J.Simons
[7] .

1. Normal connection of minimal submanifolds. We choose a local field
of orthonormal frames [ex, , en+p] in Mn+P[c] such that, restricted to M, the
vectors eu , en are tangent to M. The following ranges of indices will be used
throughout this paper:

1 <; A, B, C, g ?ι + p,

With respect to the frame field of Mn+p[c] chosen above, let w[, , wn¥p be
the field of dual basis and let (wi) be the connection form of Mn+P[c], Since
ιva = 0, we can put

( 1 ) τvΐ - Σ K-w", Aϋ = K

Since (tf?) defines a linear connection on the normal vector bundle N(M) in
Mn+P[c]y we call it the normal connection of M. When R%kι. denotes the
curvature tensor of (w§), by the structure equation of Mh+P[c] :

dwi = - ]£ w£ Λ Wί + cwA Λ t^Λ ,

we have

(2) Rkι = Σ(KM-Kιhί).

Throughout this section, we assume that

y\ . . . ^ ^

( ^ ) the normal connection V is trivial, i. e., Rβki — 0.

By (3.1) of [21, we have
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• ( 3) - < h, Δ h > = Σ
α./M

By (2), (*) and (3), one obtains

where Saβ =Σh"ftυ and σ — X) (Λ?j)2. Since the (px p)—matrix (5β/3) is
i,J iJ.a

symmetric, it can be assumed to be diagonal for a suitable choice of en+ι, , en+p.
Setting Sa = Saa (^0), (4) may be rewritten as follows :

( 5 )

^ σ2 — ncσ.

Thus we have

THEOREM 1. Let M be an n-dimensional compact oriented manifold
which is minimally immersed in an (n + p)—dimensional Riemannian
manifold of constant curvature c. If the normal connection of M is trivial,
then

I σ(σ — nc)dv ^ 0.
M

PROOF. This follows immediately from ( 5 ) and the Lemma 2 of [ 2 ] or
(6.18) of [1].

From the Theorem 1 we have easily the following Corollary 1.

COROLLARY 1. Let M be a compact oriented manifold minimally
immersed in a space Mn+P[c] of constant curvature c. If R%κt—0. then either M
is totally geodesic in Mn + P[c], or σ = nc (>0) or at some point x £ M, σ{x)>nc.
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When we study minimal submanifolds with σ = nc ( > 0 ) in Mn+P[c] we
may assume that c = 1 and σ — n. To state the proposition 1 we prepare the
notion of M-index of a minimal submanifold which is defined by T.Otsuki:
For any x <= M, we denote the normal space to Mx in Mn+P[c]x by Nx. For a
frame b = (xy eu , en, , en + p) we define a linear mapping -ψ̂  from Nx into
the space of all n x w symmetric matrices by

Then we call dim (ψb(Nx)) M-index of a minimal submanifold M in Mn+P[c]
at x.

PROPOSITION 1. Let M be an n-dimensional minimal submanifold
immersed in an (n 4- p) dimensional Riemannian manifold Mn+P[l] of
constant curvature 1. // M satisfies the condition ( * ) and σ — n, then
M-index is 1 everywhere.

PROOF. Since σ — constant we have (see, p.42 of [1])

( 6 ) AS* = O and

where h%k is, by the definition,

(7 ) Σ h%kw
k = dhl - Σ, hbuή- Σ h%w\

k I I

By ( 5 ), ( 6 ), c = 1 and σ — n we have

( 8 )

From (8), σ = n and 5 α ^ 0 , we may assume that 5 n + 1 = n and Sa = 0 for
ct>n + 1. By the definition of *Sα, one obtains

( 9 )

h% = 0 for any a> n + 1 and any i9 j .

Taking account of ( 9 ) and the definition of Λ/-index, Proposition 1 follows.
Q. E. D.
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Using the Proposition 1, Theorem 1 of L̂ l aπd Theorem 2 of [ 2 J we have

THEOREM 2. U?ιder the same assumption as the Proposition 1,
( i ) there exists an {n + 1)-dimensional totally geodesic submanifold Nn+ι

in Mn+P[ 1 ] containing M as a minimal hyper surface
and
(ii) M is locally a Riemannian direct product M D U — V1 x V, of spaces

V{ and V2 of constant curvature, dimV\ — yn^\ and dim V2 = n — m^l.

Now we have easily the following global version of Theorem 2.

THEOREM 3. Let M be an 7i-dimensional compact connected minimal
submanifold in an (n + p)-dimensional unit sphere Sn+P[l], If M satisfies
the conditions that the normal connection of Aί is trivial and σ = n, then
there exists an {n -f 1)-dimensional unit sphere Sn+ι[ 1 ] containing M as a

Clifford minimal hypersurface MkjU-k for k = 1, 2, •ITJ.
PROOF. By Theorem 2 there exists a totally geodesic submanifold Nn+ί

which is of constant curvature 1 in Sn+P[ 1 ]. Since it is well-known [ 5 ] that
the totally geodesic maximal integral submanifold of an involutive distribution
on a complete Riemannian manifold is also complete for the induced metric,
Nn+ι is complete for the induced metric. Therefore we have Nn+ι = Sn+ι[l].
The latter half of the Theorem 3 follows from the following Theorem C

THEOREM C. Let M be an n-dimensional hypersurface immersed in
" + 1 [ l ] . If σ = n, then M is an open submanifold of one of the MktH_k

for * = 1, •01
REMARK 1. By (2) a hypersurface in a Riemannian manifold of constant

curvature have always Ra

βkl — 0. It follows that Theorem 3 is a generalization
of Theorem 1 in [ 4 J.

2. Classification of minimal hypersurfaces with R(X9 Y)'Rι = 0 in
S w + 1 [ l ] . For any tangent vectors X and Y,R(X,Y) is an endomorphsm of the
tangent space at each point. R(X,Y) acts on i?i as a derivation of the tensor
algebra at each point of M. Hypersurfaces with R(X,Y) Ri = 0 is studied by
S. Tanno f 7 ] and S. Tanno and T.Takahashi f 8 ]. The following Theorem 4 is
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essentially a Corol lary of Theorem 1 in [ 8 ] .

THEOREM 4. Let M be a connected minimal hypersurface with R(X,Y) RX

= 0 in Sn+ι[ 1 ], ( n ^ 3 ) . Then, within rotations of 5 n + 1 [ l ], M is an open

submanifold of one of the Mkt7i-k for k = 0, 1, •[#].
PROOF, we set Λo = A?/1. We choose our frame field in such a way that

(10) hυ = 0 for iΦj.

and we set hi = hu. Then the condition R(X,Y)'Rι = 0 is written as

(11) (l + At

where Rlh = Rx(eueh), (see 1.3 of [9]). Taking account of the Gauss equation

of My since M i s a minimal hypersurface, one obtains (cf. see 1.4 of [91)

(12) Ra = (*-l) Sij-hihjδij.

By (11) and (12), one obtains

(13) (1 4- hihΊ)(h2i ~ AJ) = 0 for any iΦj.

By virtue of (13), (htJ) has at most two eigenvalues and we define A and k as

A = max {At} (with multiplicity 5) and k = minfA }̂ (with multiplicity (w — 5)),

respectively. Taking account of Lemma 5 in [ 9 ] and the minimality of M, if M

is not totally geodesic at a point ro> then M is not totally geodesic at any point

of M. If A2 = £2 (Φ 0) holds at any point of Λf, then, by (12), M is an Einstein

space. Thus M is an open submanifold of Mn/2,n/2 (see Corollary 2 of [4]). If

A2 =£ &2 holds at some point x0 £ M, then we have 1 + hk = 0 at x 0 where the

type number, t(xQ), at x0 is ?z. In [ 9 ] Tanno and Takahashi proved that if

1 + hk = 0 at x0 where ί(,To) is n, then 1 -f hk = 0 and ί(x) = n hold on M.

Thus we have

(14) 0 = £ At = 5A + (w — 5)* at any point.
i

By virtue of hk = — 1 and (14) we have A2 = (n — s)/s. Therefore the square

of the length of the second fundamental form (A^) is equal to
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\ = sh~ + (n — 5) p

Theorem 4 follows immediately from the Theorem C. Q. E. D.

3. Jacobi field on a minimal submanifold. Let Mn+l) be an (n + ρ)
dimensional Riemannian manifold and M an ft-dimensional minimal submanifold
in Mn+P. V (resp. V) denotes the linear connection for the Riemannian metric
g of Mn+P (resp. the induced metric g of M). In the paper [ 7 ], J.Simons defined
the Laplace operator on the Riemannian vector bundle. The purpose of this
section is to give a decomposition formula of the Laplace operator, V2> on the
cross-sections in the normal vector bundle N(M), The last statement in the
Introduction follows easily from the decomposition formula.

B(X,Y) denotes the second fundamental form, i. e., B(X,Y) = ( v / f . Let
V be the connection induced by V in N(M): Let V be a cross-section in N(M)
and X e M τ. Then we can set

(15) V.rV = -Ar(X)+VzV,

where g(Av(X),Y) = ΐ(B(X,Y),V). We define Δ V by

(16) (Δ V)c = V%^, C = 1, 2, . .

where the semicolon denotes the covariant differentiation along M. And We

define Ά(V) s N(M) by (2. 2.5) in [ 7 ], i. e.,

(17) g(A(V), W) = gl}g
sl{AwyiA^l for any WeN(M).

Then we have

PROPOSITION 2. Let V be a cross-section in N(M). Then XjΎ for the

Laplace operator V2 on N(M) can be decomposed in the following way,

(18) V2V = (AVy + A(V).

PROOF. Let {eιt , en} be a basis in Mx at any point χ£ M. Extend them
to vector fields Eγy , En in a neighborhood of x such that g(Ei9Ej) = Sij and
(S/EιEj)x^=0 at x. By Proposition 1.2.1 in [ 7 ] we have

(19) (V'lO, =ΣXV*V-*,IO*.
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For any cross-section W in N(M) we have, using (15)^(19),

= Σ

, Wx)

Thus one obtains Proposition 2. Q. E. D.

A cross-section V in N(M) is called a Jacobi field [ 7 ] if it satisfies

(20) v*v = R(y)-Ά(V)9

where R(V) = ^(RiE^E^.

A cross-section V in N(M) is called a pseudo-Jacobi field [10J if it satisfies, in
our terminology,

(21) (AVyx = R(V) - 2A(V).

By (18), (20) and (21) a pseudo-Jacobi field is identical with a Jacobi field.

REMARK 2. The formula similar to (18) is seen in [ 3 ] (see (17) and (18)
of [3]).
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