Tõhoku Math. Journ. 22(1970), 225-230.

A NOTE ON QF-1 ALGEBRAS

YASUTAKA SUZUKI

(Received Jan. 12, 1970)

Let A be a finite-dimensional associative algebra with an identity element over a commutative field K, and every A-module be finite-dimensional as a vector space over K. R.M. Thrall [5] gave the following definition.

DEFINITION. An algebra A is said to be a QF-1 algebra if every faithful right A-module has the double centralizer property.

In this paper we shall establish a necessary and sufficient condition for an algebra to be a QF-1 algebra.

THEOREM. The following statements are equivalent: (1) An algebra A is a QF-1 algebra,

(2) For each exact sequence

 $0 \longrightarrow A_A \longrightarrow M_A$

such that $D(1) = M_A$, where $D = Hom_A(M_A, M_A)$, there exists the exact sequence

$$0 \longrightarrow A_A \longrightarrow M_A \longrightarrow \prod M_A.$$

Preliminaries. Throughout this paper, rings will have an identity element and modules will be unital. M_R will denote, as usual, the fact that M_R is a right *R*-module. If M_R is a right *R*-module, $E(M_R)$ will denote the injective envelope of M_R . We adopt the notation that homomorphisms of modules will be written on the side opposite the scalars.

For the right R-module M_R , we define

$$D = D(M_R) = \operatorname{Hom}_R(M_R, M_R)$$
 and $Q = Q(M_R) = \operatorname{Hom}_D(M_R, M_R)$.

The ring $Q(M_R)$ is said to be a double centralizer of M_R . We say that M_R has the double centralizer property if every element of $Q(M_R)$ is obtained by the right multiplication of an element of R.

Y. SUZUKI

If there exists an *R*-monomorphism: $M_R \longrightarrow N_R$, then we express it also as $M_R \subseteq N_R$ and identify M_R with the isomorphic image of M_R . A right *R*-module M_R is U_R -torsionless in case $M_R \subseteq \prod U_R$, where $\prod U_R$ is a direct product of copies of U_R . It is easy to see that M_R is U_R -torsionless if and only if, for each $0 \neq m \in M_R$, there exists $f \in \operatorname{Hom}_R(M_R, U_R)$ such that $f(m) \neq 0$.

LEMMA 1. If M_R has the double centralizer property and N_R satisfies one of the following conditions:

(1) N_R is M_R -torsionless,

(2) R-homomorphic images of M_R into N_R generate N_R ,

then $U_R = M_R \oplus N_R$ (direct sum) has the double centralizer property.

PROOF (see [3]). Let $q \in Q(U_R)$. It is clear that $(M_R)q \subset M_R$ and $(N_R)q \subset N_R$. Then there exists an element $r \in R$ such that (m)q = mr for each $m \in M_R$. We set

$$(u)\overline{q} = (u)q - ur$$
 for each $u \in U_R$.

Since $q \in Q(U_R)$ and $(M_R)\overline{q} = 0$, it is sufficient to prove $(n)\overline{q} = 0$ for each $n \in N_R$. Suppose that there thasts $n \in N_R$ such that $(n)\overline{q} \neq 0$. If N_R satisfies the condition (1), then there exists $f \in \operatorname{Hom}_R(N_R, M_R)$ such that $f(nq) \neq 0$. On the other hand $f(n\overline{q}) = (fn)\overline{q} \in (M_R)\overline{q} = 0$. This is a contradiction.

In case N_R satisfies the condition (2), for each $n \in N_R$, there exist $f_i \in \operatorname{Hom}_R(M_R, N_R)$ and $m_i \in M_R$ such that $n = \sum_{finite} f_i(m_i)$. Therefore $(n)\overline{q} = \left(\sum f_i(m_i)\right)\overline{q} = \sum f_i(m_i\overline{q}) \in \sum f_i(M\overline{q}) = 0$. This proves the lemma.

The next lemma is a special case of Lemma 1.

LEMMA 2. If M_R has the double centralizer property, then $\oplus M_R$ and $\prod M_R$ also have the double centralizer property.

LEMMA 3. If $\bigoplus M_R$ has the double centralizer property, then M_R also has the double centralizer property.

PROOF (see [1]). Let $q \in Q(M_R) = \operatorname{Hom}_D(_DM,_DM)$, where $D = \operatorname{Hom}_R(M_R, M_R)$. We define a mapping \overline{q} of $\bigoplus M_R$ into $\bigoplus M_R$ by setting

$$(m_{\alpha})\overline{q} = (m_{\alpha}q)$$
 for each $(m_{\alpha}) \in \bigoplus M_{\mathbb{R}}$.

It is sufficient to prove $\overline{q} \in \overline{Q} = \operatorname{Hom}_{\overline{D}}(\oplus M_R, \oplus M_R)$, where $\overline{D} = \operatorname{Hom}_R(\oplus M_R, \oplus M_R)$.

226

227

Let p be a projection: $\bigoplus M_R \longrightarrow M_R$, $d \in \overline{D}$ and $(m_\alpha) \in \bigoplus M_R$. We shall show $p[d\{(m_\alpha)\overline{q}\}] = p[\{d(m_\alpha)\}\overline{q}]$. Since $pdi_\alpha \in D$, where i_α denotes an injection: $M_R \longrightarrow \bigoplus M_R$, we have that

$$p[d\{(m_{\alpha})\overline{q}\}] = p[d(m_{\alpha}q)]$$

$$= p\left[d\left\{\sum_{finite} i_{\alpha}(m_{\alpha}q)\right\}\right]$$

$$= \sum pdi_{\alpha}(m_{\alpha}q)$$

$$= \sum \{pdi_{\alpha}(m_{\alpha})\}q$$

$$= \left[pd\left\{\sum i_{\alpha}(m_{\alpha})\right\}\right]q$$

$$= \{pd(m_{\alpha})\}q$$

$$= p[\{d(m_{\alpha})\}\overline{q}],$$

and this completes the proof.

For the fixed right R-module M_R , we define

$$N_R^* = \operatorname{Hom}_R(N_R, M_R)$$
 and $N_R^{**} = \operatorname{Hom}_p(N_R^*, pM)$.

It is easy to see that N_R is M_R -torsionless if and only if the natural R-homomorphism $\sigma_{N_R}: N_R \longrightarrow N_R^{**}$ is R-monomorphism. A right R-module N_R is said to be M_R -reflexive if σ_{N_R} is R-isomorphism. In case M_R to be a faithful right R-module, M_R has the double centralizer property if and only if R_R is M_R -reflexive.

THEOREM 4. There exists the exact sequence

$$0 \longrightarrow R_R \longrightarrow M_R$$

such that $D(1) = M_R$, where $D = \text{Hom}_R(M_R, M_R)$. Then the following statements are equivalent:

- (1) M_R has the double centralizer property,
- $(2) \quad M_R/R_R \subseteq \prod M_R.$

PROOF. Since there exists the R-exact sequence

Y. SUZUKI

$$0 \longrightarrow R_R \longrightarrow M_R \longrightarrow M_R / R_R \longrightarrow 0,$$

we have the D-exact sequence

$$0 \longrightarrow (M_R/R_R)^* \longrightarrow M_R^* \longrightarrow R_R^*.$$

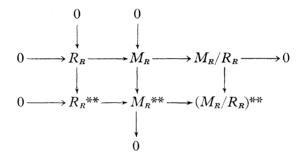
It follows that the right hand D-homomorphism is D-epimorphism by $D(1)=M_R$. Then the D-exact sequence

$$0 \longrightarrow (M_R/R_R)^* \longrightarrow M_R^* \longrightarrow R_R^* \longrightarrow 0$$

induces the R-exact sequence

$$0 \longrightarrow R_R^{**} \longrightarrow M_R^{**} \longrightarrow (M_R/R_R)^{**}$$

Furthermore we can easily show that the following diagram is commutative with all rows and columns *R*-exact.



In this commutative diagram, we can prove that $\sigma_{R_R}: R_R \longrightarrow R_R^{**}$ is *R*-epimorphism if and only if $\sigma_{M_R/R_R}: M_R/R_R \longrightarrow (M_R/R_R)^{**}$ is *R*-monomorphism. This shows the equivalence of the theorem.

By Lemma 2, Lemma 3 and Theorem 4, we can prove the next result.

COROLLARY (H. Tachikawa [4], T.Kato [2]). The following conditions on a ring R are equivalent:

(1) The injective envelope $E(R_R)$ of R_R has the double centralizer property,

 $(2) \quad E(R_R)/R_R \subseteq \prod E(R_R),$

(3) Each finitely-faithful, injective right R-module has the double centralizer property.

Here a right R-module M_R is said to be a finitely-faithful right R-module

228

if there exists the following exact sequence

$$0 \longrightarrow R_R \longrightarrow \bigoplus_{f_i n i t^2} M_R.$$

QF-1 Algebra. In this section, we shall prove our main theorem.

THEOREM. The following statements are equivalent: (1) An algebra A is a QF-1 algebra, (2) For each exact sequence

$$0 \longrightarrow A_{A} \longrightarrow M_{A}$$

such that $D(1) = M_R$ where $D = \text{Hom}_A(M_A, M_A)$, there exists the exact sequence

 $0 \longrightarrow A_{A} \longrightarrow M_{A} \longrightarrow \prod M_{A}.$

PROOF. It is clear that (1) implies (2). We shall only show that (2) implies (1). Let $\{m_1, \dots, m_n\}$ be a K-basis of a faithful right A-module M_A . We define a D-homomorphism of $\bigoplus_n^n D$ (where $D = \operatorname{Hom}_A(M_A, M_A)$) into $_pM$ by setting

$$d = (d_1, \cdots, d_n) \longrightarrow d_1 m_1 + \cdots + d_n m_n,$$

for each $d = (d_1, \cdots, d_n) \in \bigoplus^n D.$

Since a mapping $k_{\mathbb{R}}(k \in K)$: $m \longrightarrow mk$ for each $m \in M_A$ is an element of D, we have the *D*-exact sequence

$$\stackrel{n}{\oplus} D \longrightarrow {}_{D} M \longrightarrow 0$$

It follows that there exists the Q-exact sequence

$$0 \longrightarrow Q = \operatorname{Hom}_{D}({}_{D}M, {}_{D}M) \longrightarrow \operatorname{Hom}_{D}(\oplus D, {}_{D}M).$$

A right regular A-module A_A is naturally imbedded in Q by a faithfulness of M_A . Thus there exists the A-exact sequence

$$0 \longrightarrow A_A \xrightarrow{f} \bigoplus^n M_A,$$

where $f(a) = (m_1 a, \dots, m_n a)$ for each $a \in A_A$. If we pay attention to the fact that

$$m_1D + \cdots + m_nD = M_A$$
 and $\overline{D} = \operatorname{Hom}_A(\stackrel{n}{\oplus} M_A, \stackrel{n}{\oplus} M_A) \approx \stackrel{n}{\oplus} \stackrel{n}{\oplus} D$,

Y. SUZUKI

we can easily show that $\overline{D}(1) = \bigoplus^{n} M_{A}$. Therefore (2) implies that the right *A*-module $\bigoplus^{n} M_{A}$ has the double centralizer property, by Theorem 4. This shows that the right *A*-module M_{A} has the double centralizer property, by Lemma 3. This completes the proof.

The author wishes to thank Professor T. Tannaka and Mr. T. Kato for their encouragement and guidance during the preparation of this work.

References

[1] C. W. CURTIS AND I. REINER, Representation theory of groups and associative algebras, Pure and Applied Mathematics, Volume XI, John Wiley and Sons, New York, 1962.

[2] T. KATO, Rings of U-dominant dimension ≥ 1 , Tôhoku Math. J., 21(1963), 321-327.

- [3] K. MORITA, On algebras for which every faithful representation is its own second commutator, Math. Z., 69(1958), 429-434.
- [4] H. TACHIKAWA, On splitting of module categories, Math. Z., 111 (1969), 145-150.
- [5] R. M. THRALL, Some generalizations of quasi-Frobenius algebra, Trans. Amer. Math. Soc., 64(1948), 173-183.

Mathematical Institute Tôhoku University Sendai, Japan