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1. Introduction. S. I. Goldberg and S. Kobayashi [2] studied holomprphic
bisectional curvatures on Kahlerian manifolds, and they generalized results on
Kahlerian manifolds with positive curvature to results on Kahlerian manifolds
with positive holomorphic bisectional curvature. Let M be a Kahlerian manifold
with complex structure J and metric G. For two holomorphic planes σ and σ
in ΎX{M\ χ€ M, the holomorphic bisectional curvature H(cr, o:) is defined by

(1.1) H(σ, σ) = H(X, Y) = i?(X, JX, Y, JY) ,

where R is the Riemannian curvature tensor, X is a unit tangent vector in σ and
Y is a unit tangent vector in σ'. Denote by K(X, Y) the sectional curvature for
(X, Y)-plane. If σ and σ are perpendicular (in other words, G(X,Y) = G(X, JY)=0),
then we have

(1.2) H{Xy Y) = K(X9 Y) + K(X, JY),

and we call such fί(X, Y) holomorphic special bisectional curvature. Then some
results in [2] are valid even if we replace the condition 4<ρositive holomorphic
bisectional curvature" by "positive holomorphic special bisectional curvature".
Utilizing these results we get some corresponding results on Sasakian manifolds.
All manifolds are assumed to be connected (and without boundary).

2. Two results on Kahlerian manifolds. We do not restate theorems in
[2], but we state essential parts of two theorems so that we can apply them to
Sasakian manifolds.

PROPOSITION A. Let N be a Kahlerian manifold with positive

holomorphic special bisectional curvature. If V and W are complex

submanifolds of N such that

dim V + dim W ^ dim ΛΓ,
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then there is no (non-trivial) geodesic which is the shortest one from V to
W.

PROPOSITION B. Let N be an Einstein Kdhlerian manifold with
positive holomorphic special bisectional curvature. If the maximum value
of the holomorphic sectional curvature is attained at some point of N, then
N is of constant holomorphic sectional curvature k>0.

3. </>-holomorphic special bisectional curvature of Sasakian manifolds
and local fiberings. Let M be a Sasakian manifold with structure tensors
(φ>£>-V>ff)> the notations being the same as in [7]. For unit vectors X and Y
such that η(X) = η(Y) = 0, and g(X, Y) = g(XyφY) = 0, we define the φ-holomorphk
special bisectional curvature H*(X> Y)=H*(σ, σ) by

(3.1) H%X, Y) = K(X, Y) + K(X, φY),

where σ = (X, φX)-plane and σ ~ (Y, φy)-plane.
On the other hand, for a vector X such that η(X) = 0, H*(σ) = H*(X)

= K(X,φX) is called the φ-holomorphic sectional curvature for o =(X, φX)-ρlane.
Let x be an arbitrary point of M. Then we have a sufficiently small

coordinate neighborhood U of x, which is cubical and flat with respect to ξ
(cί. [5]). That is, U is a regular Sasakian manifold and has a fibering :

(3.2) π: U—+V = U/ξ\'

Since U is Sasakian, V is Kahlerian (cf. [3]). We denote by Jand G the structure
tensors on V. Then we have

(3.3) φu* = (Ju)*9 g = τt*G + η®η,

where u* on U is the horizontal lift of a vector field u on V with respect to
the contact form η, which acts like an infinitesimal connection form, although
U is not a principal fibre bundle. The sectional curvatures on U and V are
related by .

(3. 4) K(u*, v » ) = K(u9 v)-π-

for every orthonormal vectors u and v on V (cf. (5.8) in [6], etc.). Assume
that H(u,v) is holomorphic special bisectional curvature. Then, since g(u*t φτ>*)=0,
we see that the φ-holomorphic special bisectional curvature.'H*!(u*iv*) is given
by
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(3.5) H*(μ*, v*) = H(μ, v) π

by virtue of (3.1) and (3.4). In particular, this means that U has positive
φ-holomorphic special bisectional curvature if and only if V has positive
holomorphic special bisectional curvature.

By (3. 4) the relation between the holomorphic sectional curvature H(u) and
the φ-holomorphic sectional curvature H*(u*) is given by

(3. 6) H*{μ*) = H(μ) -π~3.

4. Submanif olds of Sasaki an manifolds. A submanifold E of a Sasakian
manifold M is called invariant, if ξ of M is tangent to E on E and, for any
tangent vector X to E, φX is tangent to E. In a Sasakian case, a theorem
analogous to that of T. Frankel [1] is as follows :

THEOREM 4.1. Let M be a compact Sasakian manifold with positive
φ'holomorphίc special bisectional curvature and let E and F be compact
and invariant submanifolds of M. If dim E + dim F ^ 1 -f dim M, then
di(EF)^

PROOF. Assume that Eί)F is empty. Let / = {/(*), O^t^ct} be one of
the shortest geodesies from E to F, where t is the arc-length parameter and cί
is the length of /. Since the tangent vector T o to / at 1(0) is orthogonal to E
and since ξ is tangent to Ey T o and (ξ)κQ) are perpendicular. Because ξ is a
Killing vector fields, ξ is perpendicular to the geodesic / at l{f) for each t. That
is, / is a horizontal geodesic in the sense that η(Tt) — 0, where Tt = dl(t)/dt.
We cover / by open sets Ut{i = 1, , s) stated in §3 such that it: Ut "Ui/'ξ
is a fibering. Then U = U Ut is a regular Sasakian manifold with respect to the
induced structure and we have the fibering of U:

V is a Kahlerian manifold which contains nί. Moreover, π(EC\U) and π(Fί)U)
are complex submanifolds of V, since £ and F are invariant in U. Since dim V
= dim ί7 — 1, we have

dim π(EnU) + dim τr(FnC7) = dim £ + dim F - 2 ^ dim Γ .

Next we show that nl is a geodesic from π(EC\U) to π{FC\U). Denote by
M a vector field on V such that # is tangent to π I at n I [t) for each t and of
unit length on ?L Generally we have
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(4.1) W Y * = (VxY)* + (1/2)^([X* Y*])f

for any vector fields X and Y on V, where V and V* are the Riemannian

connections defined by G and $\ respectively (cf. [6]). In particular, we have

V*Ά-X* = (Vx-X)*. Since (#*)κo and TΊ coincide at /(*) for each £, we have

V*tt #* = 0 on / and V«w = 0 on 7τ(/). Consequently, 7r/ is a geodesic on V with

the same length a as / on U (cf. (3.3)). Since any curve r in V from π(EΓ\U)

to π(FΓ\U) near π/ is lifted as a horizontal curve with the same length as

r near /, and since / is the shortest, nl is the shortest one. This is a contradiction

to Proposition A. Therefore EΓ)F contains at least one trajectory of ξ.

5. The first Betti number.

THEOREM 5.1. Let M be a compact Sasakian manifold. Assume that

(i) every φ-holomorphic special bisectional curvature H*(σtσ)>0,

(ii) every φ-holomorphic sectional curvature ίΓ*(σ)>— 3.

Then the first Betti number bx{M) = 0.

PROOF. In the same notation as in [7], ( i ) implies that

Kλμ -I- Klμ. > 0 for λ ^F μ

and (ii) implies KiX*> —3. Hence we have

Σ μ ( ! ^ μ + / £ * . ) > - 3 ,

and Theorem 4.1 in [7] completes the proof.

6. The second Betti number. By Theorem 5.1 it is clear that the second

Betti number b2(M) of a compact Sasakian manifold of 3-dimension is zero if

H*(<r)>-3.

THEOREM 6.1. Let M be a compact Sasakian manifold. Assume that

(i) every φ-holomorphic special bisectional curvature H*(σ%σ')>0,

(ii) every φ-holomorphic sectional curvature H*{σ) > — 3.
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Then we have b2(M) = 0.

PROOF. Similarly as in the proof of Theorem 5.1, Theorem 6.1 follows
from Theorem 5.7 and Theorem 5.10 in [7].

7. Einstein Sasakian manifolds. The proof for the next Proposition
given by E. M. Moskal [4] is rather lengthy and so we give here a simple proof
by reducing the discussion to the Kahlerian case.

PROPOSITION 7.1. (E.M. Moskal) Let M be a compact simply connected
Einstein Sasakian manifold with positive curvature (more precisely, positive
φ-holomorphic special bisectional curvature). Then M is isometric to a unit
sphere.

To prove this it is enough to show the following

PROPOSITION 7.2. A compact Einstein Sasakian manifold with positive
φ-holomorphic special bisectional curvature is of constant curvature 1.

PROOF. Let x be a point where the maximum value of the φ-holomorphic
sectional curvature is attained, and let n\ U-*V = U/ξ be a local fibering, U
being a neighborhood of x. Then V is an Einstein Kahlerian manifold ([6]) and
the maximum value of the holomorphic sectional curvature of V is attained at
nx by (3.6). So we can apply Proposition B, which tells us that V is of constant
holomorphic sectional curvature k > 0. By the way, the scalar curvature S of an
Einstein Sasakian manifold of ra-dimension is given by 5 = m(m —1) (cf. (2.7)
in [7]). By (5.12) in [6], the scalar curvature S' of V is given by

(7.1) 5 ' = S + m - l = m 2 - l .

On the other hand, we hava S' = (n2 + n)k where 2n + l = m . Then by (7.1)
we have k = 4. By (3.6) U has constant φ-holomorphic sectional curvature
H*=k—3 = 1. Next by (12.1) and Lemma 6.4 in [7], U is of constant curvature
1. Therefore M is of constant curvature 1.

8. 77-Einstein Sasakian manifolds. A Sasakian manifold is called an
77-Eienstein manifold, if the Ricci tensor Rx is of the form: i?i = ag + bη®η
for some functions a and b on M. If ra§^5, then a and b are constant. A
deformation (φ, ξ, η, g) — - (*φ, *ξ% *η, *g) such that

(8.1) *g = ag + (a2 -
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(8.2) * φ = > , *η = Ctη9 *ξ = a~ιξ

for some positive constant a is called D-homothetic (cf. [7]). If (φ, f,77, g) is
Sasakian then (*φ, *£,**?, *flθ is also Sasakian.

PROPOSITION 8.1. In a compact η-Έ.instein Sasakian manifold M of
m-dimension, assume that

( i ) every φ-holomorphic special bisectional curvature H*(σ,σ')>0,
(ii) every φ-holomorphic sectional curvature H*(σ )> — 3, and
(iii) either' m^5, or m = 3 and α, b are constant.

Then the structure is D-homothetic to a Sasakian structure with constant
curvature 1.

PROOF. The scalar curvatures *S and S are related by

(8.3) a*S = 5 r ( Λ - l)(m - 1 )

(cf. [7]). For a suitable φ-basis the non-vanishing components of the Ricci
curvature tensor are given by (cf.§4 in [7])

T h e n under t h e assumptions ( i ) and ( i i ) w e have

(8. 4) S = R00 + 2XxRλi>m- 5 .

Solving a from (8. 3) putting *S = m(m — 1), we have

(8.5) a = (S + m - l)/(m2 - 1 ) .

By (8.4) and (8.5) we have

a> 2{m - 3)/(m2 - 1) ^ 0.

Condition (iii) implies that a defined by (8.5) is constant. Therefore, by the
D-homothetic deformation for such a, *g has the scalar curvature m(m — 1).
Then *g is an Einstein metric. If we notice that ( i ) , (ii) and (iii) are invariant
by a jD-homothety, then Proposition 8.1 follows from Proposition 7.2.
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THEOREM 8.2. In a compact Sasakίan manifold of m-dimension, assume
that

( i ) every φ-holomorphic special bisectional curvature H*(σ,σ')>0,
(ii) every φ-holomorphic sectional curvature H*(σ)> — 3, and
(iii) the scalar curvatrue is constant.

Then the structure is D-homothetic to a Sasakian structure with constant
curvature 1.

PROOF. By Theorem 6.1, the second Betti number of M is zero. Then M
is an ^-Einstein manifold by Corollary 5. 7 in [6] and hence by Proposition 8.1,
the structure is D-homothetic to a Sasakian structure with constant curvature 1.
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