Tôhoku Math. Journ. 22(1970), 174-180.

SOME REMARKS ON LOCAL MARTINGALES

NORIHIKO KAZAMAKI

(Received April 9, 1969)

Let (Ω, F, P) be a basic probability space where F is complete with respect to P and let $\{F(t)\}_{0 \le l < \infty}$ be an increasing family of Borel subfields of F. In what follows, we suppose that the family $\{F(t)\}_{0 \le l < \infty}$ is right continuous and has no time of discontinuity.

We call a family $T = \{F(t), \tau_t\}_{0 \le l < \infty}$ a time change function with respect to the family $\{F(t)\}_{0 \le l < \infty}$, if

- (1) for each $u \in [0, \infty)$, τ_u is a stopping time with respect to the family $\{F(t)\}_{0 \le t < \infty}$ and $\tau_u < \infty$,
- (2) for almost all ω , $[0, \infty) \ni u \to \tau_u(\omega)$ is a continuous and strictly increasing function with $\tau_0(\omega) = 0$.

For a right continuous stochastic process $X = \{x_t, F(t)\}_{0 \le t < \infty}$ and a time change function $T = \{F(t), \tau_t\}_{0 \le t < \infty}$, we can define a new stochastic process $TX = \{x_{\tau_t}, F(\tau_t)\}_{0 \le t < \infty}$ and we call it the stochastic process obtained from X by a time change with respect to T. In particular, if $X^a = \{x_t^a, F(t)\}_{0 \le t < \infty}$, $a \in A$, where A is an arbitrary set, is a collection of continuous stochastic processes such that

$$\sup\{|x_s^a - x_0^a|; 0 \le s \le t, a \in A\}$$

is continuous, then we call the time change function

$$\Theta = \{F(t), \theta_t\}_{0 \le t < \infty},$$

the stopping process or the brake of the processes X^a , where $\theta_t = \inf\{u; \lambda_u > t\}$ and $\lambda_t = t + \sup\{|x_s^a - x_0^a|; 0 \le s \le t, a \in A\}$.

In the followings we assume that $x_0 = 0$ and X is quasi-continuous from the left. We call a martingale $X = \{x_t, F(t)\}_{0 \le t < \infty}$ an L^*_{∞} -martingale if for each t

$$P\{\sup_{0\leq u\leq t}|x_u|\leq c_t\}=1$$

where c_t is some constant with $c_0 = c_{0+} = 0$. Let *M* designate the set of all right continuous local martingales which can be transformed into L_{∞}^* -martingales

by means of time changes.

K. E. Dambis [1, 1965] has proved that any q-martingale (that is to say, any continuous local martingale [2, 1968]) belongs to M. The purpose of this note is to give a necessary and sufficient condition for the assertion that a right continuous local martingale belongs to M.

The author wishes to thank Professor T. Tsuchikura for his kind suggestions in the presentation of this paper.

THEOREM 1. In order that a right continuous local martingale $X = \{x_t, F(t)\}_{0 \le t < \infty}$ belongs to M, it is necessary and sufficient that there exists a continuous stochastic process $Y = \{y_t, F(t)\}_{0 \le t < \infty}$ with $y_0 = 0$ such that we have

$$P\{\sup_{u \le u \le t} |x_u| \le \sup_{u \le u \le t} |y_u|\} = 1$$

for each t. Here we need not assume that y_t is integrable.

PROOF. Necessity. If $X = \{x_t, F(t)\}_{0 \le t < \infty}$ belongs to M, by the definition of M there exist non negative constant c_t and some time change function $T = \{F(t), \tau_t\}_{0 \le t < \infty}$ satisfying $c_0 = c_{0+} = 0$ and

$$P\{\sup_{0\leq u\leq t}|x_{\tau_u}|\leq c^+\}=1$$

for each t. We put $c'_{t} = \inf_{t \le u} c_{u}$, $c''_{t} = \lim_{h \downarrow 0} c'_{t+h}$ and $c''_{t} = \frac{1}{t} \int_{t}^{u} c''_{u} du$. Then c''_{t} is continuous in t and clearly we have

$$P\{\sup_{0\leq u\leq l}|x_{\tau_u}|\leq c_l^*\}=1$$

for each t. Therefore we have $P\{\sup_{0 \le u \le t} |x_u| \le c_{\phi_t}^*\} = 1$, where $\phi_t = \inf\{u; \tau_u > t\}$, and $\{c_{\phi_t}^*, F(t)\}_{0 \le t < \infty}$ is a continuous stochastic process satisfying $c_{\phi_0}^* = c_0^* = 0$. Put $y_t = c_{\phi_t}^*$ and we have the desired.

Sufficiency. Let $Y = \{y_t, F(t)\}_{0 \le t < \infty}$ be a continuous stochastic process satisfying $y_0 = 0$ and $P\{\sup_{0 \le u \le t} |x_u| \le \sup_{0 \le u \le t} |y_u|\} = 1$ for each t. Then the brake of $Y, \Theta = \{F(t), \theta_t\}_{0 \le t < \infty}$, is a time change function and it is easy to see that

$$P\{\sup_{0\leq u\leq t}|x_{\theta_u}|\leq \sup_{0\leq u\leq t}|y_{\theta_u}|\leq t\}=1$$

N. KAZAMAKI

for each t and $\Theta X = \{x_{\theta_i}, F(\theta_i)\}_{0 \le t < \infty}$ is an L^*_{∞} -martingale. This implies that $X = \{x_i, F(t)\}_{0 \le t < \infty}$ is an element of M.

This completes the proof.

It is easy to show that $\alpha X^{(1)} + \beta X^{(2)}$ belongs to M for any $X^{(k)} = \{x_t^{(k)}, F(t)\}_{0 \le t < \infty} \in M, \ k = 1, 2$ and any real numbers α, β . Let $F^{(n)}$ be a sequence of σ -fields. By $\lim_{n \to \infty} F^{(n)}$ we mean the σ -field of all sets A for which there exists an $A^{(n)} \in F^{(n)}$ for each n such that $\lim_{n \to \infty} P(A \triangle A^{(n)}) = 0$.

Let $X^{(n)} = \{x_t^{(n)}, F^{(n)}(t)\}_{0 \le t < \infty}$, $n = 1, 2, \dots$ and $X = \{x_t, F(t)\}_{0 \le t < \infty}$ be stochastic processes. We say that the sequence $X^{(n)}$ converges uniformly almost surely to X if F(t) = F'(t+0) where $F'(t) = \lim_{n \to \infty} F^{(n)}(t)$ and there exist continuous processes

$$Y^{(n)} = \{y_t^{(n)}, F^{(n)}(t)\}_{0 \le t < \infty} \text{ and } Y = \{y_t, F(t)\}_{0 \le t < \infty}$$

such that for each t

$$\lim_{n \to \infty} \sup_{0 \ge u \le t} \max\{ |x_u^{(n)} - x_u|, |y_u^{(n)} - y_u| \} = 0,$$

$$y_o^{(n)} = 0, \quad \sup_{0 \le u \le t} |x_u^{(n)}| \le \sup_{0 \le u \le t} |y_u^{(n)}|, \quad n = 1, 2, \cdots$$

with probability 1.

THEOREM 2. In order that the stochastic process $X = \{x_i, F(t)\}_{0 \le t < \infty}$ belongs to M, it is necessary and sufficient that there exists a sequence $X^{(n)} = \{x_i^{(n)}, F(t)\}_{0 \le t < \infty}$ of right continuous martingales converging uniformly almost surely to X.

PROOF. Sufficiency. We shall divide the proof into three portions.

Case(1). First we shall consider the simple case that $x_t^{(n)}$ is uniformly integrable with respect to n, for fixed t.

Let $A \in F(s)$. Then for each n

$$\int_{A} x_{s}^{(n)} dP = \int_{A} x_{t}^{(n)} dP, \qquad s \leq t.$$

Passing to the limit, we see, in view of the uniform integrability of $x_{i}^{(n)}$ and $x_{l}^{(n)}$, that $X = \{x_{l}, F(t)\}_{0 \le l < \infty}$ is a martingale. It is easy to see that we have

$$\sup_{0\leq u\leq t}|x_u|\leq \sup_{0\leq u\leq t}|y_u|, \quad y_0=0 \quad \text{a.s.}$$

176

In view of Theorem 1, $X = \{x_t, F(t)\}_{0 \le t < \infty}$ belongs to M.

Case (2). Assume that we can define the brake $\Theta = \{F(t), \theta_t\}_{0 \le t < \infty}$ of $\{Y^{(n)}, Y; n = 1, 2, \cdots\}$. As $\lambda_t = t + \sup_{\substack{0 \le u < t \\ n=1,2,\cdots}} \max(|y_u^{(n)}|, |y_u|)$, clearly we have

$$P\{\sup_{\theta \leq u < t} \max[|y_{\theta_u}^{(n)}|, |y_{\theta_u}|] \leq t\} = 1.$$

That is to say, $x_{\theta_i}^{(n)}$ is uniformly integrable with respect to n, for fixed t. As $\Theta Y^{(n)}$, $n = 1, 2, \dots$ and ΘY are continuous stochastic processes and $\Theta X^{(n)}$ converges uniformly almost surely to ΘX , we have $\Theta X \in M$ in view of case (1). Hence X is an element of M.

Case (3). Let us go over to the general case. Let $\Theta^{(n)} = \{F(t), \theta_t^{(n)}\}_{0 \le t < \infty}$ and $\Theta = \{F(t), \theta_t\}_{0 \le t < \infty}$ be the brakes of $\{Y^{(n)}, Y\}$ and Y respectively. It is easy to show that we have with probability 1

$$\theta_t^{(n)} \leq \theta_t, \quad \sup_{0 \leq u \leq t} |x_{\theta_u}| \leq t,$$
$$\lambda_t^{(n)} \equiv t + \sup_{0 \leq u \leq t} \operatorname{Max}(|y_u^{(n)}|, |y_u|)$$

tends to $\lambda_t \equiv t + \sup_{0 \leq u \leq t} |y_u|$ by the convergence property of $X^{(n)}$ and then

$$\lim_{n\to\infty} \theta_t^{(n)} = \theta_t$$

for each t. We put $\theta_N^{*(n)} = \inf \{ \theta_N^{(k)}; k \ge n \}$. Then each $\theta_N^{*(n)}$ is a stopping time with respect to the family $\{F(t)\}_{0 \le t < \infty}$, and

$$P\{\theta_N^{*(n)} \uparrow \theta_N(n \uparrow \infty)\} = 1$$

for each $N = 1, 2, \cdots$.

By the triangle inequality we have

$$\begin{aligned} |x_{\theta_N^{(n)}(n)\wedge t}^{(n)} - x_{\theta_N \wedge t}| &\leq |x_{\theta_N^{(n)}(n)\wedge t}^{(n)} - x_{\theta_N^{*}(n)\wedge t}| + |x_{\theta_N^{*}(n)\wedge t} - x_{\theta_N \wedge t}| \\ &\leq \sup_{0 \leq u \leq t} |x_u^{(n)} - x_u| + |x_{\theta_N^{*}(n)\wedge t} - x_{\theta_N \wedge t}|. \end{aligned}$$

and we have

$$P\{\lim_{n\to\infty} x_{\theta_N^{i}}^{(n)}|_{h} = x_{\theta_N^{h}}\} = 1$$

for each N, because $X^{(n)}$ converges uniformly almost surely to X and the process X is quasi-continuous from the left. For each n and N, $\{x_{\delta_N^{(n)}}^{(n)}\}_{0 \le t \le \infty}$ is a martingale and from the fact $|x_{\delta_N^{(n)}}^{(n)}|_{\Lambda t} \le N$, $x_{\delta_N^{(n)}}^{(n)}|_{\Lambda t}$ is uniformly

N, KAZAMAKI

integrable with respect to n, for fixed t. On the other hand, by the assumption that the family $\{F(t)\}_{0 \le t < \infty}$ has no time of discontinuity, for any $A \in F_{\theta_N \wedge s}$ there exists $A^{(n)} \in F_{\theta_N^{(n)} \wedge s}$ such that $P(A \triangle A^{(n)})$ converges to 0. Therefore for each n we have

$$\int_{A^{(n)}} x_{\theta_N^{(n)} \wedge s}^{(n)} dP = \int_{A^{(n)}} x_{\theta_N^{(n)} \wedge t}^{(n)} dP, \ s \leq t.$$

In view of the Lebesgue bounded convergence theorem we have

$$\int_{A} x_{\theta_N \wedge s} dP = \int_{A} x_{\theta_N \wedge t} dP, \quad s \leq t.$$

Thus for fixed N, $\{x_{\theta_N \wedge t}, F(\theta_N \wedge t)\}_{0 \le t < \infty}$ is a martingale. On the other hand, as $A[\theta_N > s] \in F(\theta_N \wedge s)$ for $A \in F(s)$, we have for s < t

$$\int_{A} x_{\theta_{N} \wedge s} dP = \int_{A[\theta_{N} \leq s]} x_{\theta_{N} \wedge s} dP + \int_{A[\theta_{N} > s]} x_{\theta_{N} \wedge s} dP$$
$$= \int_{A[\theta_{N} \leq s]} x_{\theta_{N} \wedge t} dP + \int_{A[\theta_{N} > s]} x_{\theta_{N} \wedge t} dP$$
$$= \int_{A} x_{\theta_{N} \wedge t} dP.$$

Therefore $\{x_{\theta_N \wedge t}, F(t)\}_{0 \leq t < \infty}$ is a martingale.

Now we put $X^{(n)} = \{x_{\theta_N \wedge t}, F(t)\}_{0 \leq t < \infty}$ and $Y^{(N)} = \{y_{\theta_N \wedge t}, F(t)\}$

Then the brake of $\{Y^{(n)}, Y; N = 1, 2, \dots\}$ exists and coincides with the brake Θ of Y. As $X^{(N)}$ converges uniformly almost surely to X, from the case (2) we see that X is an element of M. This completes the proof of the sufficiency.

Necessity. Let $X = \{x_i, F(t)\}_{0 \le t < \infty}$ be an element of M, that is to say, we assume that there exists a continuous stochastic process $Y^* = \{y_i^*, F(t)\}_{0 \le t < \infty}$ with $y_0 = 0$ satisfying

$$\sup_{0\leq u\leq t}|x_u|\leq \sup_{0\leq u\leq t}|y_u^*| \qquad \text{a.s.}$$

for each t. If $\Theta = \{F(t), \theta_i\}_{0 \le t < \infty}$ is the brake of Y^* , then $X^{(n)} = \{x_{t/0}, F(t)\}_{0 \le t < \infty}$ satisfies that

SOME REMARKS ON LOCAL MARTINGALES

$$\sup_{0 \le t \le m} |x_{t \wedge \hat{x}_n}| \le n \qquad \text{a.s}$$

for each $n = 1, 2, \cdots$ From this fact we may deduce that $X^{(n)}$ is a martingale for each n.

We put $x_t^{(n)} = x_{t \land \theta_n}$. Then clearly we have for each t

$$\sup_{0 \le u \le t} |x_u^{(n)}| \le \sup_{0 \le u \le t} |y_{u \land \theta_n}^*| = \sup_{0 \le u \le t} |y_{\theta_{\lambda_u} \land u}^*| \le n_\land \lambda_t \quad \text{a.s.}$$

where $\lambda_t = \inf\{u; \theta_u > t\}$. If we put $y_t^{(n)} = n \wedge \lambda_t$ and $y_t = \lambda_t$, then $Y^{(n)} = \{y_t^{(n)}, F(t)\}_{0 \le t < \infty}$ and $Y = \{y_t, F(t)\}_{0 \le t < \infty}$ are continuous stochastic processes and

$$\lim_{n \to \infty} \sup_{0 \le u \le l} |y_u^{(n)} - y_u| = 0, \quad y_0^{(n)} = y_0 = 0 \qquad \text{a.s}$$

As $\lim_{n\to\infty} \sup_{0\le u\le t} |x_u^{(n)} - x_u| = 0$ a.s., $X^{(n)} = \{x_t^{(n)}, F(t)\}_{0\le t<\infty}$ converges uniformly almost surely to X. This completes the proof.

THEOREM 3. If a sequence $X^{(n)} = \{x_t^{(n)}, F(t)\}_{0 \le t < \infty}$ of M satisfies that for each t

$$\lim_{m,n\to\infty} \sup_{0\le u\le t} \max\{|x_u^{(n)} - x_u^{(m)}|, |y_u^{(n)} - y_u^{(m)}|\} = 0$$

almost surely, then $X^{(n)}$ converges uniformly almost surely to some element $X = \{x_t, F(t)\}_{0 \le t < \infty}$ of M.

PROOF. It is easy to see that $X^{(n)}$ converges uniformly almost surely to some process $X = \{x_t, F(t)\}_{0 \le t < \infty}$, where $x_t = \lim_{n \to \infty} x_t^{(n)}$ a.s., and there exists a brake $\Theta = \{F(t), \theta_t\}_{0 \le t < \infty}$ of $\{Y^{(n)}; n = 1, 2, \cdots\}$. Then a sequence $\Theta X^{(n)} = \{x_{\theta_t}^{(n)}, F(\theta_t)\}_{0 \le t < \infty}$ of right continuous marting les converges uniformly almost surely to $\Theta X = \{x_{\theta_t}, F(\theta_t)\}_{0 \le t < \infty}$. In view of Theorem 2, ΘX belongs to M and therefore X belongs to M. This completes the proof.

We can generalize Theorem 1 as the follows:

THEOREM 4. Let $X = \{x_t, F(t)\}_{0 \le t < \infty}$ be a right continuous stochastic process (not necessary $x_0 = 0$).

In order that for some time change function $T = \{F(t), \tau_t\}_{0 \leq t < \infty}$,

$$\sup_{0 \le u \le t} |x_{\tau_u}| \le c_t + \xi_0 \qquad a.s.$$

where $\{c_i\}_{0 \leq i < \infty}$ is a constant process and ξ_0 is a F_0 -measurable random

179

N. KAZAMAKI

variable, it is necessary and sufficient that there exists a continuous process $Y = \{y_t, F(t)\}_{0 \le t < \infty}$ (not necessary $y_0 = 0$) satisfying the inequality

$$\sup_{0\leq u\leq t}|x_u|\leq \sup_{0\leq u\leq t}|y_u| \qquad a.s.$$

for each t.

PROOF. Sufficiency. Let $Y = \{y_t, F(t)\}_{0 \le t < \infty}$ be a continuous stochastic process satisfying for each t

$$\sup_{0 \le u \le t} |x_u| \le \sup_{0 \le u \le t} |y_u|$$

with probability 1. Then the brake $\Theta = \{F(t), \theta_i\}_{0 \le i < \infty}$ of the process $\{y_i - y_0, F(t)\}_{0 \le i < \infty}$ is a time change function and it is easy to check

$$\sup_{0 \le u \le t} |x_{\theta_u}| \le \sup_{0 \le u \le t} |y_{\theta_u} - y_0| + |y_0| \le t + |y_0| \quad \text{a. s.}$$

Necessity. We put $c'_{t} = \inf_{\substack{t \leq u \\ t \leq u}} c_{u}$ and $c''_{t} = c'_{t+0} - c'_{0+}$. Then $\{c^{*}_{t}\}_{0 \leq t < \infty}$ where $c^{*}_{t} = \frac{1}{t} \int_{t}^{t} c''_{u} du$, is a continuous process with $c^{*}_{0} = 0$ and we have

$$\sup_{0\leq u\leq t}|x_{\tau_u}|\leq c_t^*+\xi_0^* \quad \text{a.s.}$$

where $\xi_0^* = \xi_0 + c'_{0+}$ (this is clearly F_0 -measurable).

Therefore we have

$$\sup_{0\leq u\leq t}|x_u|\leq c_{\phi_t}^*+\xi_0^* \qquad \text{a.s}$$

where $\phi_t = \inf\{u; \tau_u > t\}$, and $\{c_{\phi_t}^* + \xi_0^*, F(t)\}_{0 \le t < \infty}$ is a continuous stochastic process. This completes the proof.

REMARK. We may assume that c_t is continuous. Then $\xi_0 = 0$ if and only if $y_0 = 0$. Moreover for each p, ξ_0 is L_p -integrable if and only if y_0 is so.

References

- K.E. DAMBIS, On the decomposition of continuous martingales, Theor. Probability Appl., 10(1965), 401-410.
- [2] N.KAZAMAKI, On the equivalence of q-martingales and locally integrable martingales, Tôhoku Math. J., 20(1968), 346-354.

Mathematical Institute Tôhoku University Sendai, Japan

180