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1. Introduction. It is well-known that the Cauchy problem and difference
approximations of its solution are closely related to the theory of semigroups,
but these relations are usually treated under the assumption that the semigroup
generated by the solution operators of the Cauchy problem is a (Co)-semigroup.
Trotter [9] shows that the difference approximations for the Cauchy problem is
formulated in terms of semigroups and reduces the problem to the convergence
of semigroups. On the other hand, the theory of semigroups is developed in
more general classes, for example, in the class of (A) or (0, A). Phillips [8]
formulates the abstract Cauchy problem in terms of (Co)- and (0, A)-semigroups.
The theory of convergence of semigroups is generalized to (1, A)-semigroups by
Miyadera [6], and to (A)- and (0, A)-semigrouρs by Oharu and Sunouchi [7].

The purpose of this paper is to formulate the semi-discrete difference
approximations to Cauchy problem in terms of semigroups. In §2, we show that
the problem of convergence of semi-discrete difference approximations of Cauchy
problem is reduced to the problem of convergence of semigroups. In order to
treat this problem by semigroup-theoretic approach, we shall introduce the notion
of well-posedness in the sense of semigroup and study some relations between
the abstract Cauchy problem and its semigroup. In this formulation our results
on the convergence of (A)- and (0, A)-semigroups are applicable to the problem.
But if we assume that the Cauchy problem is well-posed in the sense denned in
§2, then the conditions of convergence are given in very simple forms (§3). As
an application, in the case of constant coefficients considered in L2(Rd), we can
show there are always semi-discrete difference approximations which converge to
the solution of the given Cauchy problem (in §4). Finally, in this respect, we
shall show some examples of (0, A)-semigroups generated by the solution
operators of Cauchy problems in simple forms (in the Appendix). These examples
will be interested in themselves.

2. Abstract Cauchy problem and semi-discrete difference scheme. Let
us consider the abstract Cauchy problem
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(2.1) Jf- = Au, «(0) = «β,
at

in a Banach space X. Here A is a densely denned closed linear operator. We

shall assume that A has a core, that is, a linear dense set contained in the domain

D(A~)= Γ)D(An), such that the closure of A restricted to D is equal to A and

A ( ΰ ) c ί ) . This condition is usually satisfied by differential operators. (Concerning

the notion of core and its properties, refer Kato [4].)

The process of setting up a sequence of finite difference approximations to

the Cauchy problem (2.1) may be described in the following general terms. Let

{An} be a sequence of bounded linear operators which approximates A in the

sense that

(2. 2) Anu -+Au, for u £ D,

then we obtain the sequence of equations

(2.3) ^ = Anun, un(O)=u0,
at

which will be called a semi-discrete difference scheme. (2. 2) will be called a

consistency condition. The solution of (2. 3) for each n is obviously represented

as

(2. 4) un(t) = exp(ίAn) u0 = Tnif) uQ .

Here Tnif) = exp(ίAn) — Σ ifAn)
k/k!, which is well-defined, because An is a

A;=0

bounded linear operator. Thus we obtain a sequence of uniformly continuous

semigroups [Tn(t)}. The general descriptions of semi-discrete difference approxi-

mations for constant coefficient cases are given by Birkhoff and Varga [1] in

some details. See also §4.

Now the problem of semi-discrete approximations is: under what conditions

do the approximate solutions unit) = T vif)uQ converge to the solution uif) of (2.1)

for £ > 0 or £ ̂  0 ?. Note that the problem is formulated whether or not the

Cauchy problem (2.1) is well-posed.

Trotter [9] proved (in a more general form) that, under the consistency

condition, if there are constants M and ω such that

(2.5) ||Tnif)|| = ||exp(*An)|| ^ Mϊ* ,

and the resolvent set of A intersects the half plane {λ Re X > a>], then

the Cauchy problem (2.1) is well-posed in the sense that the solution operators
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T(t), defined by the solutions uit) = T(t) u0, form a (C0)-semigroup, and the
sequence of approximate solutions un(t) converges to u(t) strongly, and uniformly
in t in any finite interval of [0, oo).

However, as will be shown presently, there are Cauchy problems which are
well-posed in weaker sense. We shall restrict our attentions to the well-posedness
which can be defined in terms of semigroup theory.

A function u{t) = u(t;u0) is called a.genuine solution of (2.1), if

i ) uif) is strongly absolutely continuous and continuously differentiable in each
finite interval of (0, oo),

ii) uit) € D(A) and dψ^~ = Auit), for each t>0,
at

iii) uit uQ) —> u0, as t—>0+.

The Cauchy problem (2.1) is said to be well-posed in the sense of semi-
group (S.G. well-posed) if there is a family of bounded linear operators T(ί),
t > 0, defined on the core D of A, such that for any uoz D (2.1) has a unique
genuine solution u(t) = T(t)u0 £ D for all t > 0.

We note here that if uif) is a genuine solution, then du(t)/dt is continuous
for t > 0 and Bochner integrable in any finite interval of the form (0, β).

When the Cauchy problem is S.G. well-posed, we can of course extend the
definition of Tit) to a bounded linear operator defined on the whole space X by
closure; this extended operator will be denoted by the same symbol T(t) and
called the solution operator of (2.1).

THEOREM 1. // the Cauchy problem (2.1) is S.G. well-posed, then the
solution operators [T(t)} form a semigroup, that is,

(2. 6) T(β+1) = T(s) T{t), 5, t ^ 0,

(2.7) T{f) u -» T{tQ) u, as t->t0 for any t0 > 0, u £ X.

Further we obtain

(2.8) -4-T(t) u0 = AT(t) u0 = T(tXAu0) for t ^ 0, u0 € D.
at

PROOF. (2.6) is obvious. (2.7) follows from the strong continuity of
[T(t) uo; uo£ D], denseness of D and the well known theorem of semigroups
concerning strong measurability and strong continuity ([3; Theorem 10.2.3.]).

Since we have assumed that uo£ D implies Au0 z D, T(t)(Au0) is also a



SEMI-DISCRETE DIFFERENCE SCHEMES 397

genuine solution. Therefore A[T(t)(AuQ)] = —y-~T(t)(Au0) is Bochner integrable
at

in (0,/β) and

T(tXAu0) = Au0 + f~§£ πt)(Au0) dt

= AuQ+ ( A[T(t)(AuQ)]dt
Jo

T(t)(Auo)dt\.

Jo
Put z(t) = UQ + I T(fi)(Au0) dt, then z(£) is strongly continuously differentiable

for t ^ 0 and dz(t)/dt = T{t)(AuQ) = A(z(t)). Thus z(f) is also a genuine

solution of (2.1), and z(t) = T(t)u0 by unicity. Now (2.8) is obvious.

As mentioned in §1, the Cauchy problem is usually treated under the

assumption that the solution operators form a (C0)-semigroup or more stronger,

holomorphic semigroup. But some Cauchy problems of parabolic systems in the

sense of Shilov generate semigroups of class (0, A), which will be shown by

examples in the appendix. We shall say the Cauchy problem (2.1) is (A)-,

(0, A)- or (C^-well-posed if the semigroup of the solution operators is (A)-,

(0,A)- or (Co)-semigroup, respectively.

We close this section with a summary of semigroup theory and a theorem,

but we assume familiarity with these basic facts; see Hille-Phillips [3].

Let \T{t) t > 0} be a semigroup, then the type of [T(t)} is defined by

ω0 = limr llogi1|T(OII < ° ° .
t—»oo

A semigroup [T(t)} is said to be of class (A) if Xo = \^J T(t)[X] is dense in

X, and if there is an ωx > o>0 such that for any λ with Re λ > ω19 there is a

bounded linear operator i?(λ) such that

a) R(\)u= I e-λtT(t)udt, ioτu*X0,
Jo

b) sup{||i?(λ)|| Reλ>ω!} < 00

c) s-li
λ
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Further, if J \\T(t)u\\dt < oo, then it is said to be of class (0,A). (Co>

semigroup is defined as follows: YιmT(t)u = u for each u^X; it then follows
t->0+

that, given ω > ω 0 , there exists an M > 0 such that ||T(t) \\ ^ Meω\ for t ^ 0.

For semigroups of any class mentioned above,

Vim Γι(T(t)-1) u = A°u,
t-+0+

exists for a set D(A°), dense in X and A0 is preclosed. (A0 is closed for (C0)-case.)

Then resolvent R(X A) of the closure A of A0 exists for Re λ > ωx and i?(λ)

= JR(λ; A). The followings will be used: if uzD(A), then

for ί > 0,

([3; Theorem 11.5.3.]), and if T(ί) is of (0,A)-class, then

lim T{t) u = u, for u s D(A),
ί-»0+

([3; Theorem 11.5.4.]).

Finally, the following theorem will clarify the relation between the Cauchy

problem and its semigroup.

THEOREM 2. When the Cauchy problem (2.1) is (A)-well-posed, then A

is the infinitesimal generator of the semigroup of solution operators,

PROOF. By the definition of (A)-semigroup, the bounded linear operator

2?(λ)=(λ/—A')"1 is defined for sufficiently large Re λ, and

(2.9) R{\)u= [ e-λtT(t)udt

for u where T(t)u—>u as £—>0. (A is the infinitesimal generator of {T(t)}.)

Now (2. 9) has a meaning for uo£ D and, employing (2. 8), we obtain

R(X)AuQ= f e-λtT(t)(Au0)dt
JQ

~χR(\)u0,
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that is, R(x)(χl—A)uo = uo for uo^D. Similarly we obtain (χI—A)R(\)uo = uo

for uo£ D. But then we know i?(λ)=(λ/—A)"1, by using the closedness of A
and denseness of D. Therefore (xZ-A^^QuΓ-A')- 1 , and A=A.

3. Convergence of semi-discrete difference schemes. As mentioned
before, the convergence of semi-discrete difference schemes is reduced to the
convergence of semigroups {Tn(t)}. Recently we obtain a theorem on convergence
of semigroups of class (A) or (0, A) and the results will be applicable as a
criterion for convergence of semi-discrete difference schemes of Cauchy problems.
This may be stated as follows :

THEOREM 3. Under the consistency condition, suppose that

(3.1) there is a γ > 0 such that

sup / e~Jt ||exp(ίAn)u\ dt < oo for each u £ X,
n Λ

(3.2) ||λi?(λ An)\\ ^ M, for λ > γ,

(3. 3) sup||exp(ίAn)|| < oo for each t > 0,
n

(3.4) p(A)Π{λ; Reλ>γ} * 0 ,

then the Cauchy problem (2.1) is well-posed in the sense of (0, A), αw<i
Uτ,(t) —> w(ί), strongly, and uniformly in any finite closed interval of (0, oo).

// (3.1) is replaced by

(3.1)' there are real numbers y and L > 0 such that

\\R(X; AJU^L for Reλ>7,

then the Cauchy problem is {A)-well-posed.

Proof is rather complicated because the theorem is strong enough to imply
the well-posedness of the Cauchy problem by means of the semi-discrete
approximations. See, Oharu and Sunouchi [7 Theorems (1, A), (A) and their
Corollary 1].

REMARK. It is obvious from (3.1) that R(X An) = I e~λt exp(ίAn) dt is

Λ
well-defined for R e λ > γ , therefore {λ; Re λ > γ} c p(An). Thus we know, with
the consistency condition,
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(3.5) i?(λ An) -> i?(λ A), and the range of R(X A) is dense in X.

(cf. Kato [4; Theorem VIII. 1.5]). These conditions are due to Trotter [9].

It is sometimes (or usually) known that the Cauchy problem is well-posed in
either sense mentioned above and the problem is only to show the convergence
of semi-discrete approximations. (A condition of (0, A)-well-posedness is given by
Phillips [8].)

THEOREM 4. Let us assume the Cauchy problem (2.1) is (0, A)- ((A)-,
or (Co)-) well-posed, and the type of [T(t)} is ω0. If the consistent semi-
discrete scheme (2. 3) satisfies the conditions

(S) there are real numbers 7(>ω0) ^ ^ L > 0 such that

An)\\^L for R e λ > γ ,

(B) suρ||exp(ίAn)|| < oo , for each t > 0,
n

then un(t) —> u(t), strongly for t > 0, and the convergence is uniform in t for
any compact interval of (0, oo).

PROOF. Put f{t) — sup||Γn(ί)ll < °°> then f(t) is non-negative, measurable
n

and submultiplicative, so that

(3.6) f(f) is bounded in any finite interval of the form [S91/8],

(3.7) l i m r 1 l o g / ( ί ) < oo

([3; VIII, §7.4]). Hence, for each £ > 0 , there is a μ0 such that

sup||exp(-Aί oί) Γ,(ί)ll ^ 1. for ί ^ £.
nTherefore the problem is reduced to the case of Tn(t) and T(t) of negative type,

by considering equivalent semigroups exp( — μt)Tn(t) and exp( — μt)T(t), where

Then we know the estimates

and

||exp(*An) u - (I-tAJk)-ku\\ ^ ^~K{u), for any u € X ,
k

\\T(t) u- {I-tA/k)-* u\\ ̂  ^-K(u), for u e
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(cf. [7 Lemma 5]). Thus we obtain, for u e £>(A4),

\\Tn(t)u ~ T(t)u\\ ^ \\Tn(t)u - (I-tAn/kYku\\

+ \\{I-tAJkYku-{I-tA/k)-ku\\ + \\(I-tA/k)-«u-T{t)u\\

^^-K(u) + \\(I-tAn/k)-κ u-(I-tA/k)-ku\\,

hence, by (3. 5),

Now we obtain, as &—>oo, T\{t)u —• T{t)u for uz D. Since D is dense in X
and sup||Tn(ί)||<c>o, we obtain the result.

The uniformity of the convergence follows from (3. 6) and equicontinuity of
Tn{t)x in [G,l/S]. But this will be obvious.

4. Constant coefficient cases. In this section we shall consider the Cauchy
problem with constant coefficients, that is,

(4.1) JjL = P(D)u, u(O) = uo(x),
at

in a Banach space X, where P(D) is a partial differential operator with respect
to x € Rd with constant Nx N matrix coefficients, and u(t) = u(x, t) is an N-
dimensional vector. General descriptions of semi-discrete approximations for
constant coefficient cases are given by Birkhoff and Varga [1] in some details.
Following their arguments, let h = (hj), h5 > 0 be a vector whose components
specify the mesh spacings, and approximate each partial derivative DιUj=D{1

DldUj, Όk — i——, by a divided difference of the form
oxk

(4. 2) (Π h-k

ι>) Σ μ£ Uj{xx + mιhί,-.-,xa + mdhd) = B\[uj],

where the μ!$ are fixed constant independent of h. The assignment of a particular
choice of a set of such divided difference approximations (4.2) to each Dι in
(4.1) will be called a semi-discrete finite difference scheme Δ. When both
the scheme Δ and the mesh vector h are specified, we will speak of a semi-

discretization of a system (4.1), and denote the resulting approximation to Έ\D)

by Π(Δ, h). Then Π(Δ, h) is a linear combination of translation operators, and
so a bounded linear operator. It will be natural to require that

(4.3)
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which is the consistency condition. We obtain a sequence of approximating

equations:

(4.4) —ĵ - = Π(Δ, h) uh, Uh{0) = uo.

The abstract formulation of this setting is given in §2.

Let us now consider the problem in L2(Ra), that is, the norm is defined by

( p \ 1/2 / Λ N \ 1/2

I I 11 (t ΊΓ\ I ̂  fi Ύ I — I I ^ \il .(f T Λ ^ /V T" I

Defining the Fourier transform by

ύ(ξ) = (2τr)-dj2 j u(x)exp(-i<x,ξ>)dx,

then (4.1) reduces (formally) to the following Cauchy problem for a system of

ordinary differential equations with ξ as a parameter, namely,

(4.5) ^ = P(ξ) ύ(ξy t), ύ(ξ, 0) = ώo(f),

and (4. 4) to

(4. 6) ^ = A(f, ΠA) ώA, ύh(0)= ύ0.

Λ(f, ΠΛ) is called the amplification matrix.

The solution of (4. 5) is

(4. 7) ύ(ξ, t) = exp(tP(ξ)) ύo(ξ),

for any initial function ύo(ξ) if it has a compact support, and the solution of

(4. 6) is given by

(4. 8) ύh(t, ξ) = exp(tA(ξ, ΠA)) ώo(f),

for any ύ0.

Now if the centered difference quotient:
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(ek is the k-th unit vector) is used as an approximation of (duj/dxk), then the
entries of the amplification matrix A(ξ, ΠΛ) are exactly same as the corresponding
ones of the given matrix P(ξ), where ξk is replaced by ξk(h) = s'm(hk ξk)/hk.
This is easily seen by

THEOREM 5. Assume the Cauchy problem (4.1) with constant coefficient
matrices is well-posed in any one of (A)-, (0,A)-, and {C0)-senses in L\Rd),
then there is a semi-discrete finite difference scheme which converges to the
solution.

PROOF. By theorem 4, it is sufficient to show the conditions (S) and (B).
If we use the centered difference approximations (4.9), then A(ξ>TIh)=P(ξ(h)).
W e n o t e t h a t \ξk\/2^ \ξk(h)\ ^\ξk\ for \ξk\^π/2hkf t h e n

sup I exp(tP(ξ(h))) I ^ sup I exp(tP(ξ)) | ,
f(Λ)

and the right hand sides are independent of h, we have (S) and (B), and the
proof is completed.

APPENDIX. Some examples of (0, A)-well-ρosedness.
Let us consider the Cauchy problem with constant coefficients:

(A. 1) -4r- = P(D) u , u(0) = u0 in L\Rd).
at

Since P(D) is preclosed in L2, we obtain P0(D), called the minimal operator
of P(D), by taking the closure of P(D). If we take differentiation P(D) as
distribution sense, we obtain the maximal operator P\(D) with the domain
ΣKPάD)) = [u € U P(D) uzL2} = [ύ e U P(ξ) ύ{ξ) z L2}. It is obvious that
Pι(D)θP0(D), but we are considering these operators in L2 on the whole Rd

y it
is well-known that PX(D) = P0(D), which will be denoted by P(D). Then we
obtain the abstract Cauchy problem

(A. 2) -^- = I\D)u = Au9 u(0) = u09 in L\Rd\
at

and as a core we may take D = [us S; ύ(ξ) has a compact support.).
Since the Fourier transform preserves the Hubert space structure of L2, we
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may consider the problem in the transformed space L2(Rd), see, (4 5). The

correspondence given by the Fourier transform will be summarized as follows:

Ί\t) < > eχp(tP(ξ)),

and ||Γ(ί)||=sup{|exp(ίP(f))| ξ t Rd],

when either side is bounded, and then | | (λ/-A)" 1 | l=sup{ |(λ/-P(f))" 1 | ; I €JRd}

REMARK. If the Cauchy problem (A. 2) is S.G. well-posed, then the type
of semigroup: ω0 = limί"1 log||T(ί)|| is finite. Let Xj(ξ) be the eigenvalues of

P(ξ) and put Λ(P)=sup{max jReλ/|); ξ ^ } , then ||Γ(ί)||^exp(ίΛ(JP)), and so

This implies, if the Cauchy problem is S.G. well-posed, then it is well-posed in
the sense of Petrowski.

We note here that the condition of (C0)-well-posedness is, as easily seen,
suρ{||T(ί)|| 0 ̂  t ^ T] < oo for any T > 0, and the algebraic condition for P{ξ)
is given by Kreiss [5].

Before entering examples, we note

LEMMA A. Let λ £ ρ(A), then we obtain a representation of the resolvent

of A by

(A. 3) (XI-A)'1 u= Γ exp(-λί)T{t)udt for u^D.
Jo

PROOF. For any fixed ξ such as Xl—P(ξ) is regular,

(λ/-P(f))-1«)= f exp(-Xt)exp(tP(ξ))ύ(ξ)dt,

follows from the matrix theory. Now λ € ρ(A) implies this equation is valid for
each ξ and

{XI-AΓ u <-> (Xl-P(ξ))-1 ύ(ξ)
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= f exp(-λί)exp(tP(ξ)) ύ(ξ) dt,

in ZΛ On the other hand, if uz D, then by the Fubini theorem, the inverse

Fourier transform of I exρ(—Xt)exp(tP(ξ))ύ(ξ)dt equals to lexp(—Xt)T(t)udt,
** o Jo

thus we obtain the representation.

REMARK, λ e ρ(A) implies that the operator R(X) denned by

R(\) u = f exρ( -λf ) T(t) udt, for u € D.

Λ
is a bounded linear operator, and i?(λ)=i?(λ; A).

In order to verify the condition a) of the definition of (A)-semigroups, we

have to show (A. 3) for each u € Xo = \^J T(t)[X]9 but this and the remaining
ί>0

conditions of (A)-semigroups will be proved directly in the examples.
Let us now consider the Cauchy problem (A. 2) with d—\ and

then the order of equation />=max(4,q). Let A.(ξ) = maXjReXjU;), where the
Xj(ξ) are the eigenvalues of P(ξ), then

therefore the system dύ/dt — P(ξ)u is parabolic in the sense of Shilov with the
exponent Λ=2. (See, for example, A. Friedman [2; Chap. 7, §6].) Since

it is obvious sup | exρ(tP(ξ)) \ < oo for ί > 0 , so that the Cauchy problem is S.G.

well-posed, and the type ωo=O
The matrix theorem of Kreiss [5] shows that if #=0, 1, or 2, then (A. 2) is

(Co)-well-ρosed, and otherwise, it is not (Co)-well-posed.
We shall show that (A. 2) is (0, A)-well-posed if q=3 and 4, and is not even
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(A>well-posed if g ^ 5 . If R e λ > 0 , then

(A. 4)

for each ξ and

; P{ξ))\ < <χ>,

if g fg 8. Therefore, if g ^ 8, {λ Re λ > 0} is contained in the resolvent set of
A, and we have

| | i ? ( λ ; A ) | | ^ M , for R e λ > 0 .

This is the condition b) of (A)-semigroups.

Next we shall show the condition a). Since [T(t)} is strongly continuous

for f>0, D(A°) is dense in Xo = \J T(t)[X] ([3 Theorem 10.3.1.]). It is

obvious that the core DcD(A°) and D is dense in X, hence Xo is dense in X.
Fix ω^ωo = 0, and take a v£ Xo, then there is a to>O such that v = T(to)u,
u £ X. But if u€ D, then T(to)u € D and we have the representation, by Lemma
A, for Re λ > 0,

(A. 3) (XI-A)'1 T(to)u = f exp(-λί) Γ(ί) T(*o)u dt.

Now, R e λ > « i , then I exp(—\t)T(t-\-tQ)dt is a bounded linear operator on X,

and I exp(—\t)T(t)T(to)udt is well-defined for any u^X. Therefore,

Λ
(λ/-A)" 1 v = (XI- A)"1 TCίo)w

= Γ expC - λ ί ) T(ί) T(ί0) udt= f exp(-Xt) T(t) v dt.

Since v € Xo is arbitrary, this is the condition a).
Thus, in order to show (A)-well-posedness, it is sufficient to show the

condition c), that is,

(A. 5) lim XR(X A)u = u, for each u s ZΛ

At first we shall show that sup\ξQ/(X + ξ2-iξ4y\ < oo as λ->°o, if and only
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if grg4. But this is evident, because |£V(λ + £ 2 — *£ 4 ) 2 | takes its maximum at
the point ξ* = O(\) as λ -» oo. Thus we know ||λi?(λ A)\\ ̂ L as λ—>°°, if

(A. 5) is evident for u<z D, dense in L2, thus we obtain (A. 5) for any u £ ZΛ
Finally we show that (A. 2) with q=3 or 4 is actually (0, A)-well-posed. The

proof depends on the Phillips criterion [8 Theorem 3.2] on (0, A)-well-posedness.
It suffices to show that, if u0 € D(A), then

(A. 6) T{t) uo->uO9 as t -> 0 ,

because we have shown that it is (A)-well-posed, and so the assumptions of the
Phillips theorem are satisfied. (A. 6) will be proved as follows:

As remarked before, D{A) = [ύ € L2 P{ξ)ύ^L2}. Therefore, u0 = [ "
\U2o

€ D(A) if and only if

that is, ξiύ20, ζiύι{j € ZΛ Now

exp(ί(— f2 + /£4))ώ2 0

and

as

are evident. Since f 4M2O
 e -̂ 2> it is also evident that

ίΓ'exp(ί(-ξ* + iξ*)) w20 > 0, as ί -• 0.

Thus we obtain (A. 6), and the proof is completed.

As corollaries, we know that

f \\exp{tP(ξ)) ύo(ξ)\\ dt < cχ3, for any uQ € L\

R(X ;P)uo= I e x p ( - λ ί ) T(t) u0 dt, for any uo$L2,

Jo
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by the properties of (0, A)-semi-grouρs.

REMARK. In the above example, if q = 3, then the Cauchy problem (A. 2)

is (1, A)-well-posed. In fact, it is sufficient to show that / ||Γ(ί)ll dt < oo, or

i
,1

ξ

But this is shown by the fact that the integrand takes the maximum at the point
of tξ* = 3/2, therefore supUfexp(£(- f+ z|4))l = O(l/tι/2) as t-+0.
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