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OSCILLATORY PROPERTY OF SOLUTIONS OF SECOND

ORDER DIFFERENTIAL EQUATIONS
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In this paper we shall discuss oscillatory property of solutions of second order
differential equations by applying Liapunov's second method. Consider an equation

)' + f(t,x,x')=0 ('= d

dt

where r(t)>0 is continuous on 1 — [0, oo) and f(t9 x, u) is defined and continuous
on IxRxR, i?=( —oo, oo). To discuss oscillatory property of solutions of (1), we
consider an equivalent system

A solution x(t) of (1) which exists in the future is said to be oscillatory if
for every T > 0 there exists a t0 > T such that x(tQ)=0. Moreover, the equation
(1) is said to be oscillatory if every solution of (1) which exists in the future
is oscillatory.

THEOREM 1. Assume that there exist two continuous functions V(t9 xy y)
and W(t, x9y) which are defined on t Ξg T, x > 0, |^ | < oo and t^T, x<0,
\y\<C oo, respectively, where T can be large, and assume that V(t9x9y) and
W{t, x, y) satisfy the following conditions

( i) V(t, x,y)-^oo uniformly for x > 0 and — oo <3/ < oo as t—> 00,
and W(t9 x,y)-+°o uniformly for x < 0 and — 00 <c y < 00 as t-> 00,

(ii) Vi2)(t,x(t),y(t)) ^ 0 for all sufficiently large t, where [x(t),y(t)}
is a solution of (2) such that x{t) > 0 for all large t and

Vw(t, x(t),y(ή) = ΠS-ί [V(t + K x(t + h),y(t + h)) - V(t, x(t),y(t))},
Λ 0 + ίl
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(iii) W(2)(t,x(t),y(t)) ^0 for all sufficiently large t, where {x{t)9y(t)}

is a solution of (2) such that x(t) < 0 for all large t and

Ww(t, x(t),y(t)) = Πm-~ [W(t + h), x[t + h),y(t + A)) - W(t, x(t),y(t))}.

Then the equation (1) is oscillatory.

PROOF. Let x(t) be a solution of ( 1 ) which is defined on [t0, oo), and

suppose that x(t) is not oscillatory. Then x(t) is either positive or negative for all

large t. Now assume that x[t) > 0 for all t^σ, where we can assume σ to be

sufficiently large. By the condition (i), if t is sufficiently large, say t^tu we have

V(σ,χ(σ),y(σ)) <V(t,x,y)

for all x > 0, | ^ y | < oo. However, by the condition (i i), we have

V(t,x(t),y(t)) ^V(σ,x(σ),y(σ)) for all t^σ,

which contradicts V(σ, x(<ή9y(<ή) < V(tu #(ίi),,y(£i)). When we assume that x(t) < 0
for all large t, we have also a contradiction by considering W(t9x(t),y(t)). Thus
we see that x(t) is oscillatory.

To apply this theorem, the following lemmas play an important role. In the

following, a scalar function v(t,x,y) will be called a Liapunov function for ( 2 ) ,

if v(t,x,y) is continuous in (t9x,y) in the domain of definition and is locally

Lipschitzian in (x,y). Moreover, we define V(2){tyx9y) by

(3) vm(t9x9y) = j | jmχW* + A , * + A 7 ^

If v{2)(t,x,y)^0, v{t,x{t),y(t)) is nonincreasing in t, where [x(t)9y(t)} is a

solution of ( 2 ), see [ 5 ].

LEMMA 1. For t ^ T*, x> 0, — oo < 3; < oo, where T* can be large,

we assume that there exists a Liapunov function v(t9x9y) which satisfies

the following conditions',

( i) yv(t, x9y)>0 for y * 0, t^T*, x>0,

(ii) V(2)(t9x9y) ̂  — λ(ί), zvhere \(t) is a continuous function defined on

t > T* and
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( 4) lim / \(s)ds ^ 0 for all large T.
t—*oo %)rp

Moreover, we assume that there exists a τ and a w{t,x,y) for all large
T such that T^T and w(t,x,y) is a Liapunov function defined on t^r,
x> 0, y <0y which satisfies the following conditions;

(iii) y ίg w(t, x,y) and w(τ, χ,y) ^b(y), where b(y) is continuous, b(0)=0
{y)<0 (yΦO),

(iv) W(2)(t,x,y) =*—p(t)w(t,x,y), where p(t) i^ 0 is continuous and

Then, if {x{t),y{t)} is a solution of {2) such that x(t) > 0 for all large t,
then y(t) ^ 0 for all large t.

PROOF. Suppose that there is a sequence {tn} such that tn-+°o as #—>oo and
y[tn) < 0. We can assume that tn ^ T * and tn is sufficiently large so that

( 6 ) lim ί \(s)ds ^ 0, x(t) > 0 for t ^ tn .
«'->~ Jtn

Consider the function v(t,x(t),y{t)) for t^tn. Then we have

v{t,x(t),y(t))^v{tn,x(tn),y(tn)) - I \(s)ds.

From (6) it follows that there is a T\ > 0 such that for all t^Tu

X{s)ds^~-v{tn,x(tn),y{tn)),

because v{tn,x(tn),y(tn)) < 0. Therefore, for t^Tλ, we have

v(t, x(t),y(t)) ^ jv(tn, x(tn)9y(tn)) < 0,

which implies that y(t) < 0 for all t^Ί\.
For Ί\, there is a T such that τ^Tx and there is a Liapunov function

w(t, x,y) defined on ί ^ T, X > 0, y < 0 For this w(t, x,y)9 we have
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for t ^ T. Since x(t) = ) I , we have

and hence

/

I - f % ( )d«

ΊWe du'
Since #(£) > 0 for t g: T and i(,y(τ)) < 0, there arises a contradiction by ( 5 ). Thus

we see that y(t) ^ 0 for all large t.

REMARK. In the case where r(t) = 1 and ρ(t) = 0, condition (iii) can be

replaced by

(iii)' a{y)^w(t,x,y) and w(τ,x,y)^b(y), where a(y) is monotone, continuous,

α(0) = 0 , α(y) < 0 (yΦO) and 6(y) is continuous, b{0)=0, b(y) < 0

By the same argument, we can prove the following lemma.

LEMMA 2. For t ^ T * , α : < 0 , — oo < ^ < oo, where T* can be large,

we assume that there exists a Liapunov function v{t,x,y) which satisfies
the following conditions;

(i) yv(t,x,y)<0 for yΦO, t^T*, x<0,
(ii) Vφ)(t, x,y) ̂  — λ(ί), where \{t) is a continuous function defined on
t ^ T* and

lim / λ(5)ds ^ 0 /or α// large T.

Moreover, we assume that there exists a r and a w(t,x,y) for all large T
such that τ^T and w(t,x,y) is a Liapunov function defined on t^r,
x < 0, y > 0, which satisfies the following conditions;

(iii) —y^w{t, x,y) and w(τ, x,y) ̂ b(y), where b(y) is continuous, b(0) =0
and b(y) < 0 (yΦO),

(iv) cW{2){t,x,y) ^ — ρ(t)w(t,x,y), where p(t) ĝ  0 is continuous and
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Then, if {x(t),y(t)} is a solution of ( 2 ) such that x{t) < 0 for all large t,
then y(t) ^ 0 for all large t.

If we can find Liapunov functions which satisfy the conditions in Lemmas 1
and 2, we can prove the following theorem by the same idea as in the proof of
Theorem 1.

THEOREM 2. Under the assumptions of Lemmas 1 and 2, we assume
that for each δ > 0, there exist a T(δ) > 0 and Liapunov functions V(t, x,y)
and W(t,x,y) which are defined on t^T(8), x > δ, y^O and t ^ T(δ),
χ< — δ, y±=kθ, respectively, and assume that V{t, x,y) and W{t,x,y) satisfy
the following conditions',

( i ) V(t,x,y) and W(t,x,y) tend to infinity uniformly for x and y
as £—>°°,

(ii) V(2)(t, x,y) ^ 0 as long as V(2) is defined,

(iii) W(2)(t, x,y) ίgO as long as WC2^ is defined.
Then the equation (1) is oscillatory.

Since we assume the existence of Liapunov functions satisfying the conditions
in Lemmas 1 and 2, if x(t) > 0 in the future, then x{t) > δ in the future for some

δ > 0, because x[t) = "^TTΓ-^O in the future, and the similar for a solution
r\t)

x(t) < 0.

EXAMPLE 1. Consider the equation (1) and assume that the following
conditions are satisfied:

(a)

dt
(8) / = oo

(b) For ί ^ O and x ^ 0, there exists a continuous function a[t) and an
a(x) such that

lim / a(s)ds ^ 0 for all large T
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and that xa{x) > 0 (xφQ), ά(x) ̂  0 and for all large t, x ^ 0, \u\ <

(10) a(t)ct(x)^f(tfx,u).

(c) For ί ^ O and x^O, there exists a continuous function b(t) and a
such that

(11) lim f έ(s)Λ> ^ 0 for all large T

and that X/8(Λ:) > 0 (x*0), β'(x) ^ 0 and for all large t, x ^ 0, | « | < °°

(12) f(t,x,u)^b(t)β(x).

Under the assumptions above, if [x(t),y(t)} is a solution of (2) such that
x(t) > 0 for all large t, then y(t) ̂  0 for all large t. To see this, we can assume
that ( 9 ) through (12) hold good for all t ^ T * and all T ̂  T * For t ^ T*,
^ > 0, | y | < ° ° , define v(ί, x,y) by

Then, we have

Hence this v(t,x,y) satisfies the conditions in Lemma 1 with \(t) =α(ί).
Since the condition (9) implies that for all T §: T*, there is a T such that

τ^T and

J α(5)(ί5 ̂  0 for all t ^ T ,
Γ

a function w(ί, x,y) —y 4- Λ(Λ:) I a(s)ds defined on ί ^ T, α: > 0, 3> < 0 satisfies

the conditions in Lemma 1 with p(t) = 0. Thus the conclusion follows from Lemma 1.
If we consider functions
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ί, x9y) = -y - β(x)J b{s)ds, t ^ r, Λ: < 0, y > 0,

625

from Lemma 2 it follows that if {x(t),y{t)} is a solution of ( 2 ) such that

x(t) < 0 for all large t, then y(t) 5£ 0 for all large t.

Under the assumptions ( a ) , ( b ) and ( c ) , we shall discuss oscillatory property

of solutions of ( 1 ) . T h e following results contain Macki and Wong's result [ 3 ] ,

Coles' result [ 2 ] and others.

( I ) If we have

(13) / a(s)ds = oo, I b{s)ds =
o *Λ>

then the equation (1) is oscillatory.

For t ^ T*, x > 0 and - oo < y < oo, set

V(t,x,y) =

y
a(x)

Γ a(s)ds

+ ί a{s)ds (y §: 0)

Then, clearly V(t,x,y)—>oo uniformly for x > 0 and — °o < y < oo, and we have

^ - a{t) + a(t)

for t 2Ξ 7"1*, Λ: > 0 and y ^ 0. Therefore, V(ί, x,y) satisfies the conditions in
Theorem 1. Similarly,

W(t,x,y) =
I b{s)ds (y>0)
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satisfies the conditions in Theorem 1. Thus the conclusion follows from Theorem 1.

(II) If we have

(14) / a(s)ds < oo , i I—η— I a(u)du)ds->oo as £—>oo ,

f t I i Γ \b[s)ds < oo , I —j-- \ b(u)du \ds—>oo as t—>oo ,

(16) / — Λ - < oo for some S > 0
Jε OC\tC)

and

(17) J . ^\ < o o for some θ > 0 ,

the equation (1) is ocillatory.

For t ĝ  T*, Λ:>0, | ^ | < oo, set

(18)

For a solution r(ί) which satisfies, α:(ί) > 0 for all large ί, we can assume that

x(t) > 0, y(t) ^ 0 for t ^ σ, σ sufficiently large, and hence

r[t)ΓΊ0k + l a{u)du}

/

oo /ioo

a(u)du, V*(ί, Λ(ί),y(ί)) ^ / a(u)du, and hence

lim
ί—oo
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On the other hand, we have

Therefore V*(t,x(t),y(t))^0 and consequently V(t,x(t),y(t)) ^ 0 for t Ξs σ.
Similarly, if we define W(t, x,y) by

this W(t,x9y) satisfies the conditions in Theorem 1. Thus the conclusion follows

from Theorem 1.

REMARK 1. It is clear that we can combine the conditions in ( I ) and ( I I ) .

For example, if

Γ Γι I l Γ \
\ a{s)ds = oo,\ \-τ-r\ b{u)du\ds- as t

and

duI
ε β\U)

then the equation ( 1 ) is oscillatory.

< oo for some S > 0 ,

REMARK 2. If a continuous function a(t) satisfies ( 9 ) , then / a(s)ds = oo

or / a{s)ds exists. Macki and Wong assumed a(x) and β(x) to be nondecreasing,

but we can find an a(x) and a β(x) which have their derivatives, because a(t)9

b(t) are nonnegative in their case.

(Ill) If there exist a constant m > 0 and two positive differentiable functions

h(t) and g(t) defined on / such that ά{x) ^ m, β'{x) ^ m and
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•ds—^oo as t —> oo ,

the equation (1) is oscillatory.
This is a generalization of a result of Opial [ 4 ], and in this case,

satisfy the conditions in Theorem 1.

LEMMA 3. In addition to tlie assumption of Lemma 1, assume that there
exists a Liapunov function u(t,x,y) defined on ί jg T*, x>0, y>R{R>0:
large), which satisfies

(i) u(t,x,y)-*oo uniformly for t, x as y—>oo9 and u(t,x,y)^y(y), where
γ(r) > 0 is continuous,

(ii) iι<»(t,x,y) ^ 0.

TJτen, if {x(t)9y(t)} is a solution of (2) such that x(t) > 0 for all large t,
then y(t) is bounded for all large t.

PROOF. Let x{t) > 0 and y(t) ^ 0 for t ^ σ, σ ^ Γ*. By Lemma 1, there
is such a σ. Let k be such that y(σ)<K, K>R. There is a constant γ*>0 such that
u(t,x,K)t==zV*, and there also exists an M > 0 for which we have γ* < u(t, x, M)
for all £Ξgσ and x>0 by the condition (i). But there arises a contradiction
by (ii), which shows that 0 ^y(t) < M for all t^σ.

LEMMA 4. In addition to the assumption of Lemma 2, assume that
tiiere exists a Liapunov function u(t,x,y) defined on t^T*, x<0, y< — R{R>0'
large), which satisfies

(i) u(t, x,y) —>ΌO uniformly for t, x as y—> — oo, and tι{t,x,y)^y{\y\),
where γ(r)>0 is continuous,

(ii) u^[t,x,y) ^ 0 .

Then, if [x(t),y(t)} is a solution of (2) such that x[t) < 0 for all large ty

fhen y(t) is bounded for all large f:
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THEOREM 3. Under the assumptions of Lemmas 3 and 4, we assume that

for each δ > 0 and m > 0, there exists a T{8, m) > 0 and two Liapunov

functions V(t, x9y) and W(t,x,y) such that V{t, xyy) is defined on t ^

Γ(8, m)9 x>δ, O^y <m and W{t, x,y) is defined on t ^Γ(δ, m)> x < - δ ,

— m < y ^ 0, and we assume that V(t9 x, y) and W(ί, x9 y) satisfy the

following conditions;

( i) V(t,x,y) and W(t9x,y) tend to infinity uniformly for x, y as £—>oo,

(ii) VC2)(t9x,y) ^ 0 as long as 7 ( 2 ) is defined,

(iii) W^(tyX,y) fg 0 as long as W(2) is defined.

Then the equation (1) is oscillatory.

PROOF. Let x(t) be a solution of ( 1 ) which exists in the future, and suppose

that x{t) is not oscillatory. Then x(t) is either positive or negative for all large t.

Now assume that x{t) > 0 for all large t. By Lemma 1, we can see that there is

a tx > 0 such that x(t) > 0, y(t) ^ 0 for all t ^ tl9 where we can assume that

tι ^ T*. By Lemma 3, there is an m > 0 such that 0 ^y{t) < m for all t ^ t λ .

Since x'(t) = ^ ^| ^ 0 for ί ^ ί1? we have α:(ί) ^ xfίj) > 0 for ί ^ tλ. Consider

fthe Liapunov function V(t9x,y) denned for ί ^ T ( 8 , w), x > δ, 0^y<m, where

δ = ^(ίJ/2 and we can assume T^tx. Then, by the same argument as in the proof

of Theorem 1, there ariεes a contradiction. When x(t)<0 for all large t, we have

also a contradiction by using Lemma 4 and W(t9x,y). Thus we can see that the

equation (1) is oscillatory.

EXAMPLE 2. (Bobisud [1]). Consider an equation

(19) x" + a(t, x, x)x +/(ί, x, x) = 0

and an equivalent system

(20) x = y, y - - α(ί, x,y)y -f(t, xyy).

The following assumptions will be made;

( i) f(t, x9y) is continuous on I x Rx R and xf(t, x9y) > 0 for x ^ 0 ,

(ii) α(ί, x,3;) is continuous on I x R x R and there exist continuous nonnegative

functions k(t) and p(t) such that

a(t,x,y) ^ρ(t) ίor te I, xz R, yzR,
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(iii) for any δ > 0 and m > 0, there exists a T(δ, m) and a <7(ί;δ, m) ^ 0
defined for t ^ T(δ, m) such that

I g(s;S,m)ds >oo as ί—>oo

and that | x | ^ δ,|;y|^ ra and xy ^ 0 imply \f(t,x,y)\^g(t;δ,m),
(iv)

I k(s)ds < oo , lim I e ° ds — oo .

Then the equation (19) is oscillatory.

For this equation, it is not difficult to find Liapunov functions which satisfy
the conditions in Theorem 3. For ί ^ 0, x> 0, \y\< °°9 the function

I
- p k(s)ds

e y (y^O)

pPWds
e° y (y<0)

satisfies the conditions in Lemma 1 with X(t) = 0. For any r ^ 0, the function
w(t,x,y) = y defined for t ^ T, X > 0,y < 0 satisfies the conditions in Lemma 1,
since

, x,y) = - α(ί, x,y)y -f(t, x,y)

and

Moreover, it is easily seen that u(t, x, y) = 3^2exp( —21 k(s)ds) satisfies the conditions

in Lemma 3, since I k{t)dt < oo and f(t, x,y)>0. Furthermore, we can see that
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v(t,x,y)=i -μ{s)ds

U (-y) (t^0,x<0,y<0),

and

u(t,x,y) = e ° y*

satisfy the conditions in Lemma 4. Next, for each δ > 0 and m > 0, define
V(t, x,y) for t ^ T(δ, m), x > δ, 0 ̂  y < m by

~Pk(s)ds
y Λ- Li

'T(δ,m)

\-Lj g(s;δ,m)ds,

where L = e ° >0. Then we have

x,y) = e {-A(ί)y -α(ί, x, y)y -f(t, x, y)} + L^(ί; δ, m)
- p k(s)ds

- p k(s)ds

Thus we see that V(£, α:,^) satisfies the conditions in Theorem 3. Similarly,

p ()
W(t,x,y) = e (-y) + Lj g(s;δ,m)ds

T(δ,m)

is the desired one. Thus it follows from Theorem 3 that the equation (19) is
oscillatory.

EXAMPLE 3. For the equation (19), we assume ( i ) and (ii), and instead of
(iii), (iv), we assume that

(iii)' for any δ > 0, there exists a T(δ) > 0 and a g(t\ δ) ̂  0 defined for
t ^ T(δ) such that

(21) e / g(s;δ)ds->oo as t
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and that |x\ ^ δ, xy ^ 0 imply | f(t,x,y)\^ g{t\δ),

(iv)'

Cl - \Sp(σ)dσ

l i m (

Then the equation (19) is oscillatory.

From conditions ( i), (ii) and (iv)', it follows that there are Liapunov functions

which satisfy the conditions in Lemmas 1 and 2, as was seen in Example 2. For

t ^ T(δ), x > δ, y ^ 0, define

V(t, x, y) = e ° 3/ + £ ° I

Then we have

= £ 0

Tih)

^ 0 .

For ί ^ T(δ), x < - δ, 3; ^ 0, if we define W>, ^,y) by

ε*y) = e ° (—y) + ^ ° / ^(5; δ)ί?5 ,
T{δ)

we have also W'c2o)(̂ > ^>3;) = 0. Therefore we can conclude by Theorem 2 that

the equation (19) is oscillatory.

REMARK. For the equation (19), Bobisud claimed in [ 1 ] that the equation

(19) is oscillatory under the assumptions ( i), (ii) in Example 2 and

(iii)" given δ > 0 there exists a T(δ) > 0 and a g(t; δ) ^ 0 defind for
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t ^ T(S) with
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(22) s —»oo as

and such that | .r | ̂  8, ^y > 0 imply | /(ί, Λ:, y) | ̂  ^(ί 8),
(iv)" for any tu t2 > 0,

(23)
kίs)ds

is bounded from above and

lim I e t, ds =

However, there is a mistake in his proof, and actually his result is not necessarily
true as the following example shows. Consider an equation

x —
x

where

x

1
t+1

This equation satisfies the conditions above, but it has solutions
x = —t — l which are not oscillatory.

Under the condition (iv)", which is equivalent to
(iv)'" for some tQ > 0

and

jtk(s)ds

(24) e <M for t ^ f o

and
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Γ* -S*p(σ)dσ

lim I e ° ds = °o ,

if we assume

1 f4

(25) — J g(s; h)ds -» oo as £—>oo

in place of (22), the equation (19) is oscillatory, because (24) and (25) imply (21).
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