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1. Introduction. Let F be the field of real numbers, the field of complex

numbers, or the field of real quaternions Fn+m a left (n + m) -dimensional Hermitian

vector space over F; and Gn(Fn+m) the Grassmann manifold of w-planes in Fn+m

provided with the Riemannian metric with respect to which the distance between

two points A and B in Gn{Fn+m) is equal to the square root of the sum of the

squares of the angles between the w-planes A and B in Fn+m. This Riemannian

metric is invariant under the group of transformations induced from the group of

motions in Fn+m. A maximal set of curves in Gn(Fn+m) invariant under this group

of transformations in Gn(Fn+m) is called a congruence class of curves in Gn(Fn+m).

Recently, a method of studying the differential geometry of Gn{Fn+m) through

a study of the geometry of w-planes in Fn+m was initiated by one of us (see Wong

[5], [6] and [7]). Among the results announced in [5] are the following ones

concerning closed geodesies :

THEOREM 1.1. (a) There is a one-one correspondence between the set of

congruence classes of closed geodesies in Gn(Fn*m) and the set of ratios nx:

n2: : nr, where r=min(n, m) and the n^s are non-negative integers, arranged

in descending order and not all zero.

(b) The closed geodesies Gn(Fn+m) corresponding to the ratios nλ: n2: : nr

are of length (m\ + ml + + m2

r)
1/2π, where the m^s are non-negative integers

proportional to the nt's and having no common factor other than 1.

When one studies the geodesies in a particular Riemannian manifold in which

closed geodesies exist, it is natural to ask :

( 1 ) What are the lengths L of its closed geodesies?

(2 ) For a given L, what is the number of congruence classes of closed

geodesies of the same length L? Or equivalently,

( 2') What are the lengths of those closed geodesies for which there are exactly

k( = l, 2, •) congruence classes?
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The results in Theorem 1.1 show that for a Gn{Fn+m) these questions become
respectively the following ones in number theory :

(1*) What are those integers L that can be represented as the sum of
r = min(w, ra)(^l) perfect squares having no common factor other than
1?

(2*) For a given L, what is the number of such representations? Or equiva-
lently,

(2'*) What are those integers that have exactly k( = 1, 2, ) such representa-
tions?

Questions (1*) and (2*) (or (2*)) become trivial if r = 1. For r ^ 2 , these
questions seem to have been completely answered only for r — 2 though there exists
an extensive literature on "sums of squares" (see [1]). In this paper, using some
known results in number theory, we obtain a complete answer to question (1), an
answer to question ( 2 ) for the case min(?z, m)—\ or 2, and an answer to question
(2) for the case k — 1. Although it is likely that, for other small values of k, an
answer to (2') for the case min(n, m) ^ 3 can be obtained by using a similar method,
we are content to leave it to those who are more expert in number theory.

In §§2-6, we state and prove our results. For convenience of the reader, we
collect in §7 some known results in number thory that we have to use.

2. The case min(n, m)—l or 2. For these two cases, we have a complete
answer to questions (1 ) and ( 2 ).

THEOREM 2.1. In a Gn{Fn+m), where min(w, m ) = l , all the geodesies are
closed and are of length π. Moreover, there is exactly one congruences class.

PROOF. This is trivial and also well known. (See [5], Corollary to Theorem
11).

THEOREM 2.2. In a Gn(Fn+m), where nάn(n9m) =2,
(a) a closed geodesic can and can only be of length

S or

where v = 0 or 1; μ^l the p/s are distinct primes^ 1 (mod 4) and the a^s
are positive integers.

(b) There are one and only one congruence class of closed geodesies of

length n, one and only one of length Λ/2π, and exactly 2'1"1 of length

(2vp? - -p*μή
ι'*7t.
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PROOF. This is a direct consequence of some known results in number theory

(see §7, Theorems A and B).

THEOREM 2.3. Let (pi) be the increasing sequence of primes=l (mod 4).

Then in any Gn(Fn+m), where min(w, ra)=2, the following is true: Among the

closed geodesies of the same length of which there are exactly 2β~1(μ>l)

congruence classes, the shortest ones are of length Lμ—{pιp2''
mpμ)

υ27r. In

particular, among the closed geodesies of the same length of which there are

exactly two, four or eight congruence classes, the shortest ones are of lengths

Λ/657Γ, VH057Γ or V32045TT, respectively.

PROOF. This follows from Theorem 2. 2 and the fact that (ρt) = (5,13,17,

2 9 , . . . ) -

3. The case min(n, m)^3. A complete answer to question (1) is given in
Theorem 3.1 below, where, for completeness, part (a) of Theorem 2. 2 is included.

THEOREM 3.1. In a Gn{Fn+m), where min(n,m) = r^2, there are closed

geodesies of length *JLπ for every positive integer L except in the following

cases :

(a) r — 2 and L contains a prime factor = 3 (mod 4).

(b) r = 3 and L = 0,4 or 7 (mod 8).

(c) r = 4 and L = 0 (mod 8).

The next two theorems give an answer to question (2') for the case k = 1.

THEOREM 3.2. In a Gn(Fn+m), where min(n,m) = r ^ 4 , the only cases in

which there is exactly one congruence class of closed geodesies of length */L,7t
are the following :

(a) r^8: L = 1, 2, 3, or 4.

(b) r = 7; L = 1,2, 3, 4 or 8.

(c) r = 6 L = 1, 2, 3, 4,7, 8 or 16.

(d) r = 5 L = 1, 2, 3, 4, 6,7, 8, 9,12,15,16 or 24.

(e) r = 4 L = 1, 2, 3, 4, 5, 6, 7, 9,11,12,14,15, 20, 23, 36 or 44.

THEOREM 3. 3. Let L be a given positive integer and h the number of

classes in the principal genus of the properly primitive binary quadratic forms

of determinant —L. Then in a Gn{Fn+m), where min{n, m)=3, there is exactly

one congruence class of closed geodesies of length ΛJLTΪ iff L has one of the
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following forms :

(a) L —pa, where p is an odd prime and cέ^l.

( i) ^>Ξ3(mod 8) a is even and h = 1, or ci is odd and h = 3.

(ii) p = 5(mod8); h = 1.

(iii) ^>Ξ7(mod 8) a is even and h = 2.

(b) L — 2pβ, where p is an odd prime and β^l.

( i) p=3 or 5 (mod 8) h = 1.

(ii) ^ = 7(mod8) h = 2.

(c) L=p?pξ, where pu p2 are distinct odd primes and a^l, β^l.

( i ) />!= 1 (mod 4), ftΞ7 (mod 8) β is even and h = l.

(ii) ρx= 3 or 7 (mod 8), p2= 7(mod 8) a, β are either both odd or both

even and h — \.

(iii) ^ Ξ 3 (mod 8), />2ΞΞ 5 (mod 8) a is even and h = 1.

(iv) ^>!=3(mod 8), p2 = 5 or 7 (mod 8) a is odd, β is even and h = 3.

(v) p{= 5 (mod 8), p2= 7 (mod 8) a9β are both odd and h = 3.

(d) L = 2pΐp%, where ply p2 are distinct odd primes and a^l, β^l.

( i ) ^ = 3 (mod 8), ^ 2 Ξ 5 ( m o d 8 ) ; h = l.

(ii) ^ = 7 ( m o d 8 ) Λ. = 1.

7n particular, the values of L not exceeding 100 are as follows : 1, 2, 3, 5,

6, 9, 10, 11, 13, 14, 18, 19, 21, 22, 25, 27, 30, 35, 37, 42, 43, 45, 46, 49, 58, 67,
70, 75, 78, 91 and 93.

4. Proof of Theorem 3.1. The theorem is a direct consequence of the

following proposition which furnishes a complete answer to question (1*) stated in

§2. We shall use the symbol \r_\ to denote a sum of r perfect squares and |F | to

denote an \r_\ whose summands do not have any common factor other than 1.

According to this definition, a positive number L can be expressed as \rj with

only one non-zero summand iff L — 1. Therefore, we can assume hereafter that in

the representation of L as \r\\ at least two of the summands are non-zero so that

PROPOSITION 4.1. Let L be a given integer > 1. Then

(a) L can be expressed as \2\' iff L does not contain any prime factor

= 3(mod 4).

(b) L can be expressed as [3j' iff L = 1,2, 3, 5 or 6 (mod 8).

(c) L c<2?z Z?£ expressed as [ϊ\ iff L ^ 0(mod 8).

(d) L c<2?z always be expressed as \r] if r ^ 5 .

PROOF, (a) is well-known (see §7, Theorem A). An elegant proof of (b) was

given by Dirichlet using the theory of ternary quadratic forms ([1], pp. 263-264).
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(c) is an easy consequence of (b). To prove (d), we assume that L — l + u, where

u is a positive integer. Since every positive integer can be expressed as [4] (see §7,

Theorem D), L can be represented as [5/, and hence also as |rf with r > 5 , by

adding a suitable number of 02.

5. Proof of Theorem 3.2. For r ^ 3 , question (2*) in number theory as

mentioned in §1 has only been partially auswered ([1], [3], [4]). Let us denote by

i?(L, r) the number of representations of L as \r\ if representations differing in

arrangement of the squares and signs of their roots are counted as distinct, and by

P{L, r) if difference in arrangements and signs is disregarded. As far as the authors

are aware, whereas formulas for R(L,r) for r = 3, 4, and probably for certain other

values of r also, have been obtained, the corresponding formulas for P(L, r) are

still not known. Therefore, we shall confine ourselves to the case k — 1 of question

(2'*), i.e., we shall give an answer to the question:

(3*) For a fixed r ^ 3 , what are those integers L that be represented uniquely

as |rj'?
If r ^ 4, the possible values of L for which we are seeking are finite in number.

In fact, we have

PROPOSITION 5.1. Let r and L be two positive integers and r ^ 4 . Then
the only cases in which L can be represented uniquely as |_r ! are those given
in Theorem 3. 2.

PROOF. We have to consider the two cases, r § : 5 and r = 4 separately.

To prove the assertion for the case r ^ 5 , we first find some small number c

such that every integer >c has at least two distinct representations as [rj. If c is

small enough, the values of L can then be found by direct verification or other

appropriate methods. As an illustration, we give a detailed proof for the case r = 6.

Let L = 25 + w, where u is a positive integer. Then we can always choose

integers sl9 s2, s3 and s4 so that the following are two distinct representations of L

as [6]' :

si + st + si 4- si + 42 + 3 2 ,

si + 52

2 + 52

3 + si + 52 + 0 2 .

In fact, this is possible if w^0(mod8), by Proposition 4. l(c). If //Ξθ(mod8),

let us write u — 22b(2vw), where w is an odd integer, ^ = 0 or 1, and 2£ + zΈΞθ(mod 3).

Then 2yτx^0(mod 8), and therefore it can be expressed as t\ + t\ + t\ + t\ where

the ίi's have no common factor other than 1. Let s t — 2btiy and we obtain the

required representations. Hence, all values of L exceeding 25 need not be considered.

It can be easily verified that if L ^ 9 , the only numbers that admit unique
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representation as [6]' are 1, 2, 3, 4, 7 and 8. If L = 9 + v, l ^ i ^ ^ l β , then we can
choose integers ql9 q2 and q3 so that the following two representations of L as [6]'
are distinct

qϊ + $ + q\ 4- 22 + 22 + I 2 ,

«ϊ + ql + ς5 + 32 4- 02 + 02

unless v = 4a(8b + 7)(cf. §7, Theorem C), i.e., unless i; = 7 or 15. If v = 7, we
have L — 16 which has indeed unique representation as [6]'. If v — 15, we have
L = 24 which however has two distinct representations as [6] .

This completes the proof of our assertion for the case r — 6. Our assertions
for the other values of r ^ 5 can be proved in a similar manner.

We now consider the case r = 4. Let us write L = 2au, where u is a positive
odd integer and α ^ O By Proposition 4. l(c), if α ^ 3 , then L = 2°u cannot be
represented as |4j\ Therefore, we need consider only those L which are of the form
u, 2u, or 4u. For these, we have [4, p. 249]:

(5.1),

where t; is the largest square-free divisor of u and *S(t;) is the sum of divisors of
v.

Also, it is obvious that L — 1, 2, 3, or 4 has a unique representation as [JJ'
Therefore, we may assume that L > 4.

Now let L > 4. Then every representation of L as [ϊf must have one of the
following forms :

(5.2) (A) α

(E)
(F)
(G)

where x, y9 z and w denote distinct integers. By computing the number of arrange-
ments of the squares and the signs of their roots, we find that, to each representation
of L as El' in the form (5.2)(A), (B), (C), (D), (E), (F) or (G) counted in JP(L,4),
there correspond, respectively, 48, 64, 96, 96, 192, 192, or 384 representations counted
in R(L,4). Hence,
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(5. 3) P(L, 4) - R(L, 4)/k for some £^384.

We shall now consider separately the cases where L is of the form u, 2u or

Case (i). Let L — u—pa, where p is an odd prime and a a positive integer.
Then by (5.1)! and (5.3), we have P{L, 4) =ρ°~1(p+l)/k1 with k^A8 (see §7,
Theorem F). In order that P(L, 4)=1, it is necessary that <X<3 and kλ=6, 8,12, 24
or 48. By simple computation, we see that the possible values of L are 47, 23, 11,
9, 7 or 5, and from these 47 has to be discarded since it has two distinct
representations as [3]'.

Now let L = u=p1

ap2

β, where pl9 p2 are distinct odd primes and at, β positive
integers. It can be shown that P(L, 4) = 1 iff Λ =/β = 1 and {pl9p2) = (3,5). The
corresponding value of L is 15. If L has more than two distinct odd prime factors,
then the condition P(L, 4) = 1 cannot be satisfied.

Case (ii). Let L — 2u = 2pa, where p is an odd prime and a a positive integer.
If L has a unique representation as [4f, then it can only be represented in exactly
one of the forms given in (5.2). By (5.1)2 and (5.3), a necessary condition for this
is that 24£α-1(£+l) is divisible by 48, 64, 96, 192 or 384. Furthermore, if a>l,
then P(L, 4)>1. From this we deduce that P{L, 4) — 1 iff p—7 or 3, corresponding
to which we obtain L — 1A or 6. If u has two or more distinct odd prime factors,
then L cannot be uniquely represented as [4]'

Case (iii). Let L — Au — Apa, where p is an odd prime and a a positive integer.
Using (5.1)3 and (5.3) and proceeding as in the previous two cases, we obtain
L = 44, 20 or 12 if oc=l, and L = 36 if a = 2. For all other values of L = 4u, it
can be easily shown that unique representation of L as fϊj' is impossible.

Proposition 5.1 is thus completely proved from which Theorem 3. 2 follows.

6. Proof of Theorem 3.3. For the case r = 3, question (3*) stated in the
first paragraph of §5 can be answered by using the theory of binary quadratic
forms (see [2]). In fact, we have

PROPOSITION 6.1. Let L be a given positive integer and h the number
of classes in the principal genus of the properly primitive binary quadratic
forms of determinant —L. Then L can be represe?ιted uniquely as [3,' iff it has
one of the forms as given in Theorem 3. 3.

PROOF. By a theorem due to Gauss ([1], p. 262), we have
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(6. l ) t R(L, 3) - 3 2*+% if L = 1, 2, 5 or 6(mod 8),

(6.1)2 i?(L, 3) - 2"+% if L = 3(mod 8),

where μ denotes the number of distinct odd prime factors of L.

Now every representation of L(>3) as [3]' must have one of the following
forms:

(6.2) (A)

(B)

(C) x

where x, y, z are distinct integers. It is easy to see that if L is uniquely representable

as [3| in the form (6. 2)(C), then R(L, 3) =48. On the other hand, if L is uniquely

representable as [Sj in the form (6. 2) (A) or (B), then R(L, 3) =24. Furthermore,

μ < 3 is a necessary condition for P{L, 3)=1.

Using the above observations and some known results in number theory (see
§7, Theorems A and E), we can obtain from (6. l)χ and (6.1)2 all the desired
values of L as given in Theorem 3. 3.

Proposition 6.1 is thus proved and Theorem 3. 3 is just a restatement of the

results in geometric language.

7. Some Known Results in Number Theory. Fos convenience of the reader,
we collect here some known results in number theory that we have used.

THEOREM A. A positive integer L can be expressed as a sum of two

relatively prime perfect squares iff it is of the form 2vpΐ1 •/>£*, where v — 0

or 1; /ig^l; the p^s are distinct primes ΞΞ l(mod 4), and the oίt's are positive

integers [3, pp. 297-299, Theorems 366, 367 and 368].

THEOREM B. When L has μ distinct prime factors each=l{moά. 4), there

are exactly 2μ~1 ways of expressing L as a sum of two relatively prime

perfect squares, if difference in arrangement of the squares and signs of their

roots is disregarded [2, p. 76, Theorem 62].

THEOREM C. A positive integer L can be expressed as a sum of three

perfect squares iff L is not of the form 4α(86 + 7), where α^O, b^O [4, pp. 161-

162, Theorems 186 and 187].

THEOREM D. Every positive integer can be expressed as a sum of four

perfect squares [3, p. 300, Theorem 369].
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THEOREM E. A positive integer L can be expressed as a sum of a
perfect square and the double of a perfect square iff all of its odd prime
factors are = 1 or 3 (mod 8) [2, p. 76, Ex. XX2].

k

THEOREM F. Let L = Π pt\ where the pi's are distinct primes and the

cίi's are positive integers. Then the sum of divisors S(L) of L is given by

[4, p. 29, Theorem 31].
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