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A CONSTRUCTIVE DEFINITION OF AN INTEGRAL
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1. Introduction. In [6] and [7] a constructive definition is given for the
Denjoy-Perron integral. In [7] the author remarks, "If, however, we wished to
include also discontinuous integrals we should have to modify some details of the
definition". Although many discontinuous integrals have been defined this approach
does not seem to have been used. In this note it is shown that simple modifications
of the definition in [6,7] give a construction that includes many known integrals
as special cases.

2. A General Constructive Definition. Unless otherwise stated functions
in this paper will either be finite real-valued point functions with domain the fixed
bounded non-empty closed interval, 70, of the real line, or finite real-valued interval
functions with domain all closed sub-intervals of some sub-interval of 70. The
symbols /, J, /', J', etc. will denote closed sub-intervals small letters /, g
will usually denote point functions, capital letters F, G interval functions script
capitals S > ~C, '/ will denote various integrals. In particular X, (Γ,£D* will
denote the Lebesgue, Denjoy-Khintchine and Denjoy-Perron integrals respectively,
[6,7] further -£(/, 7) will denote value of the -/^-integral of / on the interval 7
with a similar notation for other integrals.

We will distinguish a class K of interval functions, with domain all closed
subintervals of 70, and a non-negative function (not necessarily finite) V defined
on couples (F, 7), where 7 is in the domain of F. The following assumptions are
made about the class S and the function V.

( I ) If JF'€(E, and G€(5 then F+Gc®.
(II) If Fz Gt then F(I) is completely determined by the values of F(J), for

Jc7.
(III) If F € g, J c 7 then 0 ̂  V(F, J) ^ V(F, 7) < oo.
(IV) If Σ V(F, In) < oo then £ | F(In) \ < oo.

(V) If Σ V(F, Q < oo and f)V(G, 7n) < oo then £ F ( F + G , 7n) <
iV N JV

(VI) Let Q be a closed set with end points those of 7 and contiguous intervals
jn 7, {7n}weiV; further suppose that for each n, In is in th^ domain of
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Fn, and Fn€<£. If then Σ v(Fn> In) < °° and if G is the interval

function defined by G{J) = ΣF n (7 n ) then G e g .

(ϊ can be considered as a class of continuous interval functions, V a form of
oscillation Now we define a general integral following the classical lines in [6,7],
but using the notation in [9].

Let 3 be a real-valued function with domain, dom 3, a set of ordered pairs
{(/, /)}, / being a real-valued point function with domain an interval 7; we will
put dom/J= {/; (/, /) € dom 3\.

3 is called an integral, or more precisely a ^-integral, iff we have the
following.

(A) If / € dom7c£ then /<= domJC? for all J c /.
(B) If /edomjcί then 3(f,J), Jdl is finitely additive and in (S. (This

implies that 3(f,J) = 0 if either J = 0 or J is a singleton.)
(C) If /<= domjc^ and / Ξ donvc?, 7 and J abutting, then fz άomκ3, where

K=I\jJ.
(D) If / = 0 on 7 then / € dom7<^ and c^(/, J) - 0.
When / € doπii3, 3 an integral, then / is said to be 3-integrable on 7. If A

is any subset of I we will say that / is 3-integrable on A iff / lA £ άovaI3, (1A[X)

= 1 if xe Ay = 0 if x€A) the value of the J-integral of / on A, cί(/, A), is
just 3{f\Ay I), a value independent of 7, see [7].

Two such integrals 3λ and 32 will be termed compatible iff c^i(/,A)=c^2(/>A)
whenever both sides exist. If 3U32 are compatible and d o m ^ c d o m j g we will
write 3ιC32 and call 32 an extension of c^.

If © is the class of continuous interval functions, which certainly satisfies (I )
and (II) above, then X,3),£)* are all 6-integrals and .ΓC.2)*CJ2), [6,7].

A point x is called a 3-singular point of f iff there is a sequence {In}neN
such that l im |7 n |=0, and for all neN, xz ln and (f,In)&άom3. Let us write

n->oo

S, or more precisely S(f), or even S{3,f), for the set of ^-singular points of /.
Clearly S is closed and if 7f)S= 0 then (/, 7) € dom< .̂

Two extensions of 3 are now defined, 3° and < \̂ We will say (/, 7) € domc5c

iff the following hold.
(E) InS(3,f) is finite or empty.
(F) There is a finitely additive interval function F such that (i) F<z ®, (ii)

if JΠ S(c£/) = 0 , J c 7, then 3(f, J) = F(J).
If (/, 7) € dome?0 then by (II) F is unique and if we define 3c(f, I) = F(I)9 3C

is clearly a Gf-integral and an extension of 3.
We will say (/, 7) <= domjP iff we have the following.
(G) f is <^-integrable on IΓ\S(3,f) and on each of the intervals (7n)

contiguous in 7 to IDS.
(H) If {7n} is as in (G) then £ W ( / , •),/•)< oo
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If (/, 7) e dome?* we define Jκ(f, I)=J(f, 7nS)+ £<*(/, /.), then from (III),
n

(IV), (V) and (VI) we see that 3h is a S-integral and clearly an extension of 3.
We will write Sch for (Jc)h.

If ί l is the first uncountable ordinal, if for each <x<Ω,3a is an integral and
if a<β implies 3a(z3β then for a<β^ίl we define Σ<$« t o be the operation

a<β

J with d o m ^ = \JdomJa and if (/, /) <Ξ dαm^ then J(f91) = Ja(f, I) where
a<β

a is the least ordinal rY,y<β, such that (/, /) £ dom^. Clearly 3 is an extension
of 3a, for all a<β and J c 4

Such a transfinite sequence of integrals can be defined inductively as follows.
Let 30=3, some given integral and suppose 3a has been defined for all a<β<Ω;
then put

\a<β

β<a

Let us call such a sequence of integrals an s sequence it is the integral 3n
obtained from such an s-sequence that we wish to consider.

3. The Main Properties of an s-sequence. We assume in this section that
we are given an s-sequence {3a}a<a- Our applications will all have 30 = X but it
is convenient not to assume this directly so we introduce the following concept
that plays the role of the absolute continuity of the ./7-integrals.

If Q is a closed set then F is said to be a 3-integral on Q iff there is some
(/, /) € dom^ with Qo I and f (J) = 3{f> J) whenever the end points of J lie in
Q.We then assume

(VII) Let Q, I, {In}n*N be as in (VI) and (/, /) € domΛ Define G by G{J)
= Σ ^o(/, In) then if Σ 30(f, In) < °o,G is a ^-integral on Q.

We now introduce sub-classes of S that play the role of absolutely continuous
interval functions.

DEFINITION 1. If Q, /, [In] are as in (VI) then F is GAC on Q iff (a)
Ft C, (b) F is a Λ-integral on Q, (c) £ V(F, In) < oo.

In particular we have that if Fz (£ then i7 is GAC on any {.r}, with a: in
the domain of F.
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DEFINITION 2. F is said to be σ-GAC on / iff (a) F€ g, (b) I=\J Qn,
neN

{Qn}neN a sequence of closed sets on which F is GAC

We will say an integral 3 is (σ-)GAC when for all (/, /) e dom 3, 3{f •) is
{σ-)GAC on 7.

T H E O R E M 3. / / 30 is GAC then 3d is σ-GAC.

PROOF. It suffices to check that 3O

C and 30

h are σ-GAC

(a) By (E) and (F), if 30 is GAC then 3O

C is σ-GAC

(b) To prove that 30

h is σ-GAC it suffices to check that G, defined by G(J)
= Σ W , / J , is σ-GAC. By (VI) and (H), G ^ g and by hypothesis G is GAC

on each In and so it suffices to check that G is GAC on 5, but this is immediate
from (IV), (VII), and (H).

THEOREM 4. If 3 is a ^-integral that is σ-GAC and if 3a c 3 then

PROOF. Suppose / is S -integrable, a<£l\ let Sa = 5(Jo,/) then if
oc<β<Q,S*^)Sβ, and further for some Λ<ίl, 5« = 5β+i, [7,p.258]. Suppose 5 α ^ 0.

Then / i s Ja-integrable in every interval /with I(~)Sa= 0 . Hence, by hypothesis
/ is c?α+1-integrable on every interval contiguous to Sa in particular 5α is perfect.

Since J) is σ-GAC it follows that *Sα contains a closed portion Q such that 3

is a ^-integral on Q and ^ V ( J ( / , •), In) < ©o, where {/n} are the contiguous

intervals on Q and so 3a+1 -integrable on some interval containing Q. But this
contradiction implies Sa = 0 that is / is _?«-integrable which completes the proof.

4. Some Examples. In this section we consider some examples of s-sequences
{^a}a<ςι with 3Q—X, in particular therefore we always have (VII) holding.
(1) Let S be the class of continuous interval functions, V the usual oscillation
(i.e. V(F,I)=O(F,I)). Then (I)-(VI) are easily seen to be satisfied, (for (VI) see
for instance [6, p. 172]).

The classes GAC and σ-GAC are then just the classes of continuous AC*,
ACG* functions, [7], and Ja is just ώ*, [6,7].

( 2 ) Let S be the class of continuous interval functions F with the property that

if l i m | / n | = 0 then lim O(Fyln)=0 and let V(F, I) = \ F(I) \. Then again (I)-(VI)

aye satisfied, [6, 7], and the classes GAC and σ-GAC are just the classes AC and
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ACG respectively, [7]. The integral Jn is just 3), [6, 7].

( 3 ) Let S be the class of continuous interval functions F with the property that

if l i m | / J = 0 then lim—y——Λ- = 0 for all x in the complement of I / In let
w->oo n-̂ oo p(X, ln) ^f^

V(F, I) — I F(I) I. Then the integral JΩ is one discussed by Burkill, and lies between
3) and 3)* [1, 7]. (Here of course p(x, J) is the distance from x to J.)

( 4 ) Let S be the class of continuous interval functions F and V(F, I) = {O(F,Γ}}1/p,
l^p<oo. Then if we write SPP for the integral Sςi in this case we have
X<Z ίPpCiP*. Let us write ACV and ACGP for the classes GAC and σ-GAC arising
this case. We will show that 3)v coincides with the integral introduced by Burkill
and Gehring, [3], which we will denote by (/>).

DEFINITION 5. / is 3)[p) integrable if / is iZ)*-integrable and its indefinite
m

integral F is in Wv (where by F in Wv we mean that sup X) \F{xk) — F{xk-ι)\ι/v

k=l

is finite, the sup being taken over all finite subdivisions).

By Theorem 4 it suffices to prove the following lemmas.

LEMMA 6. // / is 3){p) integrable and F is its indefinite integral then F
is ACGV.

PROOF. Since / is 3)*-integrable, F is continuous, and ACG* and in Wv and
hence immediately in ACGΌ.

LEMMA 7. Let Q,I and {In} be as in (VI). / / / is £P(p) integrable over
Q as well as over each In and if X^{O(F/d, In)}1/P < °°, Fk being the indefinite

n

integral of f over lk, then f is 3)(p) integrable over I.

PROOF. Since the conditions imply / is i£*-integrable, [7, p. 257] it suffices
to prove that the indefinite 3)*-integm\ of / over I is in Wp. But this is just
(2. 6. 2) of [3].

COROLLARY 8, 3)pc3)(ρ).

PROOF. Immediate as in [7J.

(5 ) We now show that the CrP-integrals can be obtained this way, [2, 8]. The
definition of the CrP-integral is obtained by induction on r the r = 0 case is
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just the ^-integral and let us assume CkP-integrals have been defined l^k^r—1,
and proceed to define the CrP-integral. In this connection we need the following
taken from [2,8] expressed in the notation of interval functions.
( i ) If f(x) = F([a, x\) is Cr_ P-integrable on [α, b] = I write

Cr-F(I) = ijprC^P-J (b-t)r-ιF(\a,i\)dt.

(ii) If Cγ'F is continuous we say F is Cr-continuous.
(iii) If we use the notation of ( i ) put

Or{F, I) = sup{toίind Cr-F([a, x]), b^ά Cr-F([x, b])}.
Λ<frr.<'h n.<r'r.<rha<x<b

Now suppose we take for S the class of Cr-continuous interval functions and
for V the above defined Or. The properties (I)-(III), and (V) are obvious; (IV),
(VI) are proved in [8] see in particular Lemma III and Property B of [8].

The concepts of GAC and σ-GAC are just the Cr-continuous functions that
are AC*(Cr-sense) and ACG* (Cr-sense) respectively of [8] for this see Theorem
II of [8].

The integral SQ, is just the CrP-integral and to see this after Theorem 4 it
suffices to remark that the CrP-integral is a σ-GAC S-integral in the present sense
and to prove that S&C.CrP. For this it suffices as in [7] to prove the following
generalization of Property B of [8].

LEMMA 9. Let /, {/Λ} be as in (VI). // / is CrP-integrable over Q as
well as over each In and if ^ Or(Fn, In)<oo9 Fn being the CrP-integral of f

n

over 7n, then f is CrP-integrable on I and

crp- ί f= crp-J f+ Ecrp- f /.
Jr JQ n JI%

PROOF. Put / = [a, b], I(x) = [a, x] and define

f-
inni(χ)

Then it is sufficient to show F is ACG*(Cr-sense) on 7; see [7,8].
Clearly F is Cr-continuous on / and ACG*(Cr-sense) on each In it remains to

show F is AC*(Cr-sense) on Q. Let

g(x) =f(x),xe Q
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then g is X-integrable on / and if G(x) = I g, G coincides with F on Q, [8].

Hence F is AC* (Cr-sense) on Q, by Theorem II, [8].
It follows then, as in [8], that / l^q has F as its CrP-integral but / lQ is

CrP-integrable, by hypothesis, and so we get the lemma.

( 6 ) In a similar way we can obtain the Mr-integral as a special case of our general
construction. The Mr-integral is also obtained by induction on r, with r = 0 being
the ^-integral, [4]. Let us assume the M^-integrals have been defined, O^k^r— 1
and proceed to define the Mr-integral.

Mr-continuity is defined in the same way as Cr-continuity but with Mr^-integral
replacing the Cr-iP-integral.

We now take for © the class of Mr-continuous interval functions F with the
property that if l im | / n | =0 then lim Or(F, In) = 0 and we define V(F91) to be

n-*°o n-*oo

\F(I)\ as in example ( 2 ) .
The fact that then JQ is just the Mr-integral follows from results in [4,5].
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