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1. Introduction. The Riemannian curvature tensor R of a locally symmetric
Riemannian manifold (M, g) satisfies

* R(X,Y)-R=0 for any tangent vectors X and Y,

where the endomorphism R(X,Y) operates on R as a derivation of the tensor
algebra at each point of M.
Let R, be the Ricci tensor of (M, g). Then (¥) implies in particular

(¥%) R(X,Y):R, =0 for any tangent vectors X and Y.

In the present paper we shall prove

THEOREM A. Let M™ (m=3) be an m-dimensional connected complete
conformally flat space satisfying the condition (**). Then M™ is one of the
following manifolds :

(1) A space of constant curvature.

(I1) A locally product space of a space of constant curvature K (#0)
and a space of constant curvature —K.

(IIT) A locally product space of a space of constant curvature K (#0)
and a 1-dimensional space.

The authors wish to express their sincere thanks to Prof. S. Tanno who gave
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2. Conformally flat cases of dimension m>3. Let M™ (m>3) be a
connected conformally flat spaces, then the curvature tensor R of M™ is given by
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2.1 R(XY)=1/(m—2)(AXAY +XAAY)—(trace A/(m—1)(m—2)) XY,

for any tangent vectors X and Y of M™, where A denotes a field of symmetric
endomorphism which corresponds to the Ricci tensor R,, that is, R(X,Y)=9¢(AX,Y),
and XAY denotes the endomorphism which maps Z upon g(Y,Z)X—g(X, Z)Y.

At a point of M™, let {e,, e,,+++,e,} be an orthonormal basis of the tangent
space such that Ae, = \e;, 1=:=m. Then the equation (2.1) implies

m
)

Rleve;) = ((m— 1><m—2))-1<<m— v+ 2 — M)eme,-

k
Now by the equation (**) and
[R(es, e;) *Ri](ex, ex) = — Ry(R(es, e;lex, e) — R, (ex, R(es, e;le,),

we have
(2.2) (Mi—ny) ((m—l)(xiﬂ,)— f;x,,) =0, for i#j.

In this paper, the indices 7, , %, h,+++ run from 1 to m.
LEMMA 2.1. At each point of M™, the rank of R, is m, m—1, or 0.

PROOF. If there exists an integer 7 (1<<r<<m) such that A=<+« =N, =0,
Nrr1 70, ¢+ ¢, A, #0, and if we put A=) Ay, then (2.2) implies
k=1

(m—1)A,—A=0.
Hence Ay 4=+« + =N, =A#0. Again (2.2) implies (m—1)A—(m—7)Aa=(r—1)A=0,
that is, A=0 which is a contradiction. Q.E.D.

LEMMA 2.2. If all the \’s have the same sign at a point of M™, then
M=Ng =+ An=N\, at the point.

PROOF. If there exists an integer 7 (L=7r<m) such that A,=--- =2,=2,
Are1FENs * o 5 AmFEN, then (2.2) implies
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(m—=1)N+Nr+1) —A =0,

(m—=1)(N+N,) —A=0.

Heace N,11= «++ =\,=p+#0. Again (2. 2) implies (m—1)(N+ p) =N —(m—7)p=0,
that is,
(2.3) m—r—1Aa=Q0-rp.

Then, as m>3, from (2. 3) we have +1, m—1. But from (2. 3) we have also Ap<<0.
This is a contradiction. Q.E.D.

Now we have

PROPOSITION 2.3. Let M™ (m>3) be a connected conformally flat
space satisfying the condition (*¥). If the Ricci form R, is definite at least
at one point of M™, then M™ is a space of constant curvature.

PrOOF. If the Ricci form R, is positive (resp. negative) definite at some point
x,€ M™, then, by the continuity argument for the characteristic polynomial of A,
R, is positive (resp. negative) definite near x, in M™. Thus, let W={xe M™; R,
is positive (resp. negative) definite at x}, which is an open set. Let W, be a
connected component of x, in W. Then by lemma 2.2, N;=+++ =A,=:, on W,
and M(x) is a differentiable function on W, since A(x)= trace A/m. Now, the
open submanifold W, becomes a conformally flat space by the Riemannian metric
which is the restriction of g to W,. Thus W, becomes an Einstein space by the
induced metric from M™. As m>3, an(x) is a constant function on W, Hence,
(2.1) implies that W, is a space of constant curvature A/(m—1). Therefore, by
the connectivity of M™ and the continuity argument for the characteristic polynomial
of A, it follows that W,=M™. Q.E.D.

Next, we assume that the Ricci form R, is non-degenerate and indefinite at
some point x,€ M™. Then, from the proof of lemma 2.2, there exists an integer
r (1<r<m-—1) such that A,=+++ =N, =A>0, and N,y =+ =, =<0, at z,. By
the continuity argument for the characteristic polynomial of A, let W= {xe M™;
R is non-degenerate and indefinite at x}, which is an open set. Let W, be a
connected component of x, in W.

Then it follows that r is constant on W, and non-zero eigenvalues, A (x) >0,
and p(x) <O are differentiable functions on W, since, if m+#2r, then A (zx) =F(x),
w(x)=G(x), or Mx)=G(zx), plx)=F(x) x< W,, where
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F(x) = (1 —7)/(m —1)(m — 2r)) trace A,
G(z) = (m—r—1)/(m—1)(m—2r)) trace A,

and if m =2r, then Nx) ="A/(—1)"det A, p(x) = —7/(—1)"det A, zc W,.
We define two distributions on W, as follows:

T(x) = {XeMy; AX = az)X},
Ty(x) = {Xe Mp; AX = pu(x)X}.

LEMMA 2.4. T,(x) and T.(x) are differentiable on W,.
Proof is given by the slight modifications of the arguments in [3].

By lemma 2.4, for any x< W, we may choose a differentiable field of
orthonormal basis {X;, X,,+ -, X,,} near x in W, in such a way that {X,,«- -, X,}
and {X,+1, ¢+, X,,} are bases near £ in W, for T, and T, respectively.

By making use of (2.1) and (2.3), we have

LEMMA 2.5. With respect to the basis {X,, X,,+++,X,}, we have

R(Xay Xb) = KXa /\ Xb,
R(Xu, Xv) = - KXu /\ Xm

(2. 4)

and otherwise zero, where K= (N —p)/(m—2) and 1=a,b,c, - =r, r+1
=u,v, W, =m.

Now, in general, for a differentiable local field of orthonormal basis {X,, X,
«++,X,} in a Riemannian manifold (M, g), we may put

(2.5) VxX; = kz_l i sk Xi»

where Vx denotes covariant differentiation for the Riemannian connection constructed
by g, and v; ;s = — Yix;-

PROPOSITION 2.6. Let M™ (m>3) be a connected conformally flat
space satisfying the condition (¥*). If the Ricci form R, is non-degenerate
and indefinite of signature 2r —m at least at one point of M™, then M™ is a
locally product space of an r-dimensional space of constant curvature K and
an (m —r)-dimensional space of constant curvature —K, where 1 <r<<m — 1.
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PrROOF. Taking account of (2.4) and (2.5), we have

(vqu) (Xm Xb) = XuKXa /\ Xb + Kz Yuai Xt /\ Xb
Jj=1

+KZ rYutha/\ Yt—KZ'YuacXc /\Xb
= c=1

i=1

'_KZ r)'mtbz:}{u/\ Xc
c=1

= XuKXa/\Xb+K Z 'Yua‘uXv/\Xb'l'K Z I'Yulnz){a/\)(m

V=7+1 v=T+1

(VX,R)(X[,, Xu) = K Z Ya bo Xv /\ Xu - K Z Ya uc Xb /\ Xc’
c=1

v=7+1

(VX.R)(Xu’ Xa) = - KZ Y5 uc Xc /\ Xa + K Z rlea.v Xu /\ Xv'
c=1

v=r+1

By the second Bianchi identity, we have X, K =0, and v,,,=0. Similarly we
have X, K=0, and v,;,=0. Where a,6=1,--«,7, t,v=7r+1,-«+,m.

Thus W, is a locally product space of an 7-dimensional space of constant curvature
K and an (m — r)-dimensional space of constant curvature —K. Therefore, by the

connectivity of M™ and the continuity argument for the characteristic polynomial
of A, it follows that W,=M™. Q.E.D.

Lastly, we assume that the rank of the Ricci form R, is m — 1 at some point
xoe M™, and furthermore M™ is complete. Then, from the proofs of lemma 2.1
and lemma 2.2, and the continuity argument for the characteristic polynomial of A,
the rank of R, is m — 1 near &, in M™. Thus let W= {x< M™; the rank of
R, is m—1 at x}, which is an open set. Let W, be a connected component of
x, in W. From the proof of lemma 2.1, we see that all the non-zero eigenvalues
of A at each point of W, are equal to each other, say, A, and the non-zero
eigenvalue M\ (x) is a differentiable function on W,, since A(x) = trace A/(m — 1).

We define two distributions on W, as follows :

T\(x) = {(Xe M7 ; AX = \M2)X},
Toz) = (XeMp; AX=0}, zecW,.

Corresponding to lemma 2.4, we have
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LEMMA 2.7. T,\(z) and T,(x) are differentiable on W,.
Thus, for any € W,, we may choose a differentiable field of orthonormal basis
{X,, X5, ¢+, X} near x in W, in such a way that {X,---,X,-;} and {X,}
are bases near x in W, for T, and T,, respectively. Corresponding to lemma
2.5, we have
LEMMA 2.8. With respect to the basis {X,, X, -+, X,}, we have
(2 6) R(Xcu Xb) = KXu /\ Xb’
and otherwise zero, where K=\/(m—2), and 1=a,b,c,---=m— 1.
LEMMA 2.9. T, is involutive.

PrOOF. Taking account of (2.5) and (2.6), we have

(VXCR) (Xa’ Xb) = XCKXa. /\ Xb + K'Yc am Xm. /\ Xb + K'Yc mea /\ Xm,
(VX.R) (Xp, Xo) = Xa KX, A Xe + KYasm X A Xe + K¥aon Xs A X
(VX.R) (Xc’ Xa) = XbKXc /\ Xa + K'Yb cme /\ Xa + K'Yb am Xc /\ Xm-

By the second Bianchi identity, we have

(2.7 X,K=0, c¢=1-+-+,m—1.
(28) |')labm,_"Yqum,'-20; fOI’ a?':b, a,b:l,---’m_l_
By (2.8), T, is involutive. Q.E.D.

For each x< W, we denote by M,(x) the maximal integral manifold through
x of T,. Then, by (2.7), K is constant on each M,(x).

LEMMA 2.10. Each trajectory of X,, is a geodesic.
PROOF. From (2.5) and lemma 2.8, we have
(V&R) (Xﬂ-’ Xb) = XmKXa /\ Xb + Kerame /\ Xb + Kermea /\ Xm’

m—1
(vXaR)(Xb’ Xm) = - K Zl rYamc}{b /\ ch

m-—1

(VX,R) (Xm’ Xa) =—-K Z Y6 me X. N\ X.
c=1
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By the second Bianchi identity, we have

(2 9) VYmma = 0’
(2. 10) 'Yamb = O)
(2.11) XK+ KYoma +Vsms) =0, for ab, ab=1---,m—1.

Thus, from (2.9), it follows that Vg, X, =0. Q.E.D.

From (2.11) we have

(2.12) Vimt = Yeme = *** = Y1 mm-1-

Thus, from lemma 2.8, taking account of (2.9), (2.10) and (2.12), we have
R(Xe, Xp) X = V. V2, Xn = V. V. X = Vizo xa1 X

m-—1
= - eryamaXa - Z FYama.'Ymac}(c
c=1

m-1 m—1
- Z'Ya.ma'Yachc + Z'ymac'chcXc
c=1

c=1

= —Xm'YamuXa— ('Yama)zXa = 0,
that is
(2' 13) Xm'Yama, + (rYama)Z = O’ fOI' a = 1, e, m — 1.

LEMMA 2.11. Any geodesic whose tangent belongs to T, at each x< W,
is infinitely extendible in W,,.

PROOF. For any x< W,, let L(s) be a geodesic with arc length s, whose
initial point is x and initial direction at x belongs to T°,. Then, by lemma 2. 10,
for sufficiently small s each tangent vector at s of L(s) belongs to T',.

Thus, from (2.11) and (2.12), we have

2
%g— + zi—fvm +2K—%%m =0,

that is,
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(2.14) 2kLE 3 <—d£—)2 = 0.
If K>, then (2.14) implies
22 _
(2.15) (1K) =0,
If K<0, then (2.14) implies
(2.16) 7‘3527(1/«/?1?) —0.

Therefore, from (2.15) and (2.16), we have
(2.17) K =1/(as +b)? and —1/(as + b)?, respectively,

where a and b are certain constants. As a geodesic in M™, L(s) is infinitely
extendible. If this geodesic does not lie in W, let s, be a point such that
L(s)e W, for s <s, but L(s) & W,. The characteristic polynomial of A at L(s),
$§<So, is (£ —n(s))™ 2. That of A at L(s,) is therefore the limit as s— s,, namely,
(& —N(so))™ . But \(so) = lir:lx(s) = }nan =+ (m—2)/(as + b)? = = (m—2)/(as, +b)*

can not be 0. This is a contradiction. It follows that L(s,) € W,. Q.E.D.

PROPOSITION 2.12. Let M™ (m>3) be a connected complete conformally
flat space satisfying the condition (¥*). If the rank of the Ricci form R is
m —1 at least at one point of M™, then M™ is a locally product space of an
(m — 1)-dimensional space of constant curvature K and a 1-dimensional space.

PrROOF. From lemma 2.11, K(s) must to be defined for any s along L(s).
But, if a0 in (2.17), then 1/An will be 0 for s= — b/a which is a contradiction.
‘We have thus shown that K is equal to a constant on each L(s). Therefore, K
is constant on Wi. Then, from (2.11) and (2.12), we have ¥,,.=0, for a=1,
«+«+,m—1. Thus, from (2.9) and (2.10), T, and T, are parallel. Therefore,
M™ is a locally product space of an (m — 1)-dimensional space of constant curvature
K and a 1-dimensional space. Q.E.D.

3. 3-dimensional cases. Let M be a 3-dimensional connected Riemannian
manifold with the metric tensor g. Then the curvature tensor R of M is given by

(3.1) R(X,Y) = AXANY + X N AY — (trace A/2)X \Y,
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for any tangent vectors X and Y of M, where A is a symmetric endomorphism
satisfying R,(X,Y) = g(AX,Y). Then (3.1) is obtained by putting 7 =3 in (2. 1).
This suggests that we may apply the similar ones as the arguments in § 2 in this
section.

At a point of M, let {e, e, ¢e;} be an orthonormal basis of the tangent space
such that Ae, = e, £=1,2,3. Then the condition (¥¥) is equivalent to

3

(3 2) (7\" - 7\'1)(2(7\/1 + 7\:1) - z 7\«1;) = 0, fOI‘ z -‘/:j.

=1
From (3.2), we can easily show that the following cases are possible :
(i) M=r=N3=N#0,
(i) Mm=A=A#0, A;=0,
(iii) A =A=2a3 =0.
Thus we have

PROPOSITION 3.1. Let M be a 3-dimensional connected Riemannian
manifold satisfying the condition (¥*). If the rank of R is 3 at least at one
point of M, then M is a space of constant curvature.

REMARK. In general, if a Riemannian manifold (M, g) satisfies the condition
, then we can see that multiplicity of any non-zero eigenvalue of A is greater
than 1.

(**)

Next, we assume that the rank of the Ricci form R, is 2 at some point
xy€ M. Then we can define two differentiable distributions, 7", and 7', corresponding
to the eigenvalues, A and 0 of A respectively on W,, and furthermore we may
choose a differentiable field of orthonormal basis {X;, X,, X;} near £ in W,, for
any x € W,, in such a way that {X;, X,} and {X;} are bases for T, and T,
respectively, where W, is the connected component of x, in W= {xe M; the
rank of R, is 2 at x}.

With respect to the basis {X;, X,, X;}, we have

(3.3) R(X, X,) =AX; AX,, and otherwise zero.
(3 4) RI(XI; Xl) = Rl(Xz, Xz) =N, and otherwise zero.

Now, we assume that M is conformally flat and complete. Then the following
equation holds good :
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(3.5) (VzR,)(X,Y) — (VrR)(X, Z)
= (1/4)(Z(trace A)g9(X,Y) — Y(trace A)g9(X, Z)),

for any tangent vectors X,Y and Z of M.
We shall prove

PROPOSITION 3.2. Let M be a 3-dimensional connected complete con-
formally flat space satisfying the condition (**). If the rank of the Ricci
Sform R, is 2, then M is a locally product space of a 2-dimensional space of
constant curvature and 1-dimensional space.

PrROOF. From (2.5) and (3.3), by the second Bianchi identity, we have
(3.6) Ys31 = V332 = O.

By putting X=X,, Y=X,, Z=X; in (3.5) and using (2.5) and (3.4), we have
(3.7 ¥e1s = 0,  similarly, ;4 = 0.

By putting X=X,, Y=X,, Z=X;

(3.8) XA=0, similarly, X,» = 0.

By putting X=X,, Y=X,, Z=X;

(3.9) XoN + 2015 = 0, similarly, XA + 27535, = 0.

By (3.9), we have

(3.10) Y 31 = Yasa.

From the equation R(X,, X;)X; =0, by making use of (3.6), (3.7) and (3.10),
we have

Xa%y a1 + (7131)? = 0.

Therefore, from the above discussions, the rest of proof is given by the slight
modifications of the arguments in the last case in 2. Q.E.D.
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