
Tδhoku Math. Journ.
23(1971), 565-571.

CONTINUOUS DEPENDENCE FOR SOME FUNCTIONAL

DIFFERENTIAL EQUATIONS
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Several authors have discussed global behaviors of trajectories of functional
differential equations with the phase space considered by Hale ([2], [3], [4], [5]).
The purpose of this paper is to discuss the continuity of solutions on initial values.

Let x be any vector in Rn and let \x\ be any norm of x. Let B—
B{{ — ooy0],Rn) be a Banach space of functions mapping ( — oo, 0] into Rn with
norm || ||. For any φ in B and any σ in [0, oo), let φ9 be the restriction of φ
to the interval ( — co, — σ]. This is a function mapping ( — oo, — σ ] into Rn. We
shall denote by B9 the space of such functions φ9. For any η € J5", we define the
semi-norm |MIB, of η by

Then we can regard the space B9 as a Banach space with norm || |IB* If x is a
function denned on ( — °°,<z), then for each t in ( —oo,^) we define the function xt

by the relation xt(s) = x(t+s), — oo<55g0. For numbers a and T, a>τ, we denote
by Av

a the class of functions x mapping ( — oo, a) into Rn such that x is a continuous
function on [T, a) and xv <= β. The space B is assumed to have the following
properties :

( I ) If x is in Ar

α, then xt is in B for all t in [T, a) and xt is a continuous
function of t, where a and T are constants such that τ < α ^ o o .

(II) All bounded continuous functions mapping ( — oo,0] into Rn are in JB.
(III) If a sequence {9^}, φk€B, is uniformly bounded on ( —oo,0] with

respect to norm | | and converges to φ uniformly on any compact subset of
( — oo,0], then <pz B and \\<pk — <p\\ —>0 as k —• 00.

(IV) There are continuous, nondecreasing and nonnegative functions b(r), c(r)
defined on [0,oo), b(0) = c(0) = 0, such that

^b{ sup \φ{s)\) + c{\\φ9\\B.)

*) Supported in part by the Sakkokai Foundatioa
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for any φ in B and any σ^O.
(V) If σ is a nonnegative number and ψ is an element in B, then Tσφ denned

by Tσφ[s) = φ[s+σ)9 s € ( — oo, — <r], is an element in Bσ.

(VI) MO) I ̂ Λ Λ M for some constant Mx>0.
(VII) | | 7 > | | β ί ^ M 2 | M | for all t^O and for some constant M 2 > 0 .

REMARK 1. When we discussed the global behaviors of trajectories in the

phase space, the property of the fading memory, that is, \\T^\\B<r —>0 as σ —»oo,

played an important role, but in this paper, this property is not required.

REMARK 2. The class of phase spaces considered by Coleman and Mizel [1]
has the properties (I)^(VII), and hence the result in this paper holds good for this
class of phase spaces.

Consider the functional differential equations

( 1 ) x(t)=f(t,xt).

The superposed dot denotes the right-hand, derivative and f{t9φ) is a continuous
function of (t9 φ) which is denned on IxB* and takes values in Rn, where / and
B* are open subsets of [0, oo) and B9 respectively. We shall denote by x{tO9<p) a
solution of (1) such that xtS

t^φ) = φ and denote by x{t9t09φ) the value at t of
x(t0, φ).

THEOREM. Suppose that a solution u{t)=u(ty t0, <p°), (tOy <p°) z IxB*, of (1)
defined on [to,to+a] for some a>0 is unique for initial value problem. Then
for any £>0, there exists a δ(£) > 0 such that if (s,ψ) € J x £ * , \s-to\ <S(β)
and ||ψ-?>0U<δ(£), then \\xt(s,ψ)-ut(t0,<p0)\\ <8 for all tz [max{tQ,s},t0+a],
where x(s,ψ) is a solution of (1) through {s,ψ).

PROOF. The set {ut :tz [to,to+a]} is a compact subset of B, and hence
there exists a positive number d such that if \\φ—ut\\^d and \s—1\ ^d9 then
(s,φ) £ IxB* for all te[t0, to+a], because IxB* is an open subset. S i n c e / i s
continuous in (t, φ), we can assume that if \t—s\^d and \\φ—ut\\^d9 then
\Ά^φ)—f{tyUt)\ ^ 1 for a ί € [to,to+a]. Thus it follows that

1/(5, ψ)\^l + maχ{ \f(t9 ut) I : ί € [t09 to+a]} ,

and hence there exists an M > 0 such that \f(s9φ)\ < M o n the set D= {{s9 φ)\
\s—1\ ^d9 \\φ—ut\\ ^d91 € [t09 ί o + α ] } . Moreover, there is a continuous function
g{t9φ) denned on [to—d9to+a + 2d]xB such that \g\ <M and
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( 2 ) g{t,φ)=f{t,φ) for (t,φ)*D.

Clearly the solutions of

( 3 ) y{t) = g{t,yt)

are continuable to o

Suppose that the conclusion of this theorem is false. Then there exists a positive

number 80,80<d, and sequences {φm}> {tm} and {τm} such that \\φm—φ°\\ —• 0,

tm-*t0, max{ίo,ίOT} <τm^t0+a, and rm—>τ 0 as ra—>oo and that

(4) lkA^")-«τΛ^°) ll=fio

and

( 5 ) I t a t a , <?Ί - «,(*o, <P°) I] < £o for max{*m, tQ] ̂  t < rm

For all sufficiently large m, the function gm{t, φ) given by

gm(t,v) = g{t+tm-t09φ)

is defined on [tQ,r0-t-d] x δ , Let y(t,tm,φm), tm^t^t0+a+dy be a solution of

(3) through ( ί m , ^ m ) . Then y7 1^) given by

I y{t+tm-t0, tn, φ
m) for / € [ί0,

>m(ί-ί 0) for tz{-o

is a solution through (to,φ
m) of the functional differential equation

( 6 )

We shall show that the sequence {ym(t)} is uniformly bounded and equi-continuous

on the interval [to,rQ+d] for all large m. For all large m we have \φm{0)— φ°(0) |

^Mi||^>m—^°IJ ^ K for some constant K>0 by (VI), and hence

\ym{t)\^\φm{Q>)\+ jf\gm{s,y\)\ds

Therefore {ym(t)} is uniformly bounded on [tQ,τ0+d]. For any t u ί2, to^

y we have
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and hence {ym(t)} is equicontinuous on [to,τo+d]. By Ascoli-Arzela's Theorem,
there exists a subsequence of {ym[t)} which converges to a function y*[t) uniformly
on [to,τo-\-d]. We shall denote it by [ym(t)} again. The limit function y*(t) is
continuous and bounded on [to,τo+d].

Define y{t) by

\y*(t) for tz[tQ,τ0+d]
y(t) =

[φθ(t-to) for t € ( - o o , ί 0 ) .

Then yt belongs to B for all ί € [ίo,τo+<i], because y[t0) = φ°(0) and yt <= Aίβ

Tβ+d.
We shall show that .y(ί) is a solution of (3) through (^o*^0)-

First of all, we shall see that the set S= {ym

s' sz [to,τo-\-d]y m sufficiently
large} is a relative compact subset of B. Take any sequence [yj/m}, ψm e S. Then,
corresponding to each m, there are km and sm such that sm € [to>τo-\-d], and
#Ψ"m=3'*l"«w. If the set [km m = l, 2, } is finite, we can assume that lψm=zyksm

for a specified £. In this case, it is clear that there is a subsequence of {ψm}
which converges in S. In the case where the set {km} is infinite, we can set
ψm=ym

Smt We can also assume that the sequence {ym(t)} converges to the function
y(t) uniformly on [tOyro+d]. There exists an s0 such that sm^soe[to,τo+d] as
ra->oo. Define zm(t), ξm{t)y z(t) and ξ(t) by

\ym{t) for tz[to,τo+d]
zm(t) =

l^>m(0) for ί € ( - o o , ί 0 ) ,

(0 for tz[tOyτQ+d]

l<P m (*-*o)-<P m (O) for ί € ( - o o , ί 0 ] ,

/ M O for ts[tQ9ro+d\
z(t) =

l^°(0) for f € ( - o o , ί 0 )

and

ίO for ί € [ ί o , τ o + J ]

l^ o (ί-ίo)-^°(O) for ί € ( - o o , ί 0 ) ,

respectively. For any ^ ζ i?n, the symbol <a> will denote the constant function
a such that a{s)=a for all s<= ( —oo,0]. Since ymsm=zm

Sm + ξm

Sm and y.,=2;,β + f,β,
we have
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(7) \\ym

ίm-ysΛ = l l*"..+r..-*..-W

^ l|*"..-*..ll + IIΓW..U

=s I|*"..-*.J + »*..-*..« + IIΓ..-?..II + 11 .̂-̂ 11

5gέ( SUp

sup IΓ(

,m-tJ\ ~ ̂ - ^ J U - J + \\ξSm-ξ,Q\\ .

And hence, we have

( 8 ) \\ym^-yH\\^b( sup \y^Tί)+d+s)-y(r0+d+s)\)

because we have 0^sm — to^τQ+d—10 and because ξm(t) and ξ{t) are identically

zero on the interval [t0, sm]. Since ym(t) converges to the function y(t) uniformly

on [to,τo+d] as m^-oo, the first term on the right-hand side of (8) tends to zero

as m—>oo. By (III), the second term also tends to zero, since \φm{0)— φ°{0) |

^Mλ\\φm-φ°\\ by (IV). We have z, ξz At

τ

0

0+d, and therefore the third term and

the fifth term tend to zero as m->oo by (I). The fourth term also tends to zero

as m—>oo by (III), because

l l f W J I ^ \\<pm-ψ°\\ + \\<<pm(0)> - <<P°(0)>\\ .

Thus we have

IIymsm~ys01| -> 0 as m -> co ,

which shows that S is a compact subset of B, wh3re 5 is ths closure of tha set S.

Therefore gm{t,φ) is a uniformly continuous function on [t°,τo-\-d]xS. Since

ym(t) is a solution of (6) through (to,φ
m), we have

(9) ym(t) = φr(0)+ fgm(s,ym

s)ds

for all t € [ίo ?7"o+^]. The left-hand side of (9) tends to j>(ί) as ra->oo. The first
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term on the right-hand side of (9) tends to <p°(0) as m—>oo. Noting the uniform

continuity of gm{t,φ) on [ί0, τo+d] xS, we have

lim fgm(s,ym,)ds- fg(s,ys)ds

5£ Γ \im\gm(s,ym

s)-g(s,ys)\ds

as

J m

= 0 ,

and hence the second term on the right-hand side of (9) tends to I g{s,ys) ds

m—>oo. Since ym

to~
>(P0 a s m-*°°, y(t) is a solution of (3) through (t0, φ°) which

is defined on to^t^τo-\-d, and hence y{t) can be expressed by y{t, to,φ°).

y{t,tm,φm) is clearly a solution of (1) through {tm,<pm) until (t,yt{tmyφ
m))

leaves the domain D by (2). Since (t, xt(tm, φm)) belongs to D on [tm, τm] by (5),

we can assume that

for ί € [tm9 τm]. Thus clearly y(t, t0, φ°) is a solution of (1) through (t0, φ°) defined

on [ί0, r 0 ] . On the other hand, we have

(10) \\xjtm,φm)-u,m(ta,φ<>)\\

and hence it follows from (4) and (10) that
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(li) εo^\\ym*m+t.-tm-yr.(to><po)\\

+ IK(fo>9>0) - Uτo(to,φ°)\\ + K(ίo><P°) - Uτm(tOyφ°)\\ .

Taking sufficiently large m, we have sm = τ m + ί 0 — tm € [t0, rQ + d] and sm—>τQ as

m-+oo9 and hence the first term on the right-hand side of (11) tends to zero as

m—>oo, as in the calculation of (8). The third term on the right-hand side of (11)

also tends to zero by (I). Thus we have

80^\\yτo(t0,<pQ)-uτo(t0,cp<>)\\.

It follows from (III) that

eo^\\yτo(tQ,<po)-uτo(to,<P°)\\

^ b{ sup \y(rQ+s, t09 φ°) - u(τQ+s, t0, φ°)\),

and hence there exists an s* € [— (r0 — to),O] such that

\y(ro + i*, t0, φ*) - u(τo + S*, t09 φ°) I F̂ 0 ,

which contradicts the uniqueness of the solution u(t). This proves Theorem.
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