Tôhoku Math. Journ. 23(1971), 565-571.

CONTINUOUS DEPENDENCE FOR SOME FUNCTIONAL DIFFERENTIAL EQUATIONS

Yoshiyuki Hino*'

(Received on May 19, 1971)

Several authors have discussed global behaviors of trajectories of functional differential equations with the phase space considered by Hale ([2], [3], [4], [5]). The purpose of this paper is to discuss the continuity of solutions on initial values.

Let x be any vector in \mathbb{R}^n and let |x| be any norm of x. Let $B = B((-\infty, 0], \mathbb{R}^n)$ be a Banach space of functions mapping $(-\infty, 0]$ into \mathbb{R}^n with norm $\|\cdot\|$. For any φ in B and any σ in $[0, \infty)$, let φ^r be the restriction of φ to the interval $(-\infty, -\sigma]$. This is a function mapping $(-\infty, -\sigma]$ into \mathbb{R}^n . We shall denote by \mathbb{B}^r the space of such functions φ^r . For any $\eta \in \mathbb{B}^r$, we define the semi-norm $\|\eta\|_{\mathbb{R}^r}$ of η by

$$\|\eta\|_{B^{\sigma}} = \inf_{\varphi} \{\|\varphi\|:\varphi^{\sigma}=\eta\}.$$

Then we can regard the space B^{σ} as a Banach space with norm $\|\cdot\|_{B^{\sigma}}$. If x is a function defined on $(-\infty, a)$, then for each t in $(-\infty, a)$ we define the function x_t by the relation $x_t(s) = x(t+s), -\infty < s \le 0$. For numbers a and τ , $a > \tau$, we denote by A_r^a the class of functions x mapping $(-\infty, a)$ into \mathbb{R}^n such that x is a continuous function on $[\tau, a)$ and $x_r \in B$. The space B is assumed to have the following properties:

(1) If x is in A_r^a , then x_t is in B for all t in $[\tau, a)$ and x_t is a continuous function of t, where a and τ are constants such that $\tau < a \leq \infty$.

(II) All bounded continuous functions mapping $(-\infty, 0]$ into \mathbb{R}^n are in B.

(III) If a sequence $\{\varphi_k\}$, $\varphi_k \in B$, is uniformly bounded on $(-\infty, 0]$ with respect to norm $|\cdot|$ and converges to φ uniformly on any compact subset of $(-\infty, 0]$, then $\varphi \in B$ and $\|\varphi_k - \varphi\| \to 0$ as $k \to \infty$.

(IV) There are continuous, nondecreasing and nonnegative functions b(r), c(r) defined on $[0,\infty)$, b(0)=c(0)=0, such that

$$\|\varphi\| \leq b(\sup_{-\sigma \leq s \leq 0} |\varphi(s)|) + c(\|\varphi^{\sigma}\|_{B^{\sigma}})$$

^{*)} Supported in part by the Sakkokai Foundation.

Y. HINO

for any φ in B and any $\sigma \geq 0$.

(V) If σ is a nonnegative number and φ is an element in B, then $T_{\sigma}\varphi$ defined by $T_{\sigma}\varphi(s) = \varphi(s+\sigma), s \in (-\infty, -\sigma]$, is an element in B^{σ} .

(VI) $\|\varphi(0)\| \leq M_1 \|\varphi\|$ for some constant $M_1 > 0$.

(VII) $||T_t \varphi||_{B^t} \leq M_2 ||\varphi||$ for all $t \geq 0$ and for some constant $M_2 > 0$.

REMARK 1. When we discussed the global behaviors of trajectories in the phase space, the property of the fading memory, that is, $||T_{\sigma}\varphi||_{B^{\sigma}} \to 0$ as $\sigma \to \infty$, played an important role, but in this paper, this property is not required.

REMARK 2. The class of phase spaces considered by Coleman and Mizel [1] has the properties (I) \sim (VII), and hence the result in this paper holds good for this class of phase spaces.

Consider the functional differential equations

$$\dot{\boldsymbol{x}}(t) = f(t, x_t) \,.$$

The superposed dot denotes the right-hand derivative and $f(t, \varphi)$ is a continuous function of (t, φ) which is defined on $I \times B^*$ and takes values in \mathbb{R}^n , where I and B^* are open subsets of $[0, \infty)$ and B, respectively. We shall denote by $x(t_0, \varphi)$ a solution of (1) such that $x_{t_0}(t_0, \varphi) = \varphi$ and denote by $x(t, t_0, \varphi)$ the value at t of $x(t_0, \varphi)$.

THEOREM. Suppose that a solution $u(t) = u(t, t_0, \varphi^0)$, $(t_0, \varphi^0) \in I \times B^*$, of (1) defined on $[t_0, t_0 + a]$ for some a > 0 is unique for initial value problem. Then for any $\varepsilon > 0$, there exists a $\delta(\varepsilon) > 0$ such that if $(s, \psi) \in I \times B^*$, $|s - t_0| < \delta(\varepsilon)$ and $\|\psi - \varphi^0\| < \delta(\varepsilon)$, then $\|x_t(s, \psi) - u_t(t_0, \varphi^0)\| < \varepsilon$ for all $t \in [\max\{t_0, s\}, t_0 + a]$, where $x(s, \psi)$ is a solution of (1) through (s, ψ) .

PROOF. The set $\{u_t: t \in [t_0, t_0+a]\}$ is a compact subset of B, and hence there exists a positive number d such that if $\|\varphi - u_t\| \leq d$ and $|s-t| \leq d$, then $(s, \varphi) \in I \times B^*$ for all $t \in [t_0, t_0+a]$, because $I \times B^*$ is an open subset. Since f is continuous in (t, φ) , we can assume that if $|t-s| \leq d$ and $\|\varphi - u_t\| \leq d$, then $|f(s, \varphi) - f(t, u_t)| \leq 1$ for a $t \in [t_0, t_0+a]$. Thus it follows that

$$|f(s,\varphi)| \leq 1 + \max\{|f(t,u_t)| : t \in [t_0,t_0+a]\},\$$

and hence there exists an M > 0 such that $|f(s, \varphi)| < M$ on the set $D = \{(s, \varphi) : |s-t| \leq d, ||\varphi - u_t|| \leq d, t \in [t_0, t_0 + a]\}$. Moreover, there is a continuous function $g(t, \varphi)$ defined on $[t_0 - d, t_0 + a + 2d] \times B$ such that |g| < M and

(2)
$$g(t,\varphi) = f(t,\varphi) \text{ for } (t,\varphi) \in D$$

Clearly the solutions of

$$\dot{\mathbf{y}}(t) = g(t, y_t)$$

are continuable to $t_0 + a + 2d$.

Suppose that the conclusion of this theorem is false. Then there exists a positive number $\mathcal{E}_0, \mathcal{E}_0 < d$, and sequences $\{\varphi^m\}, \{t_m\}$ and $\{\tau_m\}$ such that $\|\varphi^m - \varphi^0\| \to 0$, $t_m \to t_0$, $\max\{t_0, t_m\} < \tau_m \leq t_0 + a$, and $\tau_m \to \tau_0$ as $m \to \infty$ and that

$$\|x_{\tau_{m}}(t_{m},\varphi^{m})-u_{\tau_{m}}(t_{0},\varphi^{0})\|=\varepsilon_{0}$$

and

(5)
$$||x_t(t_m, \varphi^m) - u_t(t_0, \varphi^0)|| < \mathcal{E}_0 \quad \text{for} \quad \max\{t_m, t_0\} \leq t < \tau_m.$$

For all sufficiently large m, the function $g^m(t, \varphi)$ given by

$$g^{m}(t,\varphi) = g(t+t_{m}-t_{o},\varphi)$$

is defined on $[t_0, \tau_0 + d] \times B$. Let $y(t, t_m, \varphi^m)$, $t_m \leq t \leq t_0 + a + d$, be a solution of (3) through (t_m, φ^m) . Then $y^m(t)$ given by

$$y^{m}(t) = \begin{cases} y(t+t_{m}-t_{0}, t_{m}, \varphi^{m}) & \text{for } t \in [t_{0}, \tau_{0}+d] \\ \varphi^{m}(t-t_{0}) & \text{for } t \in (-\infty, t_{0}) \end{cases}$$

is a solution through (t_0, φ^m) of the functional differential equation

$$\dot{\mathbf{y}}(t) = g^m(t, y_t) \,.$$

We shall show that the sequence $\{y^m(t)\}$ is uniformly bounded and equi-continuous on the interval $[t_0, \tau_0 + d]$ for all large *m*. For all large *m* we have $|\varphi^m(0) - \varphi^0(0)| \leq M_1 \|\varphi^m - \varphi^0\| \leq K$ for some constant K > 0 by (VI), and hence

$$|y^{m}(t)| \leq |\varphi^{m}(0)| + \int_{t_{0}}^{t} |g^{m}(s, y^{m}_{s})| ds$$
$$\leq |\varphi^{0}(0)| + K + M(\tau_{0} + d - t_{0}).$$

Therefore $\{y^m(t)\}\$ is uniformly bounded on $[t_0, \tau_0 + d]$. For any $t_1, t_2, t_0 \leq t_2 < t_1 \leq \tau_0 + d$, we have

Y. HINO

$$|y^m(t_1) - y^m(t_2)| \leq \int_{t_1}^{t_1} |g^m(s, y^m_s)| \, ds \leq M(t_1 - t_2)$$
 ,

and hence $\{y^{m}(t)\}\$ is equicontinuous on $[t_{0}, \tau_{0}+d]$. By Ascoli-Arzelà's Theorem, there exists a subsequence of $\{y^{m}(t)\}\$ which converges to a function $y^{*}(t)$ uniformly on $[t_{0}, \tau_{0}+d]$. We shall denote it by $\{y^{m}(t)\}\$ again. The limit function $y^{*}(t)$ is continuous and bounded on $[t_{0}, \tau_{0}+d]$.

Define y(t) by

$$y(t) = \begin{cases} y^*(t) & \text{for } t \in [t_0, \tau_0 + d] \\ \varphi^0(t - t_0) & \text{for } t \in (-\infty, t_0). \end{cases}$$

Then y_t belongs to B for all $t \in [t_0, \tau_0 + d]$, because $y(t_0) = \varphi^0(0)$ and $y_t \in A_{t_0}^{\tau_0 + d}$. We shall show that y(t) is a solution of (3) through (t_0, φ^0) .

First of all, we shall see that the set $S = \{y^m_s : s \in [t_0, \tau_0 + d], m;$ sufficiently large} is a relative compact subset of B. Take any sequence $\{\psi^m\}, \psi^m \in S$. Then, corresponding to each m, there are k_m and s_m such that $s_m \in [t_0, \tau_0 + d]$, and $\psi^m = y^{k_m} \cdot If$ the set $\{k_m; m = 1, 2, \cdots\}$ is finite, we can assume that $\psi^m = y^k \cdot s_m$ for a specified k. In this case, it is clear that there is a subsequence of $\{\psi^m\}$ which converges in S. In the case where the set $\{k_m\}$ is infinite, we can set $\psi^m = y^m \cdot s_m$. We can also assume that the sequence $\{y^m(t)\}$ converges to the function y(t) uniformly on $[t_0, \tau_0 + d]$. There exists an s_0 such that $s_m \to s_0 \in [t_0, \tau_0 + d]$ as $m \to \infty$. Define $z^m(t), \xi^m(t), z(t)$ and $\xi(t)$ by

$$z^{m}(t) = \begin{cases} y^{m}(t) & \text{for } t \in [t_{0}, \tau_{0} + d] \\ \varphi^{m}(0) & \text{for } t \in (-\infty, t_{0}) , \end{cases}$$
$$\xi^{m}(t) = \begin{cases} 0 & \text{for } t \in [t_{0}, \tau_{0} + d] \\ \varphi^{m}(t - t_{0}) - \varphi^{m}(0) & \text{for } t \in (-\infty, t_{0}] , \end{cases}$$
$$z(t) = \begin{cases} y(t) & \text{for } t \in [t_{0}, \tau_{0} + d] \\ \varphi^{0}(0) & \text{for } t \in (-\infty, t_{0}) \end{cases}$$

and

$$\xi(t) = \begin{cases} 0 & \text{for } t \in [t_0, \tau_0 + d] \\ \varphi^0(t - t_0) - \varphi^0(0) & \text{for } t \in (-\infty, t_0) , \end{cases}$$

respectively. For any $a \in \mathbb{R}^n$, the symbol $\langle a \rangle$ will denote the constant function α such that $\alpha(s) = a$ for all $s \in (-\infty, 0]$. Since $y^m_{s_m} = z^m_{s_m} + \xi^m_{s_m}$ and $y_{s_0} = z_{s_0} + \xi_{s_0}$, we have

$$(7) \|y^{m}_{s_{m}} - y_{s_{0}}\| = \|z^{m}_{s_{m}} + \xi^{m}_{s_{m}} - z_{s_{0}} - \xi_{s_{0}}\| \\ \leq \|z^{m}_{s_{m}} - z_{s_{0}}\| + \|\xi^{m}_{s_{m}} - \xi_{s_{0}}\| \\ \leq \|z^{m}_{s_{m}} - z_{s_{m}}\| + \|z_{s_{m}} - z_{s_{0}}\| + \|\xi^{m}_{s_{m}} - \xi_{s_{m}}\| + \|\xi_{s_{m}} - \xi_{s_{0}}\| \\ \leq b(\sup_{-(s_{m} - t_{0}) \leq s \leq 0} |y^{m}(s_{m} + s) - y(s_{m} + s)|) \\ + c(\| < \varphi^{m}(0) >^{s_{m} - t_{0}} - < \varphi^{0}(0) >^{s_{m} - t_{0}}\|_{B^{s_{m} - t_{0}}}) + \|z_{s_{m}} - z_{s_{0}}\| \\ + b(\sup_{-(s_{m} - t_{0}) \leq s \leq 0} |\xi^{m}(s_{m} + s) - \xi(s_{m} + s)|) \\ + c(\|T_{s_{m} - t_{0}}\xi^{m}_{t_{0}} - T_{s_{m} - t_{0}}\xi_{t_{0}}\|_{B^{s_{m} - t_{0}}}) + \|\xi_{s_{m}} - \xi_{s_{0}}\|.$$

And hence, we have

$$(8) \|y^{m}_{s_{m}} - y_{s_{0}}\| \leq b(\sup_{-(\tau_{0}+d-t_{0})\leq s\leq 0}|y^{m}(\tau_{0}+d+s) - y(\tau_{0}+d+s)|) \\ + c(M_{2}\| < \varphi^{m}(0) > - < \varphi^{0}(0) > \|) + \|z_{s_{m}} - z_{s_{0}}\| \\ + c(M_{2}\|\xi^{m}_{t_{0}} - \xi_{t_{0}}\|) + \|\xi_{s_{m}} - \xi_{s_{0}}\|,$$

because we have $0 \leq s_m - t_0 \leq \tau_0 + d - t_0$ and because $\xi^m(t)$ and $\xi(t)$ are identically zero on the interval $[t_0, s_m]$. Since $y^m(t)$ converges to the function y(t) uniformly on $[t_0, \tau_0 + d]$ as $m \to \infty$, the first term on the right-hand side of (8) tends to zero as $m \to \infty$. By (III), the second term also tends to zero, since $|\varphi^m(0) - \varphi^0(0)| \leq M_1 \|\varphi^m - \varphi^0\|$ by (IV). We have $z, \xi \in A_{t_0}^{\tau_0 + d}$, and therefore the third term and the fifth term tend to zero as $m \to \infty$ by (I). The fourth term also tends to zero as $m \to \infty$ by (III), because

$$\|\xi^{m}_{t_{0}}-\xi_{t_{0}}\| \leq \|\varphi^{m}-\varphi^{0}\| + \|\langle \varphi^{m}(0) \rangle - \langle \varphi^{0}(0) \rangle \|.$$

Thus we have

$$\|y^m_{s_m} - y_{s_0}\| \to 0$$
 as $m \to \infty$,

which shows that \overline{S} is a compact subset of *B*, where \overline{S} is the closure of the set *S*.

Therefore $g^{m}(t, \varphi)$ is a uniformly continuous function on $[t^{0}, \tau_{0}+d] \times \overline{S}$. Since $y^{m}(t)$ is a solution of (6) through (t_{0}, φ^{m}) , we have

(9)
$$y^m(t) = \varphi^m(0) + \int_{t_0}^t g^m(s, y^m_s) \, ds$$

for all $t \in [t_0, \tau_0 + d]$. The left-hand side of (9) tends to y(t) as $m \to \infty$. The first

Y. HINO

term on the right-hand side of (9) tends to $\varphi^0(0)$ as $m \to \infty$. Noting the uniform continuity of $g^m(t,\varphi)$ on $[t_0,\tau_0+d]\times\overline{S}$, we have

$$\begin{split} \lim_{m \to \infty} \left| \int_{t_0}^t g^m(s, y^m{}_s) \, ds - \int_{t_0}^t g(s, y_s) \, ds \right| \\ & \leq \int_{t_0}^t \lim_{m \to \infty} |g^m(s, y^m{}_s) - g(s, y_s)| \, ds \\ & \leq \int_{t_0}^t \lim_{m \to \infty} |g^m(s, y^m{}_s) - g(s, y^m{}_s)| \, ds \\ & + \int_{t_0}^t \lim_{m \to \infty} |g(s, y^m{}_s) - g(s, y_s)| \, ds \\ & = 0 \,, \end{split}$$

and hence the second term on the right-hand side of (9) tends to $\int_{t_0}^t g(s, y_s) ds$ as $m \to \infty$. Since $y^m{}_{t_0} \to \varphi^0$ as $m \to \infty$, y(t) is a solution of (3) through (t_0, φ^0) which is defined on $t_0 \leq t \leq \tau_0 + d$, and hence y(t) can be expressed by $y(t, t_0, \varphi^0)$.

 $y(t, t_m, \varphi^m)$ is clearly a solution of (1) through (t_m, φ^m) until $(t, y_t(t_m, \varphi^m))$ leaves the domain D by (2). Since $(t, x_t(t_m, \varphi^m))$ belongs to D on $[t_m, \tau_m]$ by (5), we can assume that

$$y(t, t_m, \varphi^m) = x(t, t^m, \varphi^m)$$

for $t \in [t_m, \tau_m]$. Thus clearly $y(t, t_0, \varphi^0)$ is a solution of (1) through (t_0, φ^0) defined on $[t_0, \tau_0]$. On the other hand, we have

(10)
$$\|x_{\tau_{m}}(t_{m},\varphi^{m}) - u_{\tau_{m}}(t_{0},\varphi^{0})\| \\ = \|y_{\tau_{m}}(t_{m},\varphi^{m}) - u_{\tau_{m}}(t_{0},\varphi^{0})\| \\ = \|y^{m}_{\tau_{m}+t_{0}-t_{m}} - u_{\tau_{m}}(t_{0},\varphi^{0})\| \\ \leq \|y^{m}_{\tau_{m}+t_{0}-t_{m}} - y_{\tau_{0}}(t_{0},\varphi^{0})\| \\ + \|y_{\tau_{0}}(t_{0},\varphi^{0}) - u_{\tau_{0}}(t_{0},\varphi^{0})\| \\ + \|u_{\tau_{0}}(t_{0},\varphi^{0}) - u_{\tau_{m}}(t_{0},\varphi^{0})\|,$$

and hence it follows from (4) and (10) that

(11)
$$\mathcal{E}_{0} \leq \| y^{m}_{r_{m}+t_{0}-t_{m}} - y_{r_{0}}(t_{0},\varphi^{0}) \| \\ + \| y_{r_{0}}(t_{0},\varphi^{0}) - u_{r_{0}}(t_{0},\varphi^{0}) \| + \| u_{r_{0}}(t_{0},\varphi^{0}) - u_{r_{m}}(t_{0},\varphi^{0}) \| .$$

Taking sufficiently large m, we have $s_m = \tau_m + t_0 - t_m \in [t_0, \tau_0 + d]$ and $s_m \to \tau_0$ as $m \to \infty$, and hence the first term on the right-hand side of (11) tends to zero as $m \to \infty$, as in the calculation of (8). The third term on the right-hand side of (11) also tends to zero by (I). Thus we have

$$\mathcal{E}_{0} \leq ||y_{\tau_{0}}(t_{0}, \varphi^{0}) - u_{\tau_{0}}(t_{0}, \varphi^{0})||.$$

It follows from (III) that

$$\begin{split} & \mathcal{E}_{0} \leq \|\mathcal{Y}_{\tau_{0}}(t_{0}, \varphi^{0}) - u_{\tau_{0}}(t_{0}, \varphi^{0})\| \\ & \leq b(\sup_{-(\tau_{0}-t_{0}) \leq s \leq 0} |\mathcal{Y}(\tau_{0}+s, t_{0}, \varphi^{0}) - u(\tau_{0}+s, t_{0}, \varphi^{0})|) \,, \end{split}$$

and hence there exists an $s^* \in [-(\tau_0 - t_0), 0]$ such that

$$|y(\tau_0+t^*,t_0,\varphi^0)-u(\tau_0+s^*,t_0,\varphi^0)| \neq 0,$$

which contradicts the uniqueness of the solution u(t). This proves Theorem.

REFERENCES

- B. D. COLEMAN AND V. J. MIZEL, On the stability of solutions of functional differential equations, Arch. Rational Mech. Anal., 30(1968), 174-196.
- [2] J. K. HALE, Dynamical systems and stability, J. Math. Anal. Appl., 26(1969), 39-59.
- [3] Y. HINO, Asymptotic behavior of solutions of some functional differential equations, Tôhoku Math. J., 22(1970), 98-108.
- Y. HINO, On stability of the solution of some functional differential equations, Funkcial. Ekvac., 14(1971), 47-60.
- [5] T. NAITO, Integral manifolds for linear functional differential equations on some Banach space, Funkcial. Ekvac., 13(1970), 199-213.

DEPARTMENT OF EDUCATION IWATE UNIVERSITY MORIOKA, JAPAN