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ON THE ABSOLUTE SUMMABILITY FACTORS

OF INFINITE SERIES
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1. Let Xan be a given infinite series with sn as its n-th partial sum. We
denote by {<r£} and {££}the n-th (C,tf)> [a> — 1) means of the sequences {sn} and
{nan} respectively. A series Xan is said to be summable \C>ct\ if Σ|σ£—σ£_i| < °°
and summable \C,a\k, k^l, a> — 1 if

(1.1) Σ>*"M<»ί-*S-i l * < ° ° .

In view of the well known identity t*n = n{σ"n—σί_i), the condition (1.1) can
also be written as

Let [pn] be a sequence of positive real constants such that Pn^

••+ Pn-*°° as w->oo. A series Σ<zn is said to be summable \N,pn\ if t*

where

For />n = - the summability (ίV", />n | is equivalent to the well known summability

\R>logn,l\.
eo

For any real a and integers n^O, we define AUn = X^ Av-ή1^? whenever the

series is convergent.

2. It is known that summability \N,pn\ and the summability \C9cί\kaie, in
general, independent of each other. It is, therefore, natural to find out suitable
summability factors {εn} so that Σαn€n may be summable |C,o£|Λ, Λ > — 1 , k^l,
whenever Έ,αn is summable \N,ρn\ , and conversely, if Έ,αn is summable |C,cί\k

then 2αnβn may be summable \N,pn\. In a recent paper [ 5 ] the author has
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examined the summability factor problem of the first type. We propose to study
the converse problem in the present note. In what follows we shall prove the
following:

THEOREM. The necessary and sufficient conditions for the series Xanβn to

be summable \N9pn\ whenever Xan is summable \C9ot\k9 Λ^O, k^l, are

where (a) pn = O(pn+1)9 (b) (n+l)pn = O(Pn) and (c) Pn = O(n°pn) (a > 1).

It may be remarked that our theorem includes, as a special case for k — 1,
the following theorem of Mohapatra [ 8 ].

THEOREM A. Let the sequence {pn} satisfy the following:

(2.1) A = O(pn+ι),

(2.2) (n + l)pn = O(Pn),

(2.3) Pn = O(pnn°)9a>l.

The necessary and sufficient conditions to be satisfied by a sequence {Sn} such

that Xan8n is summable \N9pn\9 whenever Σan is summable \C9oί\9 oί^O are

(2.4)

(2.5)

O( 1), 0 ^ a ^ 1,

On the other hand if we take />Λ = 1> we get the following result of Mehdi [ 6 ].

THEOREM B. Let αcgrO, &>1. The necessary and sufficient conditions for
ΣanSn to be summable |C, 1| whenever %άn is summable \C9ct\k are ( i ) and
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(ii)' (a) Σ,^^<°°, Λ ^ l ,

(ϋ)' (b) E «-1+α*'-*' I Sn I *' < oo a 3= 1.

Similarly on taking />Λ = l/w-fl, we deduce the following result concerning
IR, log n, 11 summability factor of infinite series.

COROLLARY. Let ΛgrO. The necessary and sufficient conditions for Σan€n

to be summable \R, logn, 1| whenever Έ,an is summable |C, ct\k> k^zl, are

i

II (a) {n"eΛ}el*',

II (b) {n'τ "'(log «)"'£„}€/*', α > l .

3. We require the following lemmas for the proof of our theorem.

LEMMA 1 [ 7 ] . Let pSzl, &S£l and suppose that x,y,u and v are related as:

y% = Σ, cn,mχm, n ̂  o ,
m=0

oo

necessary and sufficient condition for

(3.1) ysl* whenever xzlk is

(3. 2) v€ /*' whenever 'uzl*' >

where K and p' are the conjugate indices of k and p respectively.

LEMMA 2 [7]. If k>l and yn = Σ Cn,mxm and ̂  \yn\ <oo whenever
m-0 n=0

I*J*<°° then

(3.3) Σ, ια.j*'<°o.
n=0
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LEMMA 3[ 7 ]*\ If 1 < k 5g oo, £/# necessary and sufficient condition for
yn = O[l) whenever xn <= lk is

Σ IO,m|*'<oo,

where xn and yn are related as in Lemma 1.

LEMMA 4. i>£ ^ ^ 1 . T/ Σanen is bounded (N,pn) whenever Han is
summable |C,0 | A , then

Sn =

PROOF. We write

and xτ = r k ar9 r ^ 1, xQ = aQ = 0 .

Then

1 ' — - 1

where bn,r =-p-{Pn- Pr-,)Srr
 k , r ^ n ,

= 0, r > w .

By hypothesis 3̂ n = O( 1) whenever S | Λ : Λ 1 * < oo. Then appealing to Lemma 3,
a necessary and sufficient condition for the above is

(3.4)

Now

*> This is given in Cooke's "Infinite Matrices and Sequence Spaces" with a superfluous hypothesis.
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\yn\ ^

Choose any m}^ 1 and let am = 1, an = 0,

Then xm= m k, α:n = 0, nφm

and

= 0 m>n.

Thus ίoτ n>m

Making n-*oo we get

which is the required result.

LEMMA 5 [1,2]. If en=O{ 1), then Δ ( Δ £ j = Δ£ n i f a ^ O , /9> - 1 ,
θn = o( 1) /Ae« the equality holds for ct^O, β^

LEMMA 6 [8] . Ifl<a<2, en=Ό{ή), then

iήA - p.., = - t A

,/=r

Σ

*) Where C is a constant not necessarily the same at each occurrence.
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LEMMA 7 [2]. For 0<β^a<l, O^r^

LEMMA 8. If (n+l)pn = O{Pn), Pn->oo, then

^ ^ 1

for finite v.

The proof is quite easy.

LEMMA 9 [7]. Let l < £ ^ + oo, Λ > 0 , θn = O(l),

and
oo

Γ <oo.

Then ]Γ ncr+w-i | £θn \" < oo, 0 < γ ^

LEMMA 10 [3]. 7f Σαn w summable \C9a\k, ft^l, Λ^O, ίften Sn" 1 " " | ί j - ' | *
< oo, where O ^ δ ^ Λ .

LEMMA 11[9]*\ -For α ^ l , A — 1 < Λ — 1 ^ £ , w/^r^ ^ w αw integer,

LEMMA 12. 7/ 2αn ts summable \ C, a \ k> a ^ 1, TA^w 2 tl/n is summable

For £ = 1 it is a special case of a general theorem due to Kogbetliantz [ 4 ].

*) This is a special case: 0 = α, γ = 1 and o replaced by o—l in[9].
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PROOF. Let Tl'1 denote (C,Λ-1) means of {4}.

1 n 1 n 1
Then Tn'1 = Aa-ι 2 J Ά ijίl = Δa_1 22Άί=»TΓΓ

^ Λ
 V=1

 Λ ϋ " 1 "

1 n n Λα-2 4 - α

by virtue of Lemma 11.

It is, therefore, sufficient to prove that

nlm ( g ( r + ί ) ^ j<oo-, for 0^/>^

If /> = 0, then

7 —
1 —

1

by the hypothesis.

If />>0, then a>q^ρ so that

1 \r=l

-, /n-p \ / n ~ ' >

1 Λ V=l /\r=l

klk>

n=r+,
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4. Proof of the Theorem. The result being known for k = l, we proceed
to prove the same for k > 1. We write xQ = a0 and

where

and

so that

Putting

we have

n ^ 1, y0

^ -m „ *r-1

= 0.

Now ΣanSn is summable \N,pn\ whenever
> 1 if and only if

Pr-i> m ^ n ,

m>n.

is summable | C , Λ | A #2^0, k

(4.1) \,| < °° whenever S|xn |* <
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Using Lemma 1, the necessary and sufficient conditions for the same are:

(4.2)

and

(4.3)

Now

where

Now

Σ Cn%mun be convergent for every un = O( 1 ) , m gr 1 ,

k'

Σ Σ Cn,mun < + oo whenever un = O( 1 ) .

Σ Cn,Λ = ,ΣΛ--V^

-V "^Pr- l Σ

Λ
 cnt P s* \

\m J

8 -
-«„.

-β-i I _irrJ

--VI = O( l ) if en = O(n).

Thus if £ n = O(rc) then the above series is absolutely convergent for every un = O( 1)
and hence change of order of summation is justified.

Thus, if €n = O(n) condition (4. 2) is satisfied and hence a necessary and sufficient
condition for (4.1) is
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(4.4) Σ,m<

m=l

k'

whenever Sn — O{n) and un = O( 1 ) .

NECESSITY: We are given that Σan€n is summable \~N, pn | whenever Σ<zn is
summable |C,d\k. Then applying Lemma 4 we have £Λ = O(nι~1/k) — O(n). Thxis
(4. 4) is a necessary condition whenever un = O( 1).

NECESSITY OF (i). Let un = h then δΛ = - p — . F r o m (4.4) we obtain

Thus (i) is necessary.

NECESSITY OF (ii) (b) From Lemma 2 we have

Σ,\Cn.n\"'<+°°>

that is to say,

This proves the necessity of (ii) (b).

NECESSITY OF (ii) (a). It follows from the case a=0 and the fact that (i) is
a necessary condition.

SUFFICIENCY: For O ^ Λ ^ l condition (ii) (a) implies that Sn = O[n). Also
from (ii) (b) for a > 1

= O(nι/k') = O[n)

since ^=O(na), a > l .

Thus (4.4) is also sufficient condition for the validity of (4.1).
Case (i): Suppose a = 0. Then



THE ABSOLUTE SUMMABILITY FACTORS 443

Using Holder's inequality we observe that

Hence on account of absolute regularity, the series Σαn£n is summable \N,pn

Case (ii): 1 < a ^ 2. We shall prove that

< oo whenever un = O( 1 ) .

We have

Then

l i Δ (Ή->)^-<-+-^P-IΛΛ}
P P i
•*• n-4 n - 1

ΣPH Δ Γ - Σ P

W, say.

oo

^ C Σ
oo

Σ L[n)un
n—r

k' oo

n=r

It' oo oo

= Mi + M2 + M3, say .

It is, therefore, sufficient to prove that

MP = O(1), p= 1,2,3 whenever wn = O( 1 ) .

Let us first suppose that 1 < Λ < 2 . Then applying Lemma 6 we get
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Λ / ^V \ Λ-a
v-l A 1 l^iϋ-r

\ V j

j=r

2L, p p L

= M n + M 1 2 + M 1 3 + M 1 4 , say.

Now using Lemmas 7, 8 the hypotheses (b) and ( i ) ,

(4.5)

m v

( β + 1 ) * ' ~ 1

r=i \n=r

r=l \m=r

Δ

Δ
m

r=l \m=
Δ

r=i m=r
Δ

Δ l ^ - H = O ( 1 ) .

Similarly,
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=r ΓnΓn-l
Δ Pr

Δ -?-

Z_/ p p - ^
n = r ^ n ^ n - l m=n+1

7 . ̂ w ^-w-rΛ>-!

w = n + ι

Δ

Alt

mδ

Δ

k'

k'/k

Next using Lemma 7.

n=r n ! ίn=n+l Δl^-

r = l \w?=r

Δ
ΎΠ

Δ^JIΣ^A;-.-
A ; '

k'

as shown in (4. 5).

Thus ^ = 0 ( 1 ) , for l<a<2.
Now let a = 2. Then
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r-lj

= 0 ( 1 ) ,

by virtue of Lemma 9.

Hence, Mx = O( 1) for 1 < Λ 5g 2. We shall now consider M2. We have

by virtue of (ϋ)(b) and (a). Also

as shown in the proof of M2 = O( 1).
This proves the theorem for the case:
Case (iii): Λ>2. Choose a positive integer r such that l : g r < < 2 : g r + l . By

case (ii) the result is true when r = l . Suppose the result is true for s<ct
^ s + 1 , Ss=l. We shall show that it is also true for

Now we have on applying Abel's transformation
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= J\(n) + J2(n) + Js(n), say.

The series XanSn will be summable \N,pn\ if each of the sequences {Jv{n)}9 p
= 1,2,3, is summable \N,pn\. By virtue of Lemma 12 and the hypothesis Xti/n
is summable |C,Λ—1|*. Hence to prove that {Jx} and {J2} are summable \N9pn\
it is sufficient to show that [ευ] and {vΔ8Ό} satisfy the conditions of the theorem
with a— 1 in place of a. Since in the case of l<a^2 we require for the proof
( i ) , (ii )(b), (a), (b) and 21Sn \

 k'jn < <χ> we assume the same set of conditions
for cί>2.

oo

S i n c e ^ « " ' | £ n | * ' < oo implies that 6n = O(n), it follows from Lemma 9 that

Λ-l

A

Also it is obvious that

Also since a > 2 ( i ) implies that

n
< oo.

fc'< oo.

<oo,

and from this it follows that

Now

(-a + v-w)}—Γ
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Δ

= 0 ( 1 ) .

Thus

k'

< oo

Again

<-:/£

Thus from (4. 5)—(4. 6) it is clear that {8n} and {nA€n} satisfy the conditions

( i ) , (ii)(b) and 2 | £ n | k /n<oo with (a-1) in place of a.

Hence [Ji(n)} and {J2(
w)} a r e summable |iSΓ,/>n|.

We shall now consider Js{n). We will show that {£n+i£n} is summable\N,pn\.

-9V

( l/k'
1/k

= 0 ( 1 ) ,

by (ϋ)(b), condition (a) and Lemma 10.

Hence [J3{n)} is summable \N,pn\.

Therefore the theorem is proved for s-\rl<a^^+2

theorem holds for a>2.

Case (iv): 0 < a <Ξ 1. We have

i^l) and consequently
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. n

£5 4«i/*Vp v

r/k Σ P^Av-r1 Δ (A ^f

g=n+l \

-a-lΛa-1

Q = n + 1

= Qi + Q2 > say.

It is, therefore, sufficient to prove that

(4.7)

(4.8)

< OO,

< 00, whenever wn = O( 1 ) .

PROOF OF (4. 7). We have for 0 < a < 1

Δ

k'

Z-j p p •Σ Δ
ί - l

υ=r m=r

449

P> V^ Δ-«-lΔ«-l
q-1 7 . **m—r **q-m

' oo

7 . T> T) / .

n = r -Ln*n-\ Q = r
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r=i \q=r

Δ -5- +0(1)

< 7 = 1

If Λ = 1, then the proof is easy.
This proves (4.7) for

PROOF OF (4.8). For 0 < t f < l we have as in (4.7)

= y r(«+i)*'-i

Qssn+1

v 2-* V
Z-, p p 2-,
n=r A n* n-1 Q=n+1

Δ ι A

1 JtZ
n-1

k'

r=l \n=r Γ « «=n+l

«=n+l

r-" " log" %ή
:'/*

+ 0(1) = 0(1)25"*"*'"'



THE ABSOLUTE SUMMABILITY FACTORS 451

The case a = 1 can be easily disposed of.

This completes the proof of the theorem.
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