ON THE ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES

S.M.MAZHAR

(Received November 24, 1970)

1. Let Σa_{n} be a given infinite series with s_{n} as its n-th partial sum. We denote by $\left\{\sigma_{n}^{\alpha}\right\}$ and $\left\{t_{n}^{\alpha}\right\}$ the n-th $(C, \alpha),(\alpha>-1)$ means of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively. A series Σa_{n} is said to be summable $|C, \alpha|$ if $\Sigma\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|<\infty$ and summable $|C, \alpha|_{k}, k \geqq 1, \alpha>-1$ if

$$
\begin{equation*}
\sum n^{k-1}\left|\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.1}
\end{equation*}
$$

In view of the well known identity $t_{n}^{\alpha}=n\left(\sigma_{n}^{\alpha}-\sigma_{n-1}^{\alpha}\right)$, the condition (1.1) can also be written as

$$
\begin{equation*}
\sum_{1}^{\infty} \frac{\left|t_{n}^{\alpha}\right|^{k}}{n}<\infty . \tag{1.2}
\end{equation*}
$$

Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that $P_{n}=p_{0}+p_{1}$ $+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. A series Σa_{n} is said to be summable $\left|\bar{N}, p_{n}\right|$ if $t_{n}^{*} \in B V$, where

$$
t_{n}^{*}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k} .
$$

For $p_{n}=\frac{1}{n+1}$ the summability $\left|\bar{N}, p_{n}\right|$ is equivalent to the well known summability $|R, \log n, 1|$.

For any real α and integers $n \geqq 0$, we define $\Delta U_{n}=\sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} U_{v}$, whenever the series is convergent.
2. It is known that summability $\left|\bar{N}, p_{n}\right|$ and the summability $|C, \alpha|_{k}$ are, in general, independent of each other. It is, therefore, natural to find out suitable summability factors $\left\{\varepsilon_{n}\right\}$ so that $\Sigma a_{n} \varepsilon_{n}$ may be summable $|C, \alpha|_{k}, \alpha>-1, k \geqq 1$, whenever Σa_{n} is summable $\left|\bar{N}, p_{n}\right|$, and conversely, if Σa_{n} is summable $|C, \alpha|_{k}$ then $\sum a_{n} \varepsilon_{n}$ may be summable $\left|\bar{N}, p_{n}\right|$. In a recent paper [5] the author has
examined the summability factor problem of the first type. We propose to study the converse problem in the present note. In what follows we shall prove the following:

THEOREM. The necessary and sufficient conditions for the series $\Sigma a_{n} \varepsilon_{n}$ to be summable $\left|\bar{N}, p_{n}\right|$ whenever Σa_{n} is summable $|C, \alpha|_{k}, \alpha \geqq 0, k \geqq 1$, are
(i) $\left\{n^{\alpha+1-\frac{1}{k^{\prime}}} \triangle\left(\frac{\varepsilon_{n}}{n}\right)\right\} \in l^{k^{\prime}}, \frac{1}{k}+\frac{1}{k^{\prime}}=1$,
(ii) (a) $\left\{n^{-\frac{1}{k^{\prime}}} \varepsilon_{n}\right\} \in l^{k^{\prime}}, \quad 0 \leqq \alpha \leqq 1$,
(ii)(b) $\left\{n^{\alpha-\frac{1}{k^{\prime}}}\left(\frac{p_{n}}{P_{n}}\right) \varepsilon_{n}\right\} \in l^{k^{\prime}}, \quad \alpha>1$,
wher
(a) $p_{n}=O\left(p_{n+1}\right)$,
(b) $(n+1) p_{n}=O\left(P_{n}\right)$ and
(c) $P_{n}=O\left(n^{\alpha} p_{n}\right)(\alpha>1)$.

It may be remarked that our theorem includes, as a special case for $k=1$, the following theorem of Mohapatra [8].

THEOREM A. Let the sequence $\left\{p_{n}\right\}$ satisfy the following:

$$
\begin{gather*}
p_{n}=O\left(p_{n+1}\right) \tag{2.1}\\
(n+1) p_{n}=O\left(P_{n}\right) \tag{2.2}\\
P_{n}=O\left(p_{n} n^{\alpha}\right), \alpha>1 \tag{2.3}
\end{gather*}
$$

The necessary and suffcient conditions to be satisfied by a sequence $\left\{\varepsilon_{n}\right\}$ such that $\Sigma a_{n} \varepsilon_{n}$ is summable $\left|\bar{N}, p_{n}\right|$, whenever Σa_{n} is summable $|C, \alpha|, \alpha \geqq 0$ are

$$
\begin{gather*}
\varepsilon_{n}=\left\{\begin{array}{l}
O(1), 0 \leqq \alpha \leqq 1 \\
O\left(\frac{P_{n} n^{-\alpha}}{p_{n}}\right), \alpha>1, \\
\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{n}}{n}\right)=O\left(n^{-\alpha-1}\right)
\end{array}\right. \tag{2.4}
\end{gather*}
$$

On the other hand if we take $p_{n}=1$, we get the following result of Mehdi [6].
THEOREM B. Let $\alpha \geqq 0, k>1$. The necessary and sufficient conditions for $\Sigma a_{n} \varepsilon_{n}$ to be summable $|C, 1|$ whenever Σa_{n} is summable $|C, \alpha|_{k}$ are (i) and
(ii)' (a) $\sum_{1}^{\infty} \frac{\left|\varepsilon_{n}\right| k^{\prime}}{n}<\infty, \quad \alpha \leqq 1$,
(ii) (b) $\sum_{1}^{\infty} n^{-1+\alpha k^{\prime}-k^{\prime}}\left|\varepsilon_{n}\right|^{k^{\prime}}<\infty \quad \alpha \geqq 1$.

Similarly on taking $p_{n}=1 / n+1$, we deduce the following result concerning $|R, \log n, 1|$ summability factor of infinite series.

Corollary. Let $\alpha \geqq 0$. The necessary and sufficient conditions for $\Sigma a_{n} \varepsilon_{n}$ to be summable $|R, \log n, 1|$ whenever Σa_{n} is summable $|C, \alpha|_{k^{\prime}} k \geqq 1$, are I $\left\{n^{\alpha+1-\frac{1}{k^{\prime}}} \stackrel{\alpha}{\Delta}\left(\frac{\varepsilon_{n}}{n}\right)\right\} \in l^{k^{\prime}}, \quad \frac{1}{k}+\frac{1}{k^{\prime}}=1$,
II (a) $\left\{n^{-\frac{1}{k^{\prime}}} \varepsilon_{n}\right\} \in l^{k^{\prime}}, \quad 0 \leqq \alpha \leqq 1$,
II (b) $\left\{n^{\alpha-\frac{1}{k^{\prime}-1}}(\log n)^{-1} \varepsilon_{n}\right\} \in l^{k^{\prime}}, \quad \alpha>1$.
3. We require the following lemmas for the proof of our theorem.

Lemma 1 [7]. Let $p \geqq 1, k \geqq 1$ and suppose that x, y, u and v are related as:

$$
\begin{array}{ll}
y_{n}=\sum_{m=0}^{\infty} C_{n, m} x_{m}, & n \geqq 0, \\
v_{m}=\sum_{n=0}^{\infty} C_{n, m} u_{n}, & m \geqq 0 .
\end{array}
$$

The necessary and sufficient condition for

$$
\begin{align*}
& y \in l^{p} \text { whenever } x \in l^{k} \text { is } \tag{3.1}\\
& v \in l^{k^{\prime}} \text { whenever } u \in l^{p^{\prime}},
\end{align*}
$$

where k^{\prime} and p^{\prime} are the conjugate indices of k and p respectively.
LEMMA 2 [7]. If $k>1$ and $y_{n}=\sum_{m=0}^{n} C_{n, m} x_{m}$ and $\sum_{n=0}^{\infty}\left|y_{n}\right|<\infty$ whenever $\sum_{m=0}^{\infty}\left|x_{m}\right|^{k}<\infty$ then

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|C_{n, n}\right|^{k^{\prime}}<\infty . \tag{3.3}
\end{equation*}
$$

Lemma 3[7]*). If $1<k \leqq \infty$, the necessary and sufficient condition for $y_{n}=O(1)$ whenever $x_{n} \in l^{k}$ is

$$
\left.\sum_{m=0}^{\infty}\left|C_{n, m}\right|\right|^{k^{\prime}}<\infty,
$$

where x_{n} and y_{n} are related as in Lemma 1.
Lemma 4. Let $k \geqq 1$. If $\Sigma a_{n} \varepsilon_{n}$ is bounded $\left(\bar{N}, p_{n}\right)$ whenever Σa_{n} is summable $|C, 0|_{k}$, then

$$
\varepsilon_{n}=O\left(n^{1-\frac{1}{k}}\right)
$$

Proof. We write
and

$$
\begin{aligned}
& y_{n}=\frac{1}{P_{n}} \sum_{r=0}^{n}\left(P_{n}-P_{r-1}\right) a_{r} \varepsilon_{r} \\
& x_{r}=r^{1-\frac{1}{k}} a_{r}, r \geqq 1, x_{0}=a_{0}=0 .
\end{aligned}
$$

Then

$$
y_{n}=\frac{1}{P_{n}} \sum_{r=1}^{n}\left(P_{n}-P_{r-1}\right) x_{r} r^{\frac{1}{k}-1} \varepsilon_{r}=\sum_{r=1}^{\infty} b_{n, r} x_{r},
$$

where

$$
\begin{aligned}
b_{n, r} & =\frac{1}{P_{n}} \cdot\left(P_{n}-P_{r-1}\right) \varepsilon_{r} r^{\frac{1}{k}-1}, & & r \leqq n \\
& =0, & & r>n .
\end{aligned}
$$

By hypothesis $y_{n}=O(1)$ whenever $\Sigma\left|x_{n}\right|^{k}<\infty$. Then appealing to Lemma 3, a necessary and sufficient condition for the above is

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left|b_{n, r}\right|^{k^{\prime}}<\infty \tag{3.4}
\end{equation*}
$$

Now
*) This is given in Cooke's "Infinite Matrices and Sequence Spaces" with a superfluous hypothesis.

$$
\left|y_{n}\right| \leqq\left(\sum_{r=1}^{\infty}\left|b_{n, r}\right|^{k^{\prime}}\right)^{\frac{1}{k^{\prime}}}\left(\sum_{r=1}^{\infty}\left|x_{r}\right|^{k}\right)^{\frac{1}{k}} \leqq C^{*)}\left(\sum_{r=1}^{\infty}\left|x_{r}\right|^{k}\right)^{\frac{1}{k}} .
$$

Choose any $m \geqq 1$ and let $a_{m}=1, a_{n}=0, n \neq m$.

Then

$$
x_{m}=m^{1-\frac{1}{k}}, \quad x_{n}=0, \quad n \neq m
$$

and

$$
\begin{aligned}
y_{n} & =\frac{1}{P_{n}}\left(P_{n}-P_{m-1}\right) \varepsilon_{m} & & m \leqq n, \\
& =0 & & m>n .
\end{aligned}
$$

Thus for $n \geqq m$

$$
\left|y_{n}\right|=\frac{1}{P_{n}}\left(P_{n}-P_{m-1}\right)\left|\varepsilon_{m}\right| \leqq C m^{1-\frac{1}{k}}
$$

Making $n \rightarrow \infty$ we get

$$
\left|\varepsilon_{m}\right| \leqq C m^{1-\frac{1}{k}}
$$

which is the required result.
LEmmA 5 [1,2]. If $\varepsilon_{n}=O(1)$, then $\stackrel{\beta}{\triangle}\left(\stackrel{\alpha}{\triangle} \varepsilon_{n}\right)=\stackrel{\alpha+\beta}{\triangle} \varepsilon_{n}$ if $\alpha \geqq 0, \beta>-1, \alpha+\beta>0$. If $\varepsilon_{n}=o(1)$ then the equality holds for $\alpha \geqq 0, \beta \geqq-1, \alpha+\beta \geqq 0$.

Lemma 6 [8]. If $1<\alpha<2, \varepsilon_{n}=O(n)$, then

$$
\begin{aligned}
\sum_{v=r}^{n} \triangle\left(\frac{\varepsilon_{v}}{v}\right) A_{v-r}^{-\alpha} P_{v-1}= & -\sum_{m=r}^{n} \stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right) \sum_{v=r}^{m} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} \\
& +\sum_{m=r}^{n} P_{m} \triangle\left(\frac{\varepsilon_{m}}{m}\right) A_{m-r}^{-1} \\
& -\sum_{m=n+1}^{\infty} \stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right) \sum_{v=r}^{n} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} \\
& +P_{n} \sum_{m=n+1}^{\infty} \triangle\left(\frac{\varepsilon_{m}}{m}\right) \sum_{j=r}^{n} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} .
\end{aligned}
$$

[^0]Lemma 7 [2]. For $0<\beta \leqq \alpha<1,0 \leqq r \leqq v \leqq n$,

$$
\left|\sum_{m=r}^{v} A_{n-m}^{\beta-1} A_{m-r}^{-\alpha-1}\right| \leqq C A_{n-r}^{\beta-1} A_{v-r}^{-\alpha} .
$$

Lemma 8. If $(n+1) p_{n}=O\left(P_{n}\right), P_{n} \rightarrow \infty$, then

$$
\lim _{n \rightarrow \infty} \frac{P_{n \pm v}}{P_{n}}=1
$$

for finite v.
The proof is quite easy.
Lemma 9 [7]. Let $1<k \leqq+\infty, \alpha>0, \theta_{n}=O(1)$,
and

Then

$$
\sum_{1}^{\infty} n^{(\alpha+1) k^{\prime}-1}\left|\triangle^{\infty} \theta_{n}\right|^{k^{\prime}} \quad<\infty
$$

$$
\sum_{1}^{\infty} n^{(\gamma+1) k^{\prime}-1}\left|\triangle^{\gamma} \theta_{n}\right|^{k^{\prime}}<\infty, \quad 0<\gamma \leqq \alpha
$$

Lemma 10 [3]. If Σa_{n} is summable $|C, \alpha|_{k}, k \geqq 1, \alpha \geqq 0$, then $\Sigma n^{-1-k s}\left|t_{n}^{\alpha-s}\right|^{k}$ $<\infty$, where $0 \leqq \delta \leqq \alpha$.

Lemma $11[9]^{* \prime}$. For $\alpha \geqq 1, k-1<\alpha-1 \leqq k$, where k is an integer,

$$
\begin{aligned}
\sum_{v=r}^{n} A_{n-v}^{\alpha-1-1} A_{v-r}^{-(\alpha-1)-1} \frac{1}{v+1}= & \sum_{\rho=0}^{k-1} C_{\rho}(-1)^{\rho} \stackrel{\circ}{\triangle} \frac{1}{(r+1)} A_{n-\rho-r}^{\rho-1} \\
& +A_{n-k-r}^{k-1} O\left(\frac{1}{(r+1)^{k+1}}\right) .
\end{aligned}
$$

Lemma 12. If Σa_{n} is summable $|C, \alpha|_{k}, \alpha \geqq 1$, Then $\Sigma t_{n}^{1} / n$ is summable $|C, \alpha-1|_{k}$.

For $k=1$ it is a special case of a general theorem due to Kogbetliantz [4].
*) This is a special case: $\beta=\alpha, \gamma=1$ and a replaced by $a-1$ in[9].

Proof. Let $T_{n}^{\alpha-1}$ denote $(C, \alpha-1)$ means of $\left\{t_{n}^{1}\right\}$.
Then

$$
\begin{aligned}
T_{n}^{\alpha-1}= & \frac{1}{A_{n}^{\alpha-1}} \sum_{v=1}^{n} A_{n-v}^{\alpha-2} t_{v}^{1}=\frac{1}{A_{n}^{\alpha-1}} \sum_{v=1}^{n} A_{n-v}^{\alpha-2} \frac{1}{v+1} \sum_{r=1}^{v} A_{v-r}^{-\alpha} A_{r}^{\alpha} t_{r}^{\alpha} \\
= & \frac{1}{A_{n}^{\alpha-1}} \sum_{r=1}^{n} t_{r}^{\alpha} A_{r}^{\alpha} \sum_{v=r}^{n} \frac{A_{n-v}^{\alpha-2} A_{v-r}^{-\alpha}}{v+1} \\
\leqq & \frac{1}{A_{n}^{\alpha-1}} \sum_{r=1}^{n}\left|t_{r}^{\alpha}\right| A_{r}^{\alpha}\left\{\left\{\left.\sum_{\rho=0}^{\alpha-1} C_{\rho}(-1)^{\circ} \triangle \frac{1}{(r+1)} A_{n-\rho-r}^{\rho n-1} \right\rvert\,\right.\right. \\
& \left.+A_{n-q-r}^{\alpha-1} O\left(\frac{1}{(r+1)^{q+1}}\right)\right\}, q-1<\alpha-1 \leqq q
\end{aligned}
$$

by virtue of Lemma 11.
It is, therefore, sufficient to prove that

$$
I=\sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1) k}}\left(\sum_{r=1}^{n}\left|t_{r}^{\alpha}\right| A_{r}^{\alpha} \cdot \frac{1}{(r+1)^{1+\rho}} A_{n-\rho-r}^{\rho-1}\right)^{k}<\infty, \text { for } 0 \leqq \rho \leqq q .
$$

If $\rho=0$, then

$$
I=\sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1) k}}\left|t_{n}^{\alpha}\right|^{k} \cdot n^{(\alpha-1) k}<\infty
$$

by the hypothesis.
If $\rho>0$, then $\alpha>q \geqq \rho$ so that

$$
\begin{aligned}
I & =\sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1) k}}\left(\sum_{r=1}^{n}\left|t_{r}^{\alpha}\right| \cdot r^{\alpha-\rho-1} A_{n-\rho-r}^{\rho n-1}\right)^{k} \\
& \leqq \sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1) k}}\left(\sum_{r=1}^{n-\rho}\left|t_{r}^{\alpha}\right|^{k} r^{\alpha-\rho-1} A_{n-\rho-r}^{\rho-1}\right)\left(\sum_{r=1}^{n-\rho} A_{r}^{\alpha-\rho-1} A_{n-\rho-r}^{\rho-1}\right)^{k / k^{\prime}} \\
& \leqq C \sum_{1}^{\infty} \frac{1}{n^{\alpha}} \sum_{r=1}^{n-\rho}\left|t_{r}^{\alpha}\right|^{k} r^{\alpha-\rho-1} A_{n-\rho-r}^{\rho-1} \\
& =C \sum_{r=1}^{\infty} r^{\alpha-\rho-1}\left|t_{r}^{\alpha}\right|^{k} \sum_{n=r+\rho}^{\infty} \frac{A_{n-\rho-r}^{\rho-1}}{n \cdot A_{n}^{\alpha-1}} \\
& =C \sum_{r=1}^{\infty} r^{-1}\left|t_{r}^{\alpha}\right|^{k}=O(1)
\end{aligned}
$$

4. Proof of the Theorem. The result being known for $k=1$, we proceed to prove the same for $k>1$. We write $x_{0}=a_{0}$ and
and

$$
\begin{aligned}
& x_{n}=\frac{1}{n^{1 / k} A_{n}^{\alpha}} \sum_{r=1}^{n} A_{n-r}^{\alpha-1} r a_{r}, \quad n \geqq 1 \\
& t_{n}=\frac{1}{P_{n}} \sum_{r=0}^{n}\left(P_{n}-P_{r-1}\right) a_{r} \varepsilon_{r}, \quad P_{-1}=0,
\end{aligned}
$$

so that

$$
t_{n}-t_{n-1}=\frac{P_{n}}{P_{n} P_{n-1}} \sum_{r=1}^{n} a_{r} \varepsilon_{r} P_{r-1}
$$

Putting

$$
y_{n}=t_{n}-t_{n-1}, \quad n \geqq 1, y_{0}=a_{0} \varepsilon_{0}
$$

we have

$$
\begin{aligned}
y_{n} & =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=1}^{n} a_{r} \varepsilon_{r} P_{r-1} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{r=1}^{n} \frac{\varepsilon_{r}}{r} P_{r-1} \sum_{m=1}^{r} A_{r-m}^{-\alpha-1} x_{m} m^{1 / k} A_{m}^{\alpha} \\
& =\frac{p_{n}}{P_{n} P_{n-1}} \sum_{m=1}^{n} m^{1 / k} A_{m}^{\alpha} x_{m} \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\varepsilon_{r}}{r} P_{r-1} \\
& =\sum_{m=1}^{\infty} C_{n, m} x_{m},
\end{aligned}
$$

where

$$
\begin{aligned}
C_{n, m} & =\frac{P_{n}}{P_{n} P_{n-1}} A_{m}^{\alpha} m^{1 / k} \cdot \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\varepsilon_{r}}{r} P_{r-1}, & m \leqq n, \\
& =0 . & m>n .
\end{aligned}
$$

Now $\Sigma a_{n} \varepsilon_{n}$ is summable $\left|\bar{N}, p_{n}\right|$ whenever Σa_{n} is summable $|C, \alpha|_{k} \alpha \geqq 0, k$ >1 if and only if

$$
\begin{equation*}
\Sigma\left|y_{n}\right|<\infty \text { whenever } \Sigma\left|x_{n}\right|^{k}<\infty \tag{4.1}
\end{equation*}
$$

Using Lemma 1, the necessary and sufficient conditions for the same are:

$$
\begin{equation*}
\sum_{n=m}^{\infty} C_{n, m} u_{n} \text { be convergent for every } u_{n}=O(1), m \geqq 1, \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left|\sum_{n=m}^{\infty} C_{n, m} u_{n}\right|^{k^{\prime}}<+\infty \text { whenever } u_{n}=O(1) \tag{4.3}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sum_{n=m}^{\infty} C_{n, m} u_{n} & =m^{1 / k} A_{m}^{\alpha} \sum_{n=m}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} u_{n} \sum_{r=m}^{n} A_{r-m}^{-\alpha-1} \frac{\varepsilon_{r}}{r} P_{r-1} \\
& =m^{1 / k} A_{m}^{\alpha} \sum_{r=m}^{\infty} A_{r-m}^{\alpha-1} \frac{\varepsilon_{r}}{r} P_{r-1} \sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} u_{n} \\
& =m^{1 / k} A_{m}^{\alpha} \sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} P_{r-1} \frac{\varepsilon_{r}}{r} \delta_{r} \\
& =m^{1 / k} A_{m}^{\alpha} \triangle\left(\frac{\varepsilon_{m}}{m} P_{m-1} \delta_{m}\right),
\end{aligned}
$$

where

$$
\delta_{m}=\sum_{n=m}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} u_{n} .
$$

Now

$$
\begin{aligned}
& \sum_{n=m}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|u_{n}\right| \sum_{r=m}^{n}\left|A_{r-m}^{-\alpha-1}\right| \frac{\left|\varepsilon_{r}\right|}{r} P_{r-1} \\
& \quad \leqq C \sum_{r=m}^{\infty}\left|A_{r-m}^{-\alpha-1}\right| \frac{\left|\varepsilon_{r}\right|}{r} P_{r-1} \sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \\
& \quad=C \sum_{r=m}^{\infty} \frac{\left|\varepsilon_{r}\right|}{r} \cdot\left|A_{r-m}^{-\alpha-1}\right|=O(1) \text { if } \varepsilon_{n}=O(n) .
\end{aligned}
$$

Thus if $\varepsilon_{n}=O(n)$ then the above series is absolutely convergent for every $u_{n}=O(1)$ and hence change of order of summation is justified.

Thus, if $\varepsilon_{n}=O(n)$ condition (4.2) is satisfied and hence a necessary and sufficient condition for (4.1) is

$$
\begin{equation*}
\sum_{m=1}^{\infty} m^{a k^{\prime}+k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m} P_{m-1} \delta_{m}\right)\right|^{k^{\prime}}<+\infty \tag{4.4}
\end{equation*}
$$

whenever $\varepsilon_{n}=O(n)$ and $u_{n}=O(1)$.
NECESSITY: We are given that $\Sigma a_{n} \varepsilon_{n}$ is summable $\left|\bar{N}, p_{n}\right|$ whenever Σa_{n} is summable $|C, \alpha|_{k}$. Then applying Lemma 4 we have $\varepsilon_{n}=O\left(n^{1-1 / k}\right)=O(n)$. Thus (4.4) is a necessary condition whenever $u_{n}=O(1)$.

NECESSITY OF (i). Let $u_{n}=1$, then $\delta_{n}=\frac{1}{P_{n-1}}$. From (4.4) we obtain

$$
\sum_{m=1}^{\infty} m^{k^{\prime} \alpha+k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}}<+\infty, \alpha \geqq 0
$$

Thus (i) is necessary.
Necessity of (ii) (b) •From Lemma 2 we have

$$
\sum_{n=1}^{\infty}\left|C_{n, n}\right|^{k^{\prime}}<+\infty,
$$

that is to say,

$$
\sum_{n=1}^{\infty} n^{a k^{\prime}-1}\left(\frac{p_{n}}{P_{n}}\right)^{k \prime}\left|\varepsilon_{n}\right|^{k^{\prime}}<+\infty .
$$

This proves the necessity of (ii) (b).
Necessity of (ii) (a). It follows from the case $\alpha=0$ and the fact that (i) is a necessary condition.

SUFFICIENCY: For $0 \leqq \alpha \leqq 1$ condition (ii) (a) implies that $\varepsilon_{n}=O(n)$. Also from (ii) (b) for $\alpha>1$

$$
\varepsilon_{n}=O\left(n^{-\alpha+1 / k g} \frac{P_{n}}{p_{n}}\right)=O\left(n^{1 / k^{\prime}}\right)=O(n)
$$

since

$$
\frac{P_{n}}{p_{n}}=O\left(n^{\alpha}\right), \alpha>1
$$

Thus (4.4) is also sufficient condition for the validity of (4.1).
Case (i): Suppose $\alpha=0$. Then

$$
\Sigma n^{-1}\left|\varepsilon_{n}\right|^{k^{\prime}}<\infty
$$

Using Hölder's inequality we observe that

$$
\Sigma\left|a_{n} \varepsilon_{n}\right|=\Sigma n^{1-1 / k}\left|a_{n}\right| n^{-1 / k^{\prime}}\left|\varepsilon_{n}\right| \leqq\left(\sum n^{k-1}\left|a_{n}\right|^{k}\right)^{1 / k}\left(\sum n^{-1}\left|\varepsilon_{n}\right|^{k^{\prime}}\right)^{1 / k^{\prime}}<\infty .
$$

Hence on account of absolute regularity, the series $\Sigma a_{n} \varepsilon_{n}$ is summable $\left|\bar{N}, p_{n}\right|$. Case (ii): $1<\alpha \leqq 2$. We shall prove that

$$
\sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} C_{n, r} u_{n}\right|^{k^{\prime}}<\infty \text { whenever } u_{n}=O(1)
$$

We have

$$
\begin{aligned}
C_{n, r}= & \frac{p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{v=r}^{n} A_{v-r}^{-\alpha-1} \frac{\varepsilon_{v}}{v} P_{v-1} \\
= & \frac{p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k}\left\{\sum_{v=r}^{n-1} \triangle\left(\frac{\varepsilon_{v}}{v} P_{v-1}\right) A_{v-r}^{-\alpha}+\frac{\varepsilon_{n}}{n} P_{n-1} A_{n-r}^{-\alpha}\right\} \\
= & \frac{p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k}\left\{\sum_{v=r}^{n} P_{v-1} \triangle\left(\frac{\varepsilon_{v}}{v}\right) A_{v-r}^{-\alpha}-\sum_{v=r}^{n} p_{v} \frac{\varepsilon_{v+1}}{v+1} A_{v-r}^{-\alpha}\right. \\
& \left.+P_{n} \frac{\varepsilon_{n+1}}{n+1} A_{n-r}^{-\alpha}\right\}=L_{1}^{(n)}+L_{2}^{(n)}+L_{3}^{(n)}, \text { say . }
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} C_{n, r} u_{n}\right|^{k^{\prime}} & \leqq C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} L_{1}^{(n)} u_{n}\right|^{k^{\prime}}+C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} L_{2}^{(n)} u_{n}\right|^{k^{\prime}}+C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} L_{3}^{(n)} u_{n}\right|^{k^{\prime}} \\
& =M_{1}+M_{2}+M_{3}, \text { say }
\end{aligned}
$$

It is, therefore, sufficient to prove that

$$
M_{p}=O(1), p=1,2,3 \text { whenever } u_{n}=O(1) .
$$

Let us first suppose that $1<\alpha<2$. Then applying Lemma 6 we get

$$
\begin{aligned}
M_{1}= & C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} \frac{u_{n} \cdot p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{v=r}^{n} P_{v-1} \triangle\left(\frac{\varepsilon_{v}}{v}\right) A_{v-r}^{-\alpha}\right|^{k^{\prime}} \\
= & C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{v=r}^{n} P_{v-1} \triangle\left(\frac{\varepsilon_{v}}{v}\right) A_{v-r}^{-\alpha}\right|^{k^{\prime}} \\
\leqq & C \sum_{r=1}^{\infty} r^{(\alpha+1) r^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n} \triangle\left(\frac{\varepsilon_{m}}{m}\right) \sum_{v=r}^{m} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2}\right|^{k^{\prime}} \\
& +C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n} \triangle\left(\frac{\varepsilon_{m}}{m}\right) P_{m} A_{m-r}^{-1}\right|^{k^{\prime}} \\
& +C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=n+1}^{\infty} \stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right) \sum_{v=r}^{n} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2}\right|^{k^{\prime}} \\
& +C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n-1}} \sum_{m=n+1}^{\infty} \triangle\left(\frac{\varepsilon_{m}}{m}\right) \sum_{j=r}^{n} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2}\right|^{k^{\prime}} \\
= & M_{11}+M_{12}+M_{13}+M_{14}, \text { say. }
\end{aligned}
$$

Now using Lemmas 7, 8 the hypotheses (b) and (i),

$$
\begin{align*}
M_{11} & =C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n} \stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right) \sum_{v=r}^{m} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2}\right|^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{P_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n}\left|\triangle_{\triangle}^{\alpha}\left(\frac{\varepsilon_{m}}{m}\right)\right| \sum_{v=r}^{m} p_{v} A_{m-r}^{\alpha-2} A_{v-r}^{1-\alpha}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right| P_{m} A_{m-r}^{\alpha-2} A_{m-r}^{2-\alpha}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{m=r}^{\infty}\left|\triangle\left(\frac{\varepsilon_{m}}{m}\right)\right|\right)^{k \prime}, \tag{4.5}\\
& =O(1) \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1}\left(\sum_{m=r}^{\infty} m^{\alpha k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}}\right)\left(\sum_{m=r}^{\infty} m^{-\alpha k+k-1}\right)^{k^{\prime} / k} \\
& =\left.O(1) \sum_{r=1}^{\infty} r^{k^{\prime}-1} \sum_{m=r}^{\infty} m^{a k^{\prime}-1}| |_{\triangle=1}^{\alpha}\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}} \\
& =O(1) \sum_{m}^{\infty} m^{a k^{\prime}+k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}}=O(1) .
\end{align*}
$$

Similarly,

$$
\begin{aligned}
& M_{12}=O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right| P_{m} A_{m-r}^{-1}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{r}}{r}\right)\right| . P_{r}\right)^{k^{\prime}} \\
& =O\left(\sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{r}}{r}\right)\right|^{k^{\prime}}\right)=O(1) \text {. } \\
& M_{13}=O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{m=n+1}^{\infty}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right| \sum_{v=r}^{n} p_{v} A_{m-r}^{\alpha-2} A_{v-r}^{1-\alpha}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{P_{n}}{P_{n} P_{n-1}} \sum_{m=n+1}^{\infty}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right| A_{m-r}^{\alpha-2} \frac{P_{n}}{r+1} A_{n-r}^{2-\alpha}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{-k^{\prime}+\alpha k^{\prime}-1}\left(\sum_{m=r}^{\infty} m\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right|\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{-k^{\prime}+\alpha k^{\prime}-1}\left(\sum_{m=r}^{\infty} m^{\delta k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}}\right)\left(\sum_{m=r}^{\infty} m^{-\delta k+k+k-1}\right)^{k^{\prime} / k}{ }_{2<\delta<\alpha+1} \\
& =O(1) \sum_{r=1}^{\infty} r^{-k^{\prime}+\alpha k^{\prime}-1} r^{-\delta k^{\prime}+2 k^{\prime}} \sum_{m=r}^{\infty} m^{s k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}} \\
& =O(1) \sum_{m=1}^{\infty} m^{(\alpha+1) k^{\prime}-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right|^{k^{\prime}}=O(1) \text {. }
\end{aligned}
$$

Next using Lemma 7.

$$
\begin{aligned}
M_{14} & =O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n-1}} \sum_{m=n+1}^{\infty}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right| A_{n-r}^{1-\alpha} A_{m-r}^{\alpha-2}\right)^{k} \\
& =O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{m=r}^{\infty} A_{m-r}^{\alpha-2}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{m}}{m}\right)\right| \sum_{n=r}^{m} \frac{p_{n}}{P_{n-1}} A_{n-r}^{1-\alpha}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1}\left(\sum_{m=r}^{\infty}\left|\triangle\left(\frac{\varepsilon_{m}}{m}\right)\right|\right)^{k^{\prime}}=O(1)
\end{aligned}
$$

as shown in (4.5).
Thus $M_{1}=O(1), \quad$ for $1<\alpha<2$.
Now let $\alpha=2$. Then

$$
\begin{aligned}
\mathrm{M}_{1}= & C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} A_{r}^{2} r^{1 / k}\left(P_{r-1} \triangle\left(\frac{\varepsilon_{r}}{r}\right)-P_{r} \triangle\left(\frac{\varepsilon_{r+1}}{r+1}\right)\right)\right|^{k^{\prime}} \\
= & O(1) \sum_{r=1}^{\infty} r^{3 k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|P_{r-1} \triangle\left(\frac{\varepsilon_{r}}{r}\right)-p_{r} \triangle\left(\frac{\varepsilon_{r+1}}{r+1}\right)\right|\right)^{k^{\prime}} \\
= & O(1) \sum_{r=1}^{\infty} r^{3 k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{r}}{r}\right)\right|^{k^{\prime}}\left(\sum_{n=r}^{\infty} \frac{p_{n} P_{r-1}}{P_{n} P_{n-1}}\right)^{k^{\prime}} \\
& +O(1) \sum_{r=1}^{\infty} r^{3 k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{r+1}}{r+1}\right)\right|^{k^{\prime}}\left(\frac{p_{r}}{P_{r-1}}\right)^{k^{\prime}} \\
= & O(1) \sum_{r=1}^{\infty} r^{3 k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{r}}{r}\right)\right|^{k^{\prime}}+O(1) \sum_{r=1}^{\infty}(r+1)^{2 k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{r+1}}{r+1}\right)\right|^{k^{\prime}} \\
= & O(1),
\end{aligned}
$$

by virtue of Lemma 9 .
Hence, $M_{1}=O(1)$ for $1<\alpha \leqq 2$. We shall now consider M_{2}. We have

$$
\begin{aligned}
M_{2} & =C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} \frac{u_{n} \cdot p_{n}}{P_{n} P_{n-1}} A_{r}^{a} r^{1 / k} \sum_{v=r}^{n} p_{v} \frac{\varepsilon_{v+1}}{v+1} A_{v-r}^{-a}\right|^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}+k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=r}^{n} p_{v} \frac{\left|\varepsilon_{v+1}\right|}{v+1}\left|A_{v-r}^{-a}\right|\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{v=r}^{\infty}\left(\frac{p_{v}}{P_{v-1}}\right)^{k^{\prime}}\left|\varepsilon_{v+1}\right| k^{k^{\prime}}\left|A_{v-r}^{-a}\right|\right) \\
& =O(1) \sum_{v=1}^{\infty} v^{a k^{\prime}-1}\left(\frac{p_{v}}{P_{v-1}}\right)^{k^{\prime}}\left|\varepsilon_{v+1}\right|^{k^{\prime}}=O(1),
\end{aligned}
$$

by virtue of (ii)(b) and (a). Also

$$
\begin{aligned}
M_{3} & =C \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} A_{r}^{a} 1^{1 / k} P_{n} \frac{\varepsilon_{n+1}}{n+1} A_{n-r}^{-a}\right|^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n-1}}\left|\varepsilon_{n+1}\right|\left|A_{n-r}^{-\alpha}\right|\right)^{k^{\prime}}=O(1),
\end{aligned}
$$

as shown in the proof of $M_{2}=O(1)$.
This proves the theorem for the case: $1<\alpha \leqq 2$.
Case (iii) : $\alpha>2$. Choose a positive integer r such that $1 \leqq r<\alpha \leqq r+1$. By case (ii) the result is true when $r=1$. Suppose the result is true for $s<\alpha$ $\leqq s+1, s \geqq 1$. We shall show that it is also true for $s+1<\alpha \leqq s+2$.

Now we have on applying Abel's transformation

$$
\begin{aligned}
\sum_{v=1}^{n} a_{v} \varepsilon_{v} & =\sum_{1}^{n} \varepsilon_{v} \frac{t_{v}^{1}}{v}+\sum_{v=1}^{n}\left(v \triangle \varepsilon_{v}\right) \frac{t_{v}^{1}}{v}+\varepsilon_{n+1} t_{n}^{1} \\
& =J_{1}(n)+J_{2}(n)+J_{3}(n), \text { say }
\end{aligned}
$$

The series $\Sigma a_{n} \varepsilon_{n}$ will be summable $\bar{N}, p_{n} \mid$ if each of the sequences $\left\{J_{p}(n)\right\}, p$ $=1,2,3$, is summable $\left|\bar{N}, p_{n}\right|$. By virtue of Lemma 12 and the hypothesis $\Sigma t_{n}^{1} / n$ is summable $|C, \alpha-1|_{k}$. Hence to prove that $\left\{J_{1}\right\}$ and $\left\{J_{2}\right\}$ are summable $\left|\bar{N}, p_{n}\right|$ it is sufficient to show that $\left\{\varepsilon_{v}\right\}$ and $\left\{v \triangle \varepsilon_{v}\right\}$ satisfy the conditions of the theorem with $\alpha-1$ in place of α. Since in the case of $1<\alpha \leqq 2$ we require for the proof (i), (ii)(b), (a), (b) and $\Sigma\left|\varepsilon_{n}\right|^{k^{\prime}} \mid n<\infty$ we assume the same set of conditions for $\alpha>2$.
Since $\sum_{1}^{\infty} n^{-1}\left|\varepsilon_{n}\right|^{k^{\prime}}<\infty$ implies that $\varepsilon_{n}=O(n)$, it follows from Lemma 9 that

$$
\begin{equation*}
\sum_{1}^{\infty} n^{a k^{\prime}-1}\left|\stackrel{\mid \alpha-1}{\triangle}\left(\frac{\varepsilon_{n}}{n}\right)\right|^{k^{\prime}}<\infty \tag{4.5}
\end{equation*}
$$

Also it is obvious that

$$
\begin{equation*}
\nearrow \quad \sum_{1}^{\infty} n^{(\alpha-1) k^{\prime}-1}\left(\frac{p_{n}}{P_{n}}\right)^{k^{\prime}}\left|\varepsilon_{n}\right|^{k^{\prime}}<\infty . \tag{4.5}
\end{equation*}
$$

Also since $\alpha>2$ (i) implies that

$$
\sum_{1}^{\infty} n^{2 k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{n}}{n}\right)\right|^{k^{\prime}}<\infty
$$

and from this it follows that

$$
\begin{equation*}
\sum_{1}^{\infty} n^{k^{\prime}-1}\left|\triangle \varepsilon_{n}\right|^{k^{\prime}}<\infty \tag{4.6}
\end{equation*}
$$

Now

$$
\begin{aligned}
\triangle \varepsilon_{n} & =\sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} \varepsilon_{v} \\
& =\sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1}\{(n+\alpha)+(-\alpha+v-n)\} \frac{\varepsilon_{v}}{v} \\
& =(n+\alpha) \triangle^{\alpha}\left(\frac{\varepsilon_{n}}{n}\right)-\alpha \triangle\left(\frac{\varepsilon_{n}}{n}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{1}^{\infty} n^{a k^{\prime}-1}\left|\stackrel{\alpha-1}{\triangle}\left(\frac{n \triangle \varepsilon_{n}}{n}\right)\right|^{k^{\prime}} \\
& \quad=\sum_{1}^{\infty} n^{\alpha k^{\prime}-1}\left|\triangle \varepsilon_{n}\right| k^{\prime} \\
& \leqq C \sum_{1}^{\infty} n^{(\alpha+1) k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{n}}{n}\right)\right|^{k^{\prime}}+\left.C \sum_{1}^{\infty} n^{\alpha k^{\prime}-1}| |^{\alpha-1}\left(\frac{\varepsilon_{n}}{n}\right)\right|^{k^{\prime}} \\
& \quad=O(1)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{1}^{\infty} n^{a k^{\prime}-1}\left|\stackrel{\alpha-1}{\triangle}\left(\frac{n \triangle \varepsilon_{n}}{n}\right)\right|^{k^{\prime}}<\infty \tag{4.6}
\end{equation*}
$$

Again
(4. 6)(iii)

$$
\sum_{1}^{\infty} n^{(\alpha-1) k^{\prime}-1}\left(\frac{p_{n}}{P_{n}}\right)^{k^{\prime}}\left|n \triangle \varepsilon_{n}\right|^{k^{\prime}}=O(1)
$$

Thus from (4.5)-(4.6) it is clear that $\left\{\varepsilon_{n}\right\}$ and $\left\{n \triangle \varepsilon_{n}\right\}$ satisfy the conditions (i), (ii)(b) and $\Sigma\left|\varepsilon_{n}\right|{ }^{\prime} / n<\infty$ with ($\alpha-1$) in place of α.

Hence $\left\{J_{1}(n)\right\}$ and $\left\{J_{2}(n)\right\}$ are summable $\left|\bar{N}, p_{n}\right|$.
We shall now consider $J_{3}(n)$. We will show that $\left\{\varepsilon_{n+1} t_{n}^{1}\right\}$ is summable $\left|\bar{N}, p_{n}\right|$.

$$
\begin{aligned}
& \sum_{1}^{\infty} \frac{p_{n}}{P_{n}} \sum_{n-1}^{n-1} \sum_{v=1}^{n-1} p_{v}\left|\varepsilon_{v+1}\right|\left|t_{v}^{1}\right|+\sum_{1}^{\infty} \frac{p_{n}}{P_{n}}\left|\varepsilon_{n+1}\right|\left|t_{n}^{1}\right| \\
& \quad=2 \sum_{v=1}^{\infty} \frac{p_{v}}{P_{v}}\left|\varepsilon_{v+1}\right|\left|t_{v}^{1}\right| \\
& \left.\quad \leqq C\left(\sum_{v=1}^{\infty}\left(\frac{p_{v}}{P_{v}}\right)^{k^{\prime}}\left|\varepsilon_{v+1}\right| k^{k^{\prime}} \cdot v^{\alpha k^{\prime}-1}\right)^{1 / k^{\prime}}\left(\sum_{v=1}^{\infty} v^{-\alpha k+k-1}\left|t_{v}^{1}\right|\right)^{k}\right)^{1 / k} \\
& \quad=O(1)
\end{aligned}
$$

by (ii)(b), condition (a) and Lemma 10.
Hence $\left\{J_{3}(n)\right\}$ is summable $\left|\bar{N}, p_{n}\right|$.
Therefore the theorem is proved for $s+1<\alpha \leqq s+2(s \geqq 1)$ and consequently theorem holds for $\alpha>2$.

Case (iv): $0<\alpha \leqq 1$. We have

$$
\begin{aligned}
C_{n, r}= & \frac{P_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{v=r}^{n} P_{v-1} \frac{\varepsilon_{v}}{v} A_{v-r}^{-\alpha-1} \\
= & \frac{P_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{v=r}^{n} P_{v-1} A_{v-r}^{-\alpha-1} \triangle^{-\alpha}\left(\triangle^{\alpha} \frac{\varepsilon_{v}}{v}\right) \\
= & \frac{P_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{v=r}^{n} P_{v-1} A_{v-r}^{-\alpha-1} \sum_{q=v}^{\infty} A_{q-v}^{\alpha-1} \triangle\left(\frac{\varepsilon_{q}}{q}\right) \\
= & \frac{p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k}\left[\sum_{v=r}^{n} P_{v-1} A_{v-r}^{-\alpha-1} \sum_{q=v}^{n} A_{q-v}^{\alpha-1} \triangle\left(\frac{\varepsilon_{q}}{q}\right)\right. \\
& \left.+\sum_{v=r}^{n} P_{v-1} A_{v-r}^{-\alpha-1} \sum_{q=n+1}^{\infty} A_{q-v}^{\alpha-1} \triangle\left(\frac{\varepsilon_{q}}{q}\right)\right] \\
= & \frac{P_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{q=r}^{n} \triangle\left(\frac{\varepsilon_{q}}{q}\right) \sum_{v=r}^{q} P_{v-1} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1} \\
& +\frac{P_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} \sum_{q=n+1}^{\infty} \triangle\left(\frac{\varepsilon_{q}}{q}\right) \sum_{v=r}^{n} P_{v-1}^{\alpha} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1} \\
= & Q_{1}+Q_{2}, \text { say. }
\end{aligned}
$$

It is, therefore, sufficient to prove that

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} Q_{1} u_{n}\right|^{k^{\prime}}<\infty \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} Q_{2} u_{n}\right|^{k^{\prime}}<\infty, \text { whenever } u_{n}=O(1) \tag{4.8}
\end{equation*}
$$

Proof of (4.7). We have for $0<\alpha<1$

$$
\begin{aligned}
& \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} \frac{P_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1 / k} u_{n} \sum_{q=r}^{n} \triangle\left(\frac{\varepsilon_{q}}{q}\right) \sum_{v=r}^{q} P_{v-1} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1}\right|^{k^{\prime}} \\
& \leqq \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\left.\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{q=r}^{n}| |^{\alpha}\left(\frac{\varepsilon_{q}}{q}\right) \right\rvert\, \sum_{v=r}^{q-1}-p_{v} \sum_{m=r}^{v} A_{m-r}^{-\alpha-1} A_{q-m}^{\alpha-1}\right. \\
& \left.\quad+P_{q-1} \sum_{m=r}^{q} A_{m-r}^{-\alpha-1} A_{q-m}^{\alpha-1} \mid\right)^{k^{\prime}} \\
& \leqq C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{q=r}^{n}\left|\triangle^{\alpha}\left(\frac{\varepsilon_{q}}{q}\right)\right| \sum_{v=r}^{q-1} \frac{P_{v}}{v} A_{q-r}^{\alpha-1} A_{v-r}^{-\alpha}\right)^{k^{\prime}} \\
& \quad+C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{q=r}^{n}\left|\stackrel{\varepsilon_{q}}{\triangle}\left(\frac{\alpha}{q}\right)\right| P_{q-1} A_{q-r}^{-1}\right)^{k^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
& \leqq C \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{q=r}^{\infty} P_{q-1}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right)\right| \sum_{n=q}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\right)^{k^{\prime}} \\
&+C \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{r}}{r}\right)\right|^{k^{\prime}}=C \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1}\left(\sum_{q=r}^{\infty}\left|\triangle\left(\frac{\varepsilon_{q}}{q}\right)\right|\right)^{k^{\prime}}+C \\
&= O(1) \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1} \sum_{q=r}^{\infty} q^{(\delta+\alpha) k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{q}}{q}\right)\right|^{k^{\prime}} \cdot\left(\sum_{q=r}^{\infty} q^{-\delta k-\alpha k+k-1}\right){ }^{k^{\prime} / k} \\
&+O(1), 1-\alpha<\delta<1, \\
&= O(1) \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1-\alpha k^{\prime}-\delta k^{\prime}+k^{\prime}} \sum_{q=r}^{\infty} q^{(\alpha+\delta) k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{q}}{q}\right)\right|^{k^{\prime}}+O(1) \\
&=O(1) \sum_{q=1}^{\infty} q^{(\alpha+1) k^{\prime}-1}\left|\triangle\left(\frac{\varepsilon_{q}}{q}\right)\right|^{k^{\prime}}+O(1)=O(1), \text { by (i). }
\end{aligned}
$$

If $\alpha=1$, then the proof is easy.
This proves (4.7) for $0<\alpha \leqq 1$.
Proof of (4.8). For $0<\alpha<1$ we have as in (4.7)

$$
\begin{aligned}
& \sum_{r=1}^{\infty}\left|\sum_{n=r}^{\infty} Q_{2} u_{n}\right|^{k^{\prime}} \\
& =\sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left|\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} u_{n} \sum_{q=n+1}^{\infty} \stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right) \sum_{v=r}^{n} P_{v-1} A_{v-r}^{\alpha-1} A_{q-v}^{\alpha-1}\right|^{k^{\prime}} \\
& \leqq \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\left.\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{q=n+1}^{\infty} \right\rvert\, \stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right) \| \sum_{v=r}^{n-1}-p_{v} \sum_{m=r}^{v} A_{m-r}^{-\alpha-1} A_{q-m}^{\alpha-1}\right. \\
& \left.+P_{n-1} \sum_{m=r}^{n} A_{m-r}^{-\alpha-1} A_{-m}^{\alpha-1} \mid\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n}} \sum_{q=n+1}^{\infty}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right)\right| A_{q-r}^{\alpha-1} A_{n-r}^{1-\alpha}\right)^{k^{\prime}} \\
& +O(1) \sum_{r=1}^{\infty} r^{(\alpha+1) k^{\prime}-1}\left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n}} \sum_{q=n+1}^{\infty}\left|\stackrel{\alpha}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right)\right| A_{q-r}^{\alpha-1} A_{n-r}^{-\alpha}\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{a=r}^{\infty}\left|\stackrel{a}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right)\right| \log \frac{2 q}{r}\right)^{k^{\prime}} \\
& +O(1) \sum_{r=1}^{\infty} r^{a k^{\prime}-1}\left(\sum_{a=r}^{\infty}\left|\stackrel{a}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right)\right|\right)^{k^{\prime}} \\
& =O(1) \sum_{r=1}^{\infty} r^{\alpha k^{\prime}-1}\left(\sum_{q=r}^{\infty} q^{k^{\prime}-1+(\alpha / 4) k^{\prime}}\left|\triangle\left(\frac{\varepsilon_{q}}{q}\right)\right|^{k^{\prime}}\right)\left(\sum_{q=r}^{\infty} q^{-1-k a / 4} \log ^{k} \frac{2 q}{r}\right)^{k^{\prime \prime / k}} \\
& +O(1)=O(1) \sum_{q=1}^{\infty} q^{(\alpha+1) k^{\prime}-1}\left|\stackrel{a}{\triangle}\left(\frac{\varepsilon_{q}}{q}\right)\right|^{k^{\prime}}+O(1)=O(1) .
\end{aligned}
$$

The case $\alpha=1$ can be easily disposed of.
This completes the proof of the theorem.

References

[1] A. F. ANDERSON, Studier over Cesàro's summabillitet metode (Copenhagen, 1921).
[2] L.S. BOSANQUET, Note on convergence and summabiltys factors III, Proc. London Math. Soc. (2), 50(1948), 489-496.
[3] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3), 7 (1957), 113-141.
[4] E. G. Kogbetciantz, Sur la séries absolument sommables par la méthode des moyonnes arithmétiques. Bull. Sci. Math. (2), 49 (1925), 234-256.
[5] S. M. Mazhar, On $|C, \beta|_{k}$ summability factors of infinite series, Acad Roy. Belg. Bull. Cl. Sci., 57(1971), 275-286.
[6] M. R. MEHDI, Summability factors for generalized absolute summability I. Proc. London Math. Soc,, 10(1960), 180-200.
[7] M. R. Mehdi, Ph. D. Thesis (London), 1959.
[8] R. N. MOhapatra, On absolute Riesz summability factors, J. Indian Math. Soc. 32(1968), 113-129.
[9] A. Peyerimhoff, Über einen Satz von Herrn Kogbetliantz aus der Theorie der absoluten Cesàroschen Summierbarkeit Arch. Math., 3(1952), 262-265.

Department of Applied Science,
College of Engineering and Technology, Aligarh Muslim University, Aligarh (INDia).

[^0]: *) Where C is a constant not necessarily the same at each occurrence.

