Tôhoku Math. Journ. 23(1971), 433-451.

ON THE ABSOLUTE SUMMABILITY FACTORS OF INFINITE SERIES

S.M.MAZHAR

(Received November 24, 1970)

1. Let Σa_n be a given infinite series with s_n as its *n*-th partial sum. We denote by $\{\sigma_n^{\alpha}\}$ and $\{t_n^{\alpha}\}$ the *n*-th (C, α) , $(\alpha > -1)$ means of the sequences $\{s_n\}$ and $\{na_n\}$ respectively. A series Σa_n is said to be summable $|C, \alpha|$ if $\Sigma |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}| < \infty$ and summable $|C, \alpha|_k$, $k \ge 1$, $\alpha > -1$ if

(1.1)
$$\sum n^{k-1} |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}|^k < \infty.$$

In view of the well known identity $t_n^{\alpha} = n(\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha})$, the condition (1, 1) can also be written as

(1.2)
$$\sum_{n=1}^{\infty} \frac{|t_n^{\alpha}|^k}{n} < \infty$$

Let $\{p_n\}$ be a sequence of positive real constants such that $P_n = p_0 + p_1 + \dots + p_n \to \infty$ as $n \to \infty$. A series $\sum a_n$ is said to be summable $|\overline{N}, p_n|$ if $t_n^* \in BV$,

$$t_n^* = \frac{1}{P_n} \sum_{k=0}^n p_k s_k \, .$$

For $p_n = \frac{1}{n+1}$ the summability $|\overline{N}, p_n|$ is equivalent to the well known summability $|R, \log n, 1|$.

For any real α and integers $n \ge 0$, we define $\overset{\alpha}{\bigtriangleup} U_n = \sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} U_v$, whenever the series is convergent.

2. It is known that summability $|\overline{N}, p_n|$ and the summability $|C, \alpha|_k$ are, in general, independent of each other. It is, therefore, natural to find out suitable summability factors $\{\varepsilon_n\}$ so that $\Sigma a_n \varepsilon_n$ may be summable $|C, \alpha|_k, \alpha > -1, k \ge 1$, whenever Σa_n is summable $|\overline{N}, p_n|$, and conversely, if Σa_n is summable $|C, \alpha|_k$ then $\Sigma a_n \varepsilon_n$ may be summable $|\overline{N}, p_n|$. In a recent paper [5] the author has

where

S. M. MAZHAR

examined the summability factor problem of the first type. We propose to study the converse problem in the present note. In what follows we shall prove the following:

THEOREM. The necessary and sufficient conditions for the series $\sum a_n \varepsilon_n$ to be summable $|\overline{N}, p_n|$ whenever $\sum a_n$ is summable $|C, \alpha|_k, \alpha \ge 0, k \ge 1$, are

(i)
$$\left\{n^{\alpha+1-\frac{1}{k'}} \bigtriangleup^{\alpha}\left(\frac{\varepsilon_n}{n}\right)\right\} \in l^{k'}, \frac{1}{k} + \frac{1}{k'} = 1,$$

(ii)(a)
$$\left\{n^{-k'} \boldsymbol{\varepsilon}_n\right\} \in l^{k'}, \quad 0 \leq \alpha \leq 1$$
,

(ii)(b) $\left\{n^{\alpha-\frac{1}{k'}}\left(\frac{p_n}{P_n}\right)\varepsilon_n\right\}\in l^{k'}, \quad \alpha>1,$

where (a) $p_n = O(p_{n+1})$, (b) $(n+1)p_n = O(P_n)$ and (c) $P_n = O(n^{\alpha}p_n)$ $(\alpha > 1)$.

It may be remarked that our theorem includes, as a special case for k=1, the following theorem of Mohapatra [8].

THEOREM A. Let the sequence $\{p_n\}$ satisfy the following:

(2.1)
$$p_n = O(p_{n+1})$$
,

$$(2.2) (n+1)p_n = O(P_n),$$

$$(2.3) P_n = O(p_n n^{\alpha}), \ \alpha > 1.$$

The necessary and sufficient conditions to be satisfied by a sequence $\{\varepsilon_n\}$ such that $\Sigma a_n \varepsilon_n$ is summable $|\overline{N}, p_n|$, whenever Σa_n is summable $|C, \alpha|, \alpha \ge 0$ are

(2.4)
$$\mathcal{E}_{n} = \begin{cases} O(1), \ 0 \leq \alpha \leq 1, \\ O\left(\frac{P_{n}n^{-\alpha}}{P_{n}}\right), \ \alpha > 1, \end{cases}$$

(2.5)
$$\overset{\alpha}{\bigtriangleup} \left(\frac{\varepsilon_n}{n} \right) = O(n^{-\alpha - 1}) \, .$$

On the other hand if we take $p_n = 1$, we get the following result of Mehdi [6].

THEOREM B. Let $\alpha \ge 0$, k > 1. The necessary and sufficient conditions for $\sum a_n \varepsilon_n$ to be summable |C, 1| whenever $\sum a_n$ is summable $|C, \alpha|_k$ are (i) and

(ii)' (a)
$$\sum_{1}^{\infty} \frac{|\mathcal{E}_{n}|^{k'}}{n} < \infty, \quad \alpha \leq 1,$$

(ii)' (b) $\sum_{1}^{\infty} n^{-1+\alpha k'-k'} |\mathcal{E}_{n}|^{k'} < \infty \quad \alpha \geq 1$

Similarly on taking $p_n = 1/n+1$, we deduce the following result concerning $|R, \log n, 1|$ summability factor of infinite series.

COROLLARY. Let $\alpha \ge 0$. The necessary and sufficient conditions for $\sum a_n \varepsilon_n$ to be summable $|R, \log n, 1|$ whenever $\sum a_n$ is summable $|C, \alpha|_{k'}$ $k \ge 1$, are

$$I \quad \left\{n^{\alpha+1-\frac{1}{k'}} \bigtriangleup^{\alpha}\left(\frac{\varepsilon_n}{n}\right)\right\} \in l^{k'}, \qquad \frac{1}{k} + \frac{1}{k'} = 1,$$

II (a) $\{n^{-\frac{1}{k'}}\varepsilon_n\} \in l^{k'}, \qquad 0 \leq \alpha \leq 1,$
II (b) $\{n^{\alpha-\frac{1}{k'}-1}(\log n)^{-1}\varepsilon_n\} \in l^{k'}, \qquad \alpha > 1.$

3. We require the following lemmas for the proof of our theorem.

LEMMA 1 [7]. Let $p \ge 1$, $k \ge 1$ and suppose that x,y,u and v are related as:

$$y_n = \sum_{m=0}^{\infty} C_{n,m} x_m, \qquad n \ge 0,$$
$$v_m = \sum_{n=0}^{\infty} C_{n,m} u_n, \qquad m \ge 0.$$

The necessary and sufficient condition for

$$(3.1) y \in l^p whenever x \in l^k is$$

$$(3,2) v \in l^{k'} whenever \ u \in l^{p'},$$

where k' and p' are the conjugate indices of k and p respectively.

LEMMA 2 [7]. If k > 1 and $y_n = \sum_{m=0}^n C_{n,m} x_m$ and $\sum_{n=0}^{\infty} |y_n| < \infty$ whenever $\sum_{m=0}^{\infty} |x_m|^k < \infty$ then (3.3) $\sum_{n=0}^{\infty} |C_{n,n}|^{k'} < \infty$. LEMMA 3[7]*). If $1 < k \leq \infty$, the necessary and sufficient condition for $y_n = O(1)$ whenever $x_n \in l^k$ is

$$\sum_{m=0}^{\infty} |C_{n,m}|^{k'} < \infty$$
 ,

where x_n and y_n are related as in Lemma 1.

LEMMA 4. Let $k \ge 1$. If $\sum a_n \varepsilon_n$ is bounded (\overline{N}, p_n) whenever $\sum a_n$ is summable $|C, 0|_k$, then

$$\mathcal{E}_n = O(n^{1-\frac{1}{k}})$$

PROOF. We write

$$y_n = \frac{1}{P_n} \sum_{r=0}^n (P_n - P_{r-1}) a_r \mathcal{E}_r$$
$$x_r = r^{1 - \frac{1}{k}} a_r, \ r \ge 1, \ x_0 = a_0 = 0.$$

and

Then

$$y_n = \frac{1}{P_n} \sum_{r=1}^n (P_n - P_{r-1}) x_r r^{\frac{1}{k} - 1} \mathcal{E}_r = \sum_{r=1}^\infty b_{n,r} x_r ,$$

where

$$b_{n,r} = \frac{1}{P_n} \cdot (P_n - P_{r-1}) \varepsilon_r r^{\frac{1}{k}-1}, \quad r \leq n,$$

= 0, $r > n.$

By hypothesis $y_n = O(1)$ whenever $\Sigma |x_n|^k < \infty$. Then appealing to Lemma 3, a necessary and sufficient condition for the above is

(3.4)
$$\sum_{r=1}^{\infty} |b_{n,r}|^{k'} < \infty.$$

Now

*) This is given in Cooke's "Infinite Matrices and Sequence Spaces" with a superfluous hypothesis.

$$|y_n| \leq \left(\sum_{r=1}^{\infty} |b_{n,r}|^{k'}\right)^{\frac{1}{k'}} \left(\sum_{r=1}^{\infty} |x_r|^k\right)^{\frac{1}{k}} \leq C^{*} \left(\sum_{r=1}^{\infty} |x_r|^k\right)^{\frac{1}{k}}.$$

Choose any $m \ge 1$ and let $a_m = 1$, $a_n = 0$, $n \ne m$.

Then
$$x_m = m^{1-\frac{1}{k}}, x_n = 0, n \neq m$$

$$y_n = \frac{1}{P_n} (P_n - P_{m-1}) \mathcal{E}_m \qquad m \le n,$$
$$= 0 \qquad m > n.$$

Thus for $n \ge m$

and

$$|y_n| = \frac{1}{P_n} (P_n - P_{m-1}) |\mathcal{E}_m| \le C \ m^{1 - \frac{1}{k}}$$

Making $n \rightarrow \infty$ we get

$$|\mathcal{E}_m| \leq C m^{1-\frac{1}{k}}$$

which is the required result.

LEMMA 5 [1,2]. If $\varepsilon_n = O(1)$, then $\overset{\beta}{\bigtriangleup}(\overset{\alpha}{\bigtriangleup}\varepsilon_n) = \overset{\alpha+\beta}{\bigtriangleup}\varepsilon_n$ if $\alpha \ge 0$, $\beta > -1$, $\alpha + \beta > 0$. If $\varepsilon_n = o(1)$ then the equality holds for $\alpha \ge 0$, $\beta \ge -1$, $\alpha + \beta \ge 0$.

LEMMA 6 [8]. If $1 < \alpha < 2$, $\varepsilon_n = O(n)$, then

$$\sum_{v=r}^{n} \bigtriangleup \left(\frac{\mathcal{E}_{v}}{v}\right) A_{v-r}^{-\alpha} P_{v-1} = -\sum_{m=r}^{n} \bigtriangleup \left(\frac{\mathcal{E}_{m}}{m}\right) \sum_{v=r}^{m} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} + \sum_{m=r}^{n} P_{m} \bigtriangleup \left(\frac{\mathcal{E}_{m}}{m}\right) A_{m-r}^{-1} - \sum_{m=n+1}^{\infty} \bigtriangleup \left(\frac{\mathcal{E}_{m}}{m}\right) \sum_{v=r}^{n} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} + P_{n} \sum_{m=n+1}^{\infty} \bigtriangleup \left(\frac{\mathcal{E}_{m}}{m}\right) \sum_{j=r}^{n} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2}.$$

^{*)} Where C is a constant not necessarily the same at each occurrence.

LEMMA 7 [2]. For $0 < \beta \leq \alpha < 1$, $0 \leq r \leq v \leq n$,

$$\sum_{m=r}^{v} A_{n-m}^{\beta-1} A_{m-r}^{-\alpha-1} \bigg| \leq C A_{n-r}^{\beta-1} A_{v-r}^{-\alpha} \, .$$

LEMMA 8. If $(n+1)p_n = O(P_n)$, $P_n \rightarrow \infty$, then

$$\lim_{n\to\infty}\frac{P_{n\pm v}}{P_n}=1$$

for finite v.

The proof is quite easy.

LEMMA 9[7]. Let $1 < k \leq +\infty$, $\alpha > 0$, $\theta_n = O(1)$,

and

$$\sum_{n=1}^{\infty} n^{(\alpha+1)k'-1} | \triangle^{\alpha} \theta_n |^{k'} \qquad < \infty \, .$$

Then
$$\sum_{1}^{\infty} n^{(\gamma+1)k'-1} | \bigtriangleup^{\gamma} \theta_n |^{k'} < \infty, \quad 0 < \gamma \leq \alpha.$$

LEMMA 10 [3]. If $\sum a_n$ is summable $|C, \alpha|_k$, $k \ge 1$, $\alpha \ge 0$, then $\sum n^{-1-k\delta} |t_n^{\alpha-\delta}|^k < \infty$, where $0 \le \delta \le \alpha$.

LEMMA 11 [9]*). For $\alpha \ge 1$, $k-1 < \alpha - 1 \le k$, where k is an integer,

$$\sum_{v=r}^{n} A_{n-v}^{\alpha-1-1} A_{v-r}^{-(\alpha-1)-1} \frac{1}{v+1} = \sum_{\rho=0}^{k-1} C_{\rho}(-1)^{\rho} \bigtriangleup^{\rho} \frac{1}{(r+1)} A_{n-\rho-r}^{\rho-1} + A_{n-k-r}^{k-1} O\left(\frac{1}{(r+1)^{k+1}}\right).$$

LEMMA 12. If $\sum a_n$ is summable $|C, \alpha|_k$, $\alpha \ge 1$, Then $\sum t_n^1/n$ is summable $|C, \alpha-1|_k$.

For k = 1 it is a special case of a general theorem due to Kogbetliantz [4].

^{*)} This is a special case: $\beta = \alpha$, $\gamma = 1$ and α replaced by $\alpha - 1$ in[9].

PROOF. Let $T_n^{\alpha-1}$ denote $(C, \alpha-1)$ means of $\{t_n^1\}$.

$$\begin{aligned} \text{Then} \qquad T_{n}^{\alpha-1} &= \frac{1}{A_{n}^{\alpha-1}} \sum_{v=1}^{n} A_{n-v}^{\alpha-2} t_{v}^{1} = \frac{1}{A_{n}^{\alpha-1}} \sum_{v=1}^{n} A_{n-v}^{\alpha-2} \frac{1}{v+1} \sum_{r=1}^{v} A_{v-r}^{-\alpha} A_{r}^{\alpha} t_{r}^{\alpha} \\ &= \frac{1}{A_{n}^{\alpha-1}} \sum_{r=1}^{n} t_{r}^{\alpha} A_{r}^{\alpha} \sum_{v=r}^{n} \frac{A_{n-v}^{\alpha-2} A_{v-r}^{-\alpha}}{v+1} \\ &\leq \frac{1}{A_{n}^{\alpha-1}} \sum_{r=1}^{n} |t_{r}^{\alpha}| A_{r}^{\alpha} \left\{ \left| \sum_{\rho=0}^{q-1} C_{\rho}(-1)^{\rho} \bigwedge_{r} \frac{1}{(r+1)} A_{n-\rho-r}^{\rho n-1} \right| \right. \\ &+ A_{n-q-r}^{q-1} O\left(\frac{1}{(r+1)^{q+1}}\right) \right\}, \ q-1 < \alpha - 1 \leq q \;, \end{aligned}$$

by virtue of Lemma 11.

It is, therefore, sufficient to prove that

$$I = \sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1)k}} \left(\sum_{r=1}^{n} |t_{r}^{\alpha}| A_{r}^{\alpha} \cdot \frac{1}{(r+1)^{1+\rho}} A_{n-\rho-r}^{\rho-1} \right)^{k} < \infty, \text{ for } 0 \leq \rho \leq q.$$

If $\rho = 0$, then

$$I = \sum_{1}^{\infty} rac{1}{n^{1+(lpha-1)k}} \, |\, t^{lpha}_{\, n} |^{\, k} \cdot n^{(lpha-1)k} < \infty$$
 ,

by the hypothesis.

If $\rho > 0$, then $\alpha > q \ge \rho$ so that

$$\begin{split} I &= \sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1)k}} \left(\sum_{r=1}^{n} |t_{r}^{\alpha}| \cdot r^{\alpha-\rho-1} A_{n-\rho-r}^{\rho n-1} \right)^{k} \\ &\leq \sum_{1}^{\infty} \frac{1}{n^{1+(\alpha-1)k}} \left(\sum_{r=1}^{n-\rho} |t_{r}^{\alpha}|^{k} r^{\alpha-\rho-1} A_{n-\rho-r}^{\rho-1} \right) \left(\sum_{r=1}^{n-\rho} A_{r}^{\alpha-\rho-1} A_{n-\rho-r}^{\rho-1} \right)^{k/k'} \\ &\leq C \sum_{1}^{\infty} \frac{1}{n^{\alpha}} \sum_{r=1}^{n-\rho} |t_{r}^{\alpha}|^{k} r^{\alpha-\rho-1} A_{n-\rho-r}^{\rho-1} \\ &= C \sum_{r=1}^{\infty} r^{\alpha-\rho-1} |t_{r}^{\alpha}|^{k} \sum_{n=r+\rho}^{\infty} \frac{A_{n-\rho-r}^{\rho-1}}{n \cdot A_{n-1}^{\alpha-1}} \\ &= C \sum_{r=1}^{\infty} r^{-1} |t_{r}^{\alpha}|^{k} = O(1) \,. \end{split}$$

4. Proof of the Theorem. The result being known for k = 1, we proceed to prove the same for k > 1. We write $x_0 = a_0$ and

$$\begin{aligned} x_n &= \frac{1}{n^{1/k} A_n^{\alpha}} \sum_{r=1}^n A_{n-r}^{\alpha-1} r a_r, \qquad n \ge 1 , \\ t_n &= \frac{1}{P_n} \sum_{r=0}^n (P_n - P_{r-1}) a_r \mathcal{E}_r, \qquad P_{-1} = 0 , \end{aligned}$$

and

so that

$$t_n - t_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^n a_r \mathcal{E}_r P_{r-1} \, .$$

Putting

$$y_n = t_n - t_{n-1}, \quad n \ge 1, \ y_0 = a_0 \varepsilon_0$$

we have

$$\begin{split} y_n &= \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^n a_r \mathcal{E}_r P_{r-1} \\ &= \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^n \frac{\mathcal{E}_r}{r} P_{r-1} \sum_{m=1}^r A_{r-m}^{-\alpha-1} x_m m^{1/k} A_m^{\alpha} \\ &= \frac{p_n}{P_n P_{n-1}} \sum_{m=1}^n m^{1/k} A_m^{\alpha} x_m \sum_{r=m}^n A_{r-m}^{-\alpha-1} \frac{\mathcal{E}_r}{r} P_{r-1} \\ &= \sum_{m=1}^\infty C_{n,m} x_m \,, \end{split}$$

where

$$C_{n,m} = \frac{p_n}{P_n P_{n-1}} A_m^{\alpha} m^{1/k} \cdot \sum_{r=m}^n A_{r-m}^{-\alpha-1} \frac{\varepsilon_r}{r} P_{r-1}, \ m \leq n,$$

= 0. $m > n.$

Now $\sum a_n \varepsilon_n$ is summable $|\overline{N}, p_n|$ whenever $\sum a_n$ is summable $|C, \alpha|_k \alpha \ge 0$, k > 1 if and only if

(4.1)
$$\Sigma |y_n| < \infty$$
 whenever $\Sigma |x_n|^k < \infty$.

Using Lemma 1, the necessary and sufficient conditions for the same are:

(4.2)
$$\sum_{n=m}^{\infty} C_{n,m} u_n \text{ be convergent for every } u_n = O(1), m \ge 1,$$

and

(4.3)
$$\sum_{m=1}^{\infty} \left| \sum_{n=m}^{\infty} C_{n,m} u_n \right|^{k'} < +\infty \text{ whenever } u_n = O(1).$$

Now

$$\begin{split} \sum_{n=m}^{\infty} C_{n,m} u_n &= m^{1/k} A_m^{\alpha} \sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} u_n \sum_{r=m}^n A_{r-m}^{-\alpha-1} \frac{\mathcal{E}_r}{r} P_{r-1} \\ &= m^{1/k} A_m^{\alpha} \sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\mathcal{E}_r}{r} P_{r-1} \sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} u_n \\ &= m^{1/k} A_m^{\alpha} \sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} P_{r-1} \frac{\mathcal{E}_r}{r} \delta_r \\ &= m^{1/k} A_m^{\alpha} \bigtriangleup \left(\frac{\mathcal{E}_m}{m} P_{m-1} \delta_m \right), \\ \delta_m &= \sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} u_n \,. \end{split}$$

where

Now

$$\sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} |u_n| \sum_{r=m}^n |A_{r-m}^{-\alpha-1}| \frac{|\mathcal{E}_r|}{r} P_{r-1}$$

$$\leq C \sum_{r=m}^{\infty} |A_{r-m}^{-\alpha-1}| \frac{|\mathcal{E}_r|}{r} P_{r-1} \sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}}$$

$$= C \sum_{r=m}^{\infty} \frac{|\mathcal{E}_r|}{r} \cdot |A_{r-m}^{-\alpha-1}| = O(1) \text{ if } \mathcal{E}_n = O(n).$$

Thus if $\mathcal{E}_n = O(n)$ then the above series is absolutely convergent for every $u_n = O(1)$ and hence change of order of summation is justified.

Thus, if $\varepsilon_n = O(n)$ condition (4.2) is satisfied and hence a necessary and sufficient condition for (4.1) is

S. M. MAZHAR

(4.4)
$$\sum_{m=1}^{\infty} m^{ak'+k'-1} \left| \bigtriangleup \left(\frac{\varepsilon_m}{m} P_{m-1} \delta_m \right) \right|^{k'} < +\infty$$

whenever $\mathcal{E}_n = O(n)$ and $u_n = O(1)$.

NECESSITY: We are given that $\sum a_n \mathcal{E}_n$ is summable $|\overline{N}, p_n|$ whenever $\sum a_n$ is summable $|C, \alpha|_k$. Then applying Lemma 4 we have $\mathcal{E}_n = O(n^{1-1/k}) = O(n)$. Thus (4.4) is a necessary condition whenever $u_n = O(1)$.

NECESSITY OF (i). Let $u_n = 1$, then $\delta_n = \frac{1}{P_{n-1}}$. From (4.4) we obtain

$$\sum_{m=1}^{\infty} m^{k' \alpha + k' - 1} \left| \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \right|^{k'} < + \infty, \ \alpha \ge 0.$$

Thus (i) is necessary.

NECESSITY OF (ii) (b) · From Lemma 2 we have

$$\sum_{n=1}^{\infty} |C_{n,n}|^{k'} < +\infty$$
 ,

that is to say,

$$\sum_{n=1}^{\infty} n^{ak'-1} \left(\frac{p_n}{P_n}\right)^{k'} |\mathcal{E}_n|^{k'} < +\infty.$$

This proves the necessity of (ii) (b).

NECESSITY OF (ii) (a). It follows from the case $\alpha = 0$ and the fact that (i) is a necessary condition.

SUFFICIENCY: For $0 \le \alpha \le 1$ condition (ii) (a) implies that $\mathcal{E}_n = O(n)$. Also from (ii) (b) for $\alpha > 1$

$$\varepsilon_n = O\left(n^{-\alpha+1/k} \frac{P_n}{p_n}\right) = O(n^{1/k'}) = O(n)$$

$$\frac{P_n}{p_n}=O(n^{\alpha}), \ \alpha>1$$

Thus (4.4) is also sufficient condition for the validity of (4.1). Case (i): Suppose $\alpha = 0$. Then

since

$$\Sigma n^{-1} |\mathcal{E}_n|^{k'} < \infty$$
.

Using Hölder's inequality we observe that

$$\Sigma |a_n \mathcal{E}_n| = \Sigma n^{1-1/k} |a_n| n^{-1/k'} |\mathcal{E}_n| \leq (\Sigma n^{k-1} |a_n|^k)^{1/k} (\Sigma n^{-1} |\mathcal{E}_n|^{k'})^{1/k'} < \infty.$$

Hence on account of absolute regularity, the series $\sum a_n \mathcal{E}_n$ is summable $|\overline{N}, p_n|$. Case (ii): $1 < \alpha \leq 2$. We shall prove that

$$\sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} C_{n,r} u_n \right|^{k'} < \infty \text{ whenever } u_n = O(1).$$

We have

$$\begin{split} C_{n,r} &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{v=r}^n A_{v-r}^{-\alpha-1} \frac{\varepsilon_v}{v} P_{v-1} \\ &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \left\{ \sum_{v=r}^{n-1} \bigtriangleup \left(\frac{\varepsilon_v}{v} P_{v-1} \right) A_{v-r}^{-\alpha} + \frac{\varepsilon_n}{n} P_{n-1} A_{n-r}^{-\alpha} \right\} \\ &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \left\{ \sum_{v=r}^n P_{v-1} \bigtriangleup \left(\frac{\varepsilon_v}{v} \right) A_{v-r}^{-\alpha} - \sum_{v=r}^n p_v \frac{\varepsilon_{v+1}}{v+1} A_{v-r}^{-\alpha} \right\} \\ &+ P_n \frac{\varepsilon_{n+1}}{n+1} A_{n-r}^{-\alpha} \right\} = L_1^{(n)} + L_2^{(n)} + L_3^{(n)}, \text{ say }. \end{split}$$

Then

$$\sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} C_{n,r} u_n \right|^{k'} \leq C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} L_1^{(n)} u_n \right|^{k'} + C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} L_2^{(n)} u_n \right|^{k'} + C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} L_3^{(n)} u_n \right|^{k'}$$
$$= M_1 + M_2 + M_3, \text{ say }.$$

It is, therefore, sufficient to prove that

 $M_{p}=O(\ 1\),\ p=1,2,3\$ whenever $\ u_{n}=O(\ 1\)$.

Let us first suppose that $1 < \alpha < 2$. Then applying Lemma 6 we get

$$\begin{split} M_{1} &= C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} \frac{u_{n} \cdot p_{n}}{P_{n} P_{n-1}} A_{n}^{\alpha} r^{1/k} \sum_{v=r}^{n} P_{v-1} \bigtriangleup \left(\frac{\varepsilon_{v}}{v} \right) A_{v-r}^{-\alpha} \right|^{k'} \\ &= C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{v=r}^{n} P_{v-1} \bigtriangleup \left(\frac{\varepsilon_{v}}{v} \right) A_{v-r}^{-\alpha} \right|^{k'} \\ &\leq C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n} \bigtriangleup \left(\frac{\varepsilon_{m}}{m} \right) \sum_{v=r}^{m} p_{v} \sum_{j=r}^{v} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} \right|^{k'} \\ &+ C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=r}^{n} \bigtriangleup \left(\frac{\varepsilon_{m}}{m} \right) P_{m} A_{m-r}^{-1} \right|^{k'} \\ &+ C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=n+1}^{\infty} \bigtriangleup \left(\frac{\varepsilon_{m}}{m} \right) \sum_{v=r}^{n} p_{v} \sum_{j=r} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} \right|^{k'} \\ &+ C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} \sum_{m=n+1}^{\infty} \bigtriangleup \left(\frac{\varepsilon_{m}}{m} \right) \sum_{v=r}^{n} p_{v} \sum_{j=r} A_{j-r}^{-\alpha} A_{m-j}^{\alpha-2} \right|^{k'} \\ &= M_{11} + M_{12} + M_{13} + M_{14}, \text{ say.} \end{split}$$

Now using Lemmas 7, 8 the hypotheses (b) and (i),

$$M_{11} = C \sum_{r=1}^{\infty} r^{(a+1)k'-1} \Big| \sum_{n=r}^{\infty} \frac{u_n p_n}{P_n P_{n-1}} \sum_{m=r}^n \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \sum_{v=r}^m p_v \sum_{j=r}^v A_{j-r} A_{m-r}^{a-2} \Big|^{k'}$$

$$= O(1) \sum_{r=1}^{\infty} r^{(a+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{m=r}^n \Big| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \Big| \sum_{v=r}^m p_v A_{m-r}^{a-2} A_{v-r}^{1-\alpha} \right)^{k'}$$

$$= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{m=r}^n \Big| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \Big| P_m A_{m-r}^{a-2} A_{m-r}^{2-\alpha} \right)^{k'}$$

$$= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{m=r}^{\infty} \left| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \right| \right)^{k'},$$

$$= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{m=r}^{\infty} m^{ak'-1} \left| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \right| \right)^{k'}$$

$$= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \sum_{m=r}^{\infty} m^{ak'-1} \left| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_m}{m} \right) \right|^{k'}$$

Similarly,

$$M_{12} = O(1) \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{m=r}^n \left| \bigtriangleup \left(\frac{\varepsilon_m}{m} \right) \right| P_m A_{m-r}^{-1} \right)^{k'}$$
$$= O(1) \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \right| \bigtriangleup \left(\frac{\varepsilon_r}{r} \right) \right| P_r \right)^{k'}$$
$$= O\left(\sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left| \bigtriangleup \left(\frac{\varepsilon_r}{r} \right) \right|^{k'} \right) = O(1).$$

$$\begin{split} M_{13} &= O(1) \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{m=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right| \sum_{v=r}^{n} p_v A_{m-r}^{\alpha-2} A_{v-r}^{1-\alpha} \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{m=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right| A_{m-r}^{\alpha-2} \frac{P_n}{r+1} A_{n-r}^{2-\alpha} \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{-k'+\alpha k'-1} \left(\sum_{m=r}^{\infty} m \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right| \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{-k'+\alpha k'-1} \left(\sum_{m=r}^{\infty} m^{\delta k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right| \right)^{k'} \right) \left(\sum_{m=r}^{\infty} m^{-\delta k+k+\lambda-1} \right)^{k'/k} 2 < \delta < \alpha + 1 \\ &= O(1) \sum_{r=1}^{\infty} r^{-k'+\alpha k'-1} r^{-\delta k'+2k'} \sum_{m=r}^{\infty} m^{\delta k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right|^{k'} \\ &= O(1) \sum_{m=1}^{\infty} m^{(\alpha+1)k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right|^{k'} = O(1) \,. \end{split}$$

Next using Lemma 7.

$$\begin{split} M_{14} &= O(1) \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_{n-1}} \sum_{m=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right| A_{n-r}^{1-\alpha} A_{m-r}^{\alpha-2} \right)^k \\ &= O(1) \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{m=r}^{\infty} A_{m-r}^{\alpha-2} \right| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \left| \sum_{n=r}^{m} \frac{p_n}{P_{n-1}} A_{n-r}^{1-\alpha} \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{\alpha k'-1} \left(\sum_{m=r}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_m}{m} \right) \right| \right)^{k'} = O(1) \end{split}$$

as shown in (4.5).

Thus
$$M_1 = O(1)$$
, for $1 < \alpha < 2$.
Now let $\alpha = 2$. Then

$$\begin{split} \mathbf{M}_{1} &= C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} A_{r}^{2} r^{1/k} \left(P_{r-1} \bigtriangleup \left(\frac{\mathcal{E}_{r}}{r} \right) - P_{r} \bigtriangleup \left(\frac{\mathcal{E}_{r+1}}{r+1} \right) \right) \right|^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{3k'-1} \left| \sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \right| P_{r-1} \bigtriangleup \left(\frac{\mathcal{E}_{r}}{r} \right) - p_{r} \bigtriangleup \left(\frac{\mathcal{E}_{r+1}}{r+1} \right) \right| \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{3k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_{r}}{r} \right) \right|^{k'} \left(\sum_{n=r}^{\infty} \frac{p_{n} P_{r-1}}{P_{n} P_{n-1}} \right)^{k'} \\ &+ O(1) \sum_{r=1}^{\infty} r^{3k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_{r+1}}{r+1} \right) \right|^{k'} \left(\frac{p_{r}}{P_{r-1}} \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{3k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_{r}}{r} \right) \right|^{k'} + O(1) \sum_{r=1}^{\infty} (r+1)^{2k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_{r+1}}{r+1} \right) \right|^{k'} \\ &= O(1), \end{split}$$

by virtue of Lemma 9.

Hence, $M_1 = O(1)$ for $1 < \alpha \leq 2$. We shall now consider M_2 . We have

$$\begin{split} M_{2} &= C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} \frac{u_{n} \cdot p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha} r^{1/k} \sum_{v=r}^{n} p_{v} \frac{\mathcal{E}_{v+1}}{v+1} A_{v-r}^{-\alpha} \right|^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{ak'+k'-1} \left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=r}^{n} p_{v} \frac{|\mathcal{E}_{v+1}|}{v+1} \left| A_{v-r}^{-\alpha} \right| \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{v=r}^{\infty} \left(\frac{p_{v}}{P_{v-1}} \right)^{k'} |\mathcal{E}_{v+1}|^{k'} |A_{v-r}^{-\alpha}| \right) \\ &= O(1) \sum_{v=1}^{\infty} v^{ak'-1} \left(\frac{p_{v}}{P_{v-1}} \right)^{k'} |\mathcal{E}_{v+1}|^{k'} = O(1) , \end{split}$$

by virtue of (ii)(b) and (a). Also

$$M_{3} = C \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} \frac{u_{n} p_{n}}{P_{n} P_{n-1}} A_{r}^{\alpha r^{1/k}} P_{n} \frac{\varepsilon_{n+1}}{n+1} A_{n-r}^{-\alpha} \right|^{k'}$$

= $O(1) \sum_{r=1}^{\infty} r^{\alpha k'-1} \left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n-1}} |\varepsilon_{n+1}| |A_{n-r}^{-\alpha}| \right)^{k'} = O(1),$

as shown in the proof of $M_2 = O(1)$.

This proves the theorem for the case: $1 < \alpha \leq 2$.

Case (iii): $\alpha > 2$. Choose a positive integer r such that $1 \le r < \alpha \le r+1$. By case (ii) the result is true when r=1. Suppose the result is true for $s < \alpha \le s+1$, $s \ge 1$. We shall show that it is also true for $s+1 < \alpha \le s+2$.

Now we have on applying Abel's transformation

$$\sum_{v=1}^{n} a_v \mathcal{E}_v = \sum_{1}^{n} \mathcal{E}_v \frac{t_v^1}{v} + \sum_{v=1}^{n} (v \bigtriangleup \mathcal{E}_v) \frac{t_v^1}{v} + \mathcal{E}_{n+1} t_n^1$$
$$= J_1(n) + J_2(n) + J_3(n), \text{ say }.$$

The series $\Sigma a_n \varepsilon_n$ will be summable $|\overline{N}, p_n|$ if each of the sequences $\{J_p(n)\}, p = 1, 2, 3$, is summable $|\overline{N}, p_n|$. By virtue of Lemma 12 and the hypothesis $\Sigma t_n^1/n$ is summable $|C, \alpha - 1|_k$. Hence to prove that $\{J_1\}$ and $\{J_2\}$ are summable $|\overline{N}, p_n|$ it is sufficient to show that $\{\varepsilon_v\}$ and $\{v \triangle \varepsilon_v\}$ satisfy the conditions of the theorem with $\alpha - 1$ in place of α . Since in the case of $1 < \alpha \leq 2$ we require for the proof (i), (ii)(b), (a), (b) and $\Sigma |\varepsilon_n|^{k'}/n < \infty$ we assume the same set of conditions for $\alpha > 2$.

Since $\sum_{1}^{\infty} n^{-1} |\mathcal{E}_n|^{k'} < \infty$ implies that $\mathcal{E}_n = O(n)$, it follows from Lemma 9 that

(4.5)(i)
$$\sum_{1}^{\infty} n^{ak'-1} \left| \bigtriangleup^{a-1} \left(\frac{\varepsilon_n}{n} \right) \right|^{k'} < \infty$$

Also it is obvious that

(4.5)(ii)
$$\sum_{1}^{\infty} n^{(\alpha-1)k'-1} \left(\frac{p_n}{P_n}\right)^{k'} |\mathcal{E}_n|^{k'} < \infty$$

Also since $\alpha > 2$ (i) implies that

$$\sum_{1}^{\infty} n^{2k'-1} \left| riangle \left(rac{oldsymbol{arepsilon}_n}{n}
ight)
ight|^{k'} < \infty$$
 ,

and from this it follows that

$$(4.6)(i) \qquad \qquad \sum_{1}^{\infty} n^{k'-1} |\bigtriangleup \mathcal{E}_n|^{k'} < \infty.$$

Now

$$\stackrel{\alpha}{\bigtriangleup} \varepsilon_n = \sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} \varepsilon_v$$

$$= \sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} \{ (n+\alpha) + (-\alpha+v-n) \} \frac{\varepsilon_v}{v}$$

$$= (n+\alpha) \stackrel{\alpha}{\bigtriangleup} \left(\frac{\varepsilon_n}{n} \right) - \alpha \stackrel{\alpha-1}{\bigtriangleup} \left(\frac{\varepsilon_n}{n} \right).$$

Therefore

$$\sum_{1}^{\infty} n^{ak'-1} \left| \stackrel{a-1}{\bigtriangleup} \left(\frac{n \bigtriangleup \mathcal{E}_n}{n} \right) \right|^{k'}$$

$$= \sum_{1}^{\infty} n^{ak'-1} \left| \stackrel{a}{\bigtriangleup} \mathcal{E}_n \right|^{k'}$$

$$\leq C \sum_{1}^{\infty} n^{(a+1)k'-1} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_n}{n} \right) \right|^{k'} + C \sum_{1}^{\infty} n^{ak'-1} \left| \stackrel{a-1}{\bigtriangleup} \left(\frac{\mathcal{E}_n}{n} \right) \right|^{k'}$$

$$= O(1).$$

Thus

(4.6)(ii)
$$\sum_{1}^{\infty} n^{ak'-1} \left| \bigtriangleup^{a-1} \left(\frac{n \bigtriangleup \varepsilon_n}{n} \right) \right|^{k'} < \infty.$$

Again

(4.6)(iii)
$$\sum_{1}^{\infty} n^{(\alpha-1)k'-1} \left(\frac{p_n}{P_n}\right)^{k'} |n \bigtriangleup \mathcal{E}_n|^{k'} = O(1).$$

Thus from (4.5)-(4.6) it is clear that $\{\mathcal{E}_n\}$ and $\{n \triangle \mathcal{E}_n\}$ satisfy the conditions (i), (ii)(b) and $\Sigma |\mathcal{E}_n|^{k'}/n < \infty$ with $(\alpha - 1)$ in place of α .

Hence $\{J_1(n)\}$ and $\{J_2(n)\}$ are summable $|\overline{N}, p_n|$.

We shall now consider $J_3(n)$. We will show that $\{\mathcal{E}_{n+1}t_n^1\}$ is summable $|\overline{N}, p_n|$.

$$\begin{split} &\sum_{1}^{\infty} \frac{p_{n}}{P_{n}P_{n-1}} \sum_{v=1}^{n-1} p_{v} |\mathcal{E}_{v+1}| |t_{v}^{1}| + \sum_{1}^{\infty} \frac{p_{n}}{P_{n}} |\mathcal{E}_{n+1}| |t_{n}^{1}| \\ &= 2 \sum_{v=1}^{\infty} \frac{p_{v}}{P_{v}} |\mathcal{E}_{v+1}| |t_{v}^{1}| \\ &\leq C \left(\sum_{v=1}^{\infty} \left(\frac{p_{v}}{P_{v}} \right)^{k'} |\mathcal{E}_{v+1}|^{k'} \cdot v^{ak'-1} \right)^{1/k'} \left(\sum_{v=1}^{\infty} v^{-ak+k-1} |t_{v}^{1}|^{k} \right)^{1/k'} \\ &= O(1) \,, \end{split}$$

by (ii)(b), condition (a) and Lemma 10.

Hence $\{J_3(n)\}$ is summable $|\overline{N}, p_n|$.

Therefore the theorem is proved for $s+1 < \alpha \leq s+2$ ($s \geq 1$) and consequently theorem holds for $\alpha > 2$.

Case (iv): $0 < \alpha \leq 1$. We have

$$\begin{split} C_{n,r} &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{v=r}^n P_{v-1} \frac{\mathcal{E}_v}{v} A_{v-r}^{-\alpha-1} \\ &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} \stackrel{-\alpha}{\frown} \left(\stackrel{\alpha}{\bigtriangleup} \frac{\mathcal{E}_v}{v} \right) \\ &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} \sum_{q=v}^\infty A_{q-v}^{\alpha-1} \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \\ &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \left[\sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} \sum_{q=v}^n A_{q-v}^{\alpha-1} \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right] \\ &+ \sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} \sum_{q=n+1}^\infty A_{q-v}^{\alpha-1} \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right] \\ &= \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{q=r}^n \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1} \\ &+ \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{q=n+1}^\infty \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1} \\ &+ \frac{\mathcal{P}_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} \sum_{q=n+1}^\infty \stackrel{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \sum_{v=r}^n P_{v-1} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1} \\ &= Q_1 + Q_2, \quad \text{say.} \end{split}$$

It is, therefore, sufficient to prove that

(4.7)
$$\sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} Q_1 u_n \right|^{k'} < \infty,$$

(4.8)
$$\sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} Q_2 u_n \right|^{k'} < \infty, \text{ whenever } u_n = O(1).$$

PROOF OF (4.7). We have for $0 < \alpha < 1$

$$\begin{split} \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} A_r^{\alpha} r^{1/k} u_n \sum_{q=r}^n \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \sum_{v=r}^q P_{v-1} A_{v-r}^{-\alpha-1} A_{q-v}^{\alpha-1} \right|^{k'} \\ & \leq \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{q=r}^n \left| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right| \left| \sum_{v=r}^{q-1} - p_v \sum_{m=r}^v A_{m-r}^{-\alpha-1} A_{q-m}^{\alpha-1} \right| \right|^{k'} \\ & + P_{q-1} \sum_{m=r}^q A_{m-r}^{-\alpha-1} A_{q-m}^{\alpha-1} \right| \end{split}^{k'} \\ & \leq C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{q=r}^n \left| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right| \sum_{v=r}^{q-1} \frac{P_v}{v} A_{q-r}^{\alpha-1} A_{v-r}^{-\alpha} \right)^{k'} \\ & + C \sum_{r=1}^{\infty} r^{(\alpha+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_n}{P_n P_{n-1}} \sum_{q=r}^n \left| \overset{\alpha}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right| P_{q-1} A_{q-r}^{-1} \right)^{k'} \end{split}$$

$$\begin{split} & \leq C\sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{q=r}^{\infty} P_{q-1} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right| \sum_{n=q}^{\infty} \frac{p_n}{P_n P_{n-1}} \right)^{k'} \\ & + C\sum_{r=1}^{\infty} r^{(a+1)k'-1} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_r}{r} \right) \right|^{k'} = C\sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{q=r}^{\infty} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right| \right)^{k'} + C \\ & = O(1) \sum_{r=1}^{\infty} r^{ak'-1} \sum_{q=r}^{\infty} q^{(\delta+a)k'-1} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right|^{k'} \cdot \left(\sum_{q=r}^{\infty} q^{-\delta k - ak+k-1} \right)^{k'/k} \\ & + O(1), 1 - a < \delta < 1, \\ & = O(1) \sum_{r=1}^{\infty} r^{ak'-1-ak'-\delta k'+k'} \sum_{q=r}^{\infty} q^{(a+\delta)k'-1} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right|^{k'} + O(1) \\ & = O(1) \sum_{q=1}^{\infty} q^{(a+1)k'-1} \left| \stackrel{a}{\bigtriangleup} \left(\frac{\mathcal{E}_q}{q} \right) \right|^{k'} + O(1) = O(1), \text{ by (i)}. \end{split}$$

If $\alpha = 1$, then the proof is easy. This proves (4.7) for $0 < \alpha \leq 1$.

PROOF OF (4.8). For $0 < \alpha < 1$ we have as in (4.7)

$$\begin{split} \sum_{r=1}^{\infty} \left| \sum_{n=r}^{\infty} Q_{2} u_{n} \right|^{k'} \\ &= \sum_{r=1}^{\infty} r^{(a+1)k'-1} \left| \sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} u_{n} \sum_{q=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \sum_{v=r}^{n} P_{v-1} A_{v-r}^{-a-1} A_{q-v}^{a-1} \right|^{k'} \\ &\leq \sum_{r=1}^{\infty} r^{(a+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{q=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| \right|_{v=r}^{n-1} - p_{v} \sum_{m=r}^{v} A_{m-r}^{-a-1} A_{q-m}^{a-1} \\ &+ P_{n-1} \sum_{m=r}^{n} A_{m-r}^{-a-1} A_{q-m}^{a-1} \right| \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n}} \sum_{q=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| A_{q-r}^{a-1} A_{n-r}^{1-a} \right)^{k'} \\ &+ O(1) \sum_{r=1}^{\infty} r^{(a+1)k'-1} \left(\sum_{n=r}^{\infty} \frac{p_{n}}{P_{n}} \sum_{q=n+1}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| A_{q-r}^{a-1} A_{n-r}^{-a} \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{q=r}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| \log \frac{2q}{r} \right)^{k'} \\ &+ O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{q=r}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| \log \frac{2q}{r} \right)^{k'} \\ &+ O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{q=r}^{\infty} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| \right)^{k'} \\ &= O(1) \sum_{r=1}^{\infty} r^{ak'-1} \left(\sum_{q=r}^{\infty} q^{k'-1+(a/4)k'} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right| \right)^{k'} \\ &+ O(1) = O(1) \sum_{q=1}^{\infty} q^{(a+1)k'-1} \left| \bigtriangleup \left(\frac{\mathcal{E}_{q}}{q} \right) \right|^{k'} + O(1) = O(1) . \end{split}$$

The case $\alpha = 1$ can be easily disposed of.

This completes the proof of the theorem.

References

- [1] A. F. ANDERSON, Studier over Cesàro's summabillitet metode (Copenhagen, 1921).
- [2] L. S. BOSANQUET, Note on convergence and summabilitys factors III, Proc. London Math. Soc. (2), 50(1948), 489-496.
- [3] T. M. FLETT, On an extension of absolute summability and some theorems of Littlewood and Paley. Proc. London Math. Soc. (3), 7 (1957), 113-141.
- [4] E. G. KOGBETLIANTZ, Sur la séries absolument sommables par la méthode des moyonnes arithmétiques. Bull. Sci. Math. (2), 49 (1925), 234-256.
- [5] S. M. MAZHAR, On |C, β|_k summability factors of infinite series, Acad. Roy. Belg. Bull. Cl. Sci., 57(1971), 275–286.
- [6] M. R. MEHDI, Summability factors for generalized absolute summability I. Proc. London Math. Soc., 10(1960), 180-200.
- [7] M. R. MEHDI, Ph. D. Thesis (London), 1959.
- [8] R. N. MOHAPATRA, On absolute Riesz summability factors, J. Indian Math. Soc. 32(1968), 113-129.
- [9] A. Peyerimhoff, Über einen Satz von Herrn Kogbetliantz aus der Theorie der absoluten Cesàroschen Summierbarkeit Arch. Math., 3(1952), 262-265.

DEPARTMENT OF APPLIED SCIENCE, COLLEGE OF ENGINEERING AND TECHNOLOGY, ALIGARH MUSLIM UNIVERSITY, ALIGARH (INDIA).