THE EQUATION $\Delta u=P u$ ON E^{m} WITH ALMOST ROTATION FREE $P \geqq 0$

Mitsuru Nakai

(Rec. Nov. 17, 1970; Rev. Dec. 14, 1970)

Consider a connected C^{∞} Riemannian m-manifold $R(m \geqq 2)$ and a continuously differentiable function $P(\geqq 0$ and $\not \equiv 0)$ on R. The space of solutions of $d * d u=P u * 1$ or $\Delta u=P u$ on R will be denoted by $P(R)$. Let $\mathcal{O}_{P X}$ be the set of pairs (R, P) such that the subspace $P X(R)$ of $P(R)$ consisting of functions with a certain property X reduces to $\{0\}$. Here we let X be B which stands for boundedness, D for the finiteness of the Dirichlet integral $D_{R}(u)=\int_{R} d u \wedge * d u$, and E for the finiteness of the energy integral $E_{R}^{P}(u)=D_{R}(u)+\int_{R} P u^{2} * 1$; we also consider nontrivial combinations of these properties. We denote by \mathcal{O}_{G} the set of pairs (R, P) such that there exists no harmonic Green's function on R.

The purpose of this paper is to show that $\left(E^{m}, P\right)$ will be an example for the strictness of each of the following inclusion relations

$$
\begin{equation*}
\mathcal{O}_{G} \subset \mathcal{O}_{P B} \subset \mathcal{O}_{P D} \subset \mathcal{O}_{P B} \tag{1}
\end{equation*}
$$

if P is properly chosen, where $E^{m}(m \geqq 3)$ is m-dimensional Euclidean space and P is a continuously differentiable function on $E^{m}(\geqq 0, \equiv 0)$.

More precisely let

$$
\begin{equation*}
P(x) \sim|x|^{-\alpha} \tag{2}
\end{equation*}
$$

as $|x| \rightarrow \infty$, i. e. there exists a constant $c>1$ such that $c^{-1}|x|^{-\alpha} \leqq P(x) \leqq c|x|^{-\alpha}$ for large $|x|$. Then the following is true:

$$
\left\{\begin{array}{l}
\left(E^{m}, P\right) \in \mathcal{O}_{P B}-\mathcal{O}_{G} \text { if } \alpha \leqq 2 \tag{3}\\
\left(E^{m}, P\right) \in \mathcal{O}_{P D}-\mathcal{O}_{P B} \text { if } 2<\alpha \leqq(m+2) / 2 \\
\left(E^{m}, P\right) \in \mathcal{O}_{P B}-\mathcal{O}_{P D} \text { if }(m+2) / 2<\alpha \leqq m
\end{array}\right.
$$

[^0]By definition, $\left(E^{m}, P\right) \notin \mathcal{O}_{G}$ for every α, and $\left(E^{m}, P\right) \notin \mathcal{O}_{P E}$ for $\alpha>m$.
These relations will be proven first for a $P(x)$ which is invariant under every rotation of E^{m} with respect to the origin. To settle the general case (2) we will study the dependence of the linear space structure of $P X(R)$ on P for general Riemannian manifolds R, where $X=B, B D$, and $B E$. This problem also has interest in its own right.

Comparison theorems

1. Let $\left(g_{i j}\right)$ be the metric tensor on R, $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$, and $g=\operatorname{det}\left(g_{i j}\right)$. We also denote simply by $d x$ the volume element $\sqrt{g} d x^{1} \cdots d x^{m}$. The Laplace-Beltrami operator is then

$$
\Delta \cdot=\frac{1}{\sqrt{g}} \sum_{i=1}^{m} \frac{\partial}{\partial x^{i}}\left(\sum_{j=1}^{m} \sqrt{g}(x) g^{i j}(x) \frac{\partial \cdot}{\partial x^{j}}\right) .
$$

We always assume that the function P in the operator

$$
A^{P}=\Delta-P
$$

is of class $C^{1}, P \geqq 0$, and $\equiv 0$ in R, unless otherwise stated. We are interested in the vector space structure of $P X(R)(X=B, B D, B E, D$, or $E)$. Observe the following:

The space $P B D(R)$ (resp. $P B E(R))$ is dense in $P D(R)$ (resp. $P E(R))$ with respect to the topology $\tau_{D}\left(r e s p . \tau_{E}\right)$ given by the simultaneous convergence in $D_{R}(\cdot)\left(\right.$ resp. $\left.E_{R}(\cdot)\right)$ and uniform convergence on every compact set in R. In particular

$$
\begin{equation*}
\mathcal{O}_{P D}=\mathcal{O}_{P B D}\left(\text { resp. } \mathcal{O}_{P B}=\mathcal{O}_{P B B}\right) \tag{4}
\end{equation*}
$$

The D-part of this statement is the author's recent result ([8],[9]). The E-part was obtained by Royden [11](see also Glasner-Katz [1]). In view of these results we will only study the class $P B(R)$ and its subspaces $P B D(R)$ and $P B E(R)$.

We also mention:
Any function in $P X(R)$ is a difference of two nonnegative functions in $P X(R)$.
2. The Green's function $G^{P}(x, y)$ of A^{P} on R is characterized as the smallest positive function on R such that

$$
\begin{equation*}
-A_{x}^{P} G^{P}(x, y)=\delta_{y} \tag{5}
\end{equation*}
$$

where δ_{y} is the Dirac measure. Since $P \geqq 0$ and $\equiv 0, G_{R}^{P}(x, y)$ always exists (cf. e.g. Sario-Nakai [12; Appendix]). This result was obtained by Myrberg [6], who also proved that there always exists a strictly positive solution of $A_{x}^{P} u=0$ on R.

We will call a subregion Ω of R regular if the closure $\bar{\Omega}$ of Ω is compact and the relative boundary $\partial \Omega$ of Ω consists of a finite number of disjoint C^{∞} hypersurfaces. The Green's function $G_{\square}^{P}(x, y)$ of A^{P} on Ω always exists.

Let Q be another C^{1} function on R such that $Q \geqq 0$ and $\equiv 0$ on R. Consider the integral operator $T_{\mathrm{Q}}=T_{\mathrm{Q}}^{P Q}$:

$$
\begin{equation*}
T_{\Omega} \varphi=\int_{\Omega} G_{\Omega}^{q}(\cdot, y)(Q(y)-P(y)) \varphi(y) d y \tag{6}
\end{equation*}
$$

for functions φ on Ω such that the integral on the right is defined in the sense of Lebesgue. We also consider $S_{\mathrm{a}}=S_{\mathrm{a}}^{P Q}$:

$$
\begin{equation*}
S_{\mathrm{a}}=I_{\mathrm{a}}-T_{\mathrm{a}} \tag{7}
\end{equation*}
$$

where I_{Ω} is the identity. If φ is bounded and continuous on Ω, then it is easy to see that $T_{\mathrm{a}} \varphi \in C(\bar{\Omega})$ and

$$
\begin{equation*}
\left(T_{\mathrm{a}} \varphi\right) \mid \partial \Omega=0 \tag{8}
\end{equation*}
$$

If φ is bounded and locally uniformly Hölder continuous on Ω, then $T_{\mathrm{a}} \varphi$ is of class C^{2} and

$$
\begin{equation*}
\Delta T_{\mathrm{a}} \varphi=-(Q-P) \varphi+Q T_{\mathrm{a}} \varphi \tag{9}
\end{equation*}
$$

on Ω (cf. e. g. Itô [3], Miranda [5]). Therefore by (8) and Green's formula we deduce

$$
D_{\mathrm{a}}\left(T_{\mathrm{a}} \varphi\right)=-\int_{\mathrm{a}} T_{\mathrm{a}} \varphi(x) \cdot \Delta_{x} T_{\mathrm{a}} \varphi(x) d x
$$

By (9) the Fubini theorem implies that

$$
\begin{equation*}
D_{\mathrm{a}}\left(T_{\mathrm{a}} \varphi\right)=<\varphi, \varphi>_{\mathrm{a}}^{P Q}-\int_{\mathrm{a}} Q(x)\left(T_{\mathrm{a}} \varphi(x)\right)^{2} d x \tag{10}
\end{equation*}
$$

where
(11) $<\boldsymbol{\varphi}, \psi>{ }_{\mathbf{R}}^{P Q}=\int_{\mathbf{Q} \times \mathbf{\Omega}} G_{Q}^{q}(x, y)(Q(x)-P(x))(Q(y)-P(y)) \boldsymbol{\varphi}(x) \psi(y) d x d y$.
3. Let $u \in P B(\Omega)$. By (9$), S_{\mathrm{o}} u=S_{\mathrm{\Omega}}^{\text {PQ }} u \in Q B(\Omega)$. Since $u-S_{\mathrm{Q}} u=T_{\mathrm{o}} u$, the relation (8) and the maximum principle imply

$$
\begin{equation*}
\left\|S_{\mathrm{a}} u\right\|_{\mathrm{a}}=\|u\|_{\mathrm{a}}, \tag{12}
\end{equation*}
$$

where $\|\cdot\|_{\mathrm{Q}}$ is the supremum norm considered on Ω. Let $\bar{S}_{\mathrm{Q}}=S_{\Omega}^{Q P}$. Then $\bar{S}_{Q} S_{\mathrm{a}} u \in P B(\Omega)$. Since $u-\bar{S}_{\mathrm{a}} S_{\mathrm{a}} u \in P B(\Omega)$ and $u-\bar{S}_{\mathrm{Q}} S_{\mathrm{0}} u=T_{\mathrm{a}}^{P Q} u+T_{\mathrm{a}}^{Q P} S_{\mathrm{a}} u$, the relation (8) implies that $u-\bar{S}_{\mathbf{Q}} S_{\mathrm{Q}} u \equiv 0$ on Ω. Therefore

$$
\begin{equation*}
S_{\mathrm{a}}^{Q P} \circ S_{\mathrm{a}}^{P Q}=I_{\mathrm{a}}^{P}, S_{\mathrm{a}}^{P Q} \circ S_{\mathrm{a}}^{Q P}=I_{\mathrm{a}}^{P} . \tag{13}
\end{equation*}
$$

We have thus proved that
$S_{\mathrm{Q}}=S_{\mathrm{Q}}^{P Q}$ is an isometric isomorphism from the class $P B(\Omega)$ onto the class $Q B(\Omega)$.
4. For regular regions $\Omega \subset R$, the classes $P B D(\Omega)$ and $P B E(\Omega)$ are always identical. Observe that

$$
\left\{\begin{array}{l}
\left(D_{\mathrm{Q}}\left(S_{\mathrm{Q}}^{P Q} u\right)\right)^{1 / 2} \leqq\left(D_{\mathrm{Q}}(u)\right)^{1 / 2}+\left(<u, u>_{\mathrm{Q}}^{P Q}\right)^{1 / 2}, \tag{14}\\
\left(D_{\mathrm{Q}}(u)\right)^{1 / 2} \leqq\left(D_{\mathrm{Q}}\left(S_{\mathrm{Q}}^{P Q} u\right)\right)^{1 / 2}+\left(<u, u>_{\mathrm{Q}}^{P Q}\right)^{1 / 2}
\end{array}\right.
$$

for every $u \in P B(\Omega)$. By Green's formula we also deduce

$$
\left\{\begin{array}{l}
E_{\square}^{Q}\left(S_{\mathrm{a}}^{P Q} u\right)+E_{\square}^{Q}\left(T_{\mathrm{a}}^{P Q} u\right)=E_{\mathrm{a}}^{P}(u)+\int_{\mathrm{a}}(Q(x)-P(x))(u(x))^{2} d x \tag{15}\\
E_{\square}^{P}(u)+E_{\square}^{P}\left(T_{\mathrm{a}}^{P Q} u\right)=E_{\mathrm{a}}^{Q}\left(S_{\mathrm{a}}^{P Q} u\right)+\int_{\mathrm{a}}(P(x)-Q(x))\left(S_{\mathrm{a}}^{P Q} u(x)\right)^{2} d x
\end{array}\right.
$$

where $E_{\mathrm{Q}}^{P}(u)=D_{\mathrm{a}}(u)+\int_{\mathrm{a}} P(x)(u(x))^{2} d x$. From (14) it follows that
$S_{\Omega}=S_{\Omega}^{p Q}$ is an isometric (with respect to $\|\cdot\|_{\mathrm{a}}$) isomorphism from the class $P B D(\Omega)=P B E(\Omega)$ onto the class $Q B D(\Omega)=Q B E(\Omega)$.
5. We proceed to the comparison of $P X(R)$ and $Q: X(R)$ for $X=B, B D$, and $B E$. Consider the integral operator $T=T^{P Q}$:

$$
\begin{equation*}
T \boldsymbol{\varphi}=\int_{R} G^{Q}(x, y)(Q(y)-P(y)) \varphi(y) d y \tag{16}
\end{equation*}
$$

for functions φ on R such that the integral on the right is defined in the sense of Lebesgue. We will say that the ordered pair (P, Q) satisfies the condition (B) if

$$
\begin{equation*}
\int_{R} G^{q}(x, y)|Q(y)-P(y)| d y<\infty \tag{B}
\end{equation*}
$$

By the Harnack inequality (B) is satisfied for every $x \in R$ if and only if (B) is valid for some $x \in R$. In this no. 5 we assume that (P, Q) and (Q, P) satsfy (B). If φ is bounded and continuous on R, then $T \varphi$ is defined and continuous on R. If moreover φ is locally uniformly Hölder continuous, then $T \varphi$ is of class C^{2} and

$$
\begin{equation*}
A^{Q} T \varphi=-(Q-P) \varphi \tag{17}
\end{equation*}
$$

on R (cf.(9)). We also consider $S=S^{P Q}$:

$$
\begin{equation*}
S=I-T \tag{18}
\end{equation*}
$$

where I is the identity operator.
Let $\{\Omega\}$ be a directed set of regular regions Ω such that the union of $\{\Omega\}$ is R. For a continuous function φ_{a} on Ω we use the same notation φ_{a} for the function which is φ_{a} on Ω and 0 on $R-\Omega$. Assume that

$$
\left\|\boldsymbol{\varphi}_{\mathbf{a}}\right\|=\sup _{R}\left|\boldsymbol{\varphi}_{\mathbf{a}}\right|<k<\infty
$$

for every Ω. Moreover suppose there exists a bounded continuous function φ on R such that $\lim _{\Omega \rightarrow R} \boldsymbol{\varphi}_{\mathrm{a}}=\boldsymbol{\varphi}$ uniformly on each compact set in R. Then

$$
\begin{equation*}
S \varphi=\lim _{\Omega \rightarrow R} S_{\mathrm{a}} \varphi_{\mathrm{a}} \tag{19}
\end{equation*}
$$

uniformly on each compact set in R. In fact,

$$
\begin{aligned}
\left|S \varphi(x)-S_{\mathrm{a}} \varphi_{\mathrm{a}}(x)\right| & \leqq\left|S \varphi(x)-S_{\mathrm{a}} \varphi(x)\right|+\left|S_{\mathrm{a}} \varphi(x)-S_{\mathrm{a}} \varphi_{\mathrm{a}}(x)\right| \\
& \leqq\left(|T|-\left|T_{\mathrm{a}}\right|\right)|\varphi|(x)+\left|\varphi(x)-\varphi_{\mathrm{a}}(x)\right|+\left|T_{\mathrm{a}}\right|\left|\varphi-\varphi_{\mathrm{a}}\right|(x) .
\end{aligned}
$$

Here $|T| \varphi=\int_{R} G^{q}(., y)|Q(y)-P(y)| \varphi(y) d y$ and $\left|T_{\mathrm{a}}\right|$ is similarly defined. Since $G_{\square}^{q}(x, y) \leqq G^{Q}(x, y)$ and $\lim _{\square \rightarrow R} G_{a}^{q}(x, y)=G^{q}(x, y)$ on R, we infer that

$$
\left|S \varphi(x)-S_{\mathbf{\Omega}} \varphi_{\mathbf{0}}(x)\right| \leqq\left(|T|-\left|T_{\mathfrak{\Omega}}\right|\right)|\boldsymbol{\varphi}|(x)+\left|\boldsymbol{\varphi}(x)-\varphi_{\mathbf{\Omega}}(x)\right|+\left|T \| \boldsymbol{\varphi}-\boldsymbol{\varphi}_{\mathrm{a}}\right|(x)
$$

and by the Lebesgue convergence theorem the right-hand side of the above inequality converges to 0 on R. By the Harnack inequality applied to $G^{Q}-G_{Q}^{Q}$ and G^{Q}, we conclude that the convergence is uniform on each compact set in R. Therefore (19) is established.
6. We will first prove a comparison theorem for $P B(R)$ and $Q B(R)$. This result is already suggested in the author's earlier paper [7] (see also[9] and Maeda [4]):

THEOREM 1. If (P, Q) and (Q, P) satisfy the condition (B), then $S^{P Q}$ is an isometric isomorphism of $P B(R)$ onto $Q B(R)$.

Proof. Let $u \in P B(R)$. From (17) it follows that $S u \in Q(R)$. By the identity (12) we deduce $\left\|S_{\mathrm{Q}} u\right\|_{\mathrm{Q}}=\|u\|_{\mathrm{Q}} \leqq\|u\|_{\text {and a fortiori }}$

$$
\begin{equation*}
\|S u\| \leqq\|u\|, \tag{20}
\end{equation*}
$$

i. e. $S u \in Q B(R)$. Suppose $S u=0$. By (13) and (19), $S^{Q P} S u=u$ and a fortiari $u \equiv 0$. Thus S is an isomorphism of $\operatorname{PB}(R)$ into $Q B(R)$.

To prove that S is surjective let $v \in Q B(R)$ and $u_{\mathrm{n}}=S_{\Omega}^{O P} v$. Observe that $u_{\mathrm{a}} \in P B(\Omega),\left\|u_{\mathrm{a}}\right\|_{\mathrm{a}} \leqq\|v\|$, and by (13), $v=S_{\mathrm{Q}} u_{\mathrm{a}}$. Let $\{\Omega\}$ be a directed set of regular subregions Ω such that

$$
u=\lim _{\Omega \rightarrow R} u_{\mathrm{a}} \in P B(R)
$$

uniformly on each compact set in R. By (19) we infer that

$$
S u=\lim _{\Omega \rightarrow R} S_{\mathrm{a}} u_{\mathrm{a}}=v
$$

i. e. S is surjective. Since $\|S u\| \geqq\|v\|_{\mathrm{a}}=\left\|S_{\mathrm{Q}} u_{\mathrm{a}}\right\|=\left\|u_{\mathrm{a}}\right\|$, we deduce $\mid S u\|\geqq\| u \|$. This with (20) implies that ${ }^{5} S$ is isometric. Q.E.D.

Corollary 1.1. Since P satisfies

$$
\begin{equation*}
\int_{R} G^{P}(x, y) P(y) d y<\infty \tag{21}
\end{equation*}
$$

(cf.[4]), $P B(R)$ and $(c P) B(R)$ are isomorphic for $c>0$.
Proof. The condition (21) implies that $(c P, P)$ and $(P, c P)$ satisfy the condition (B). Therefore $S^{(c P) P}$ is an isometric isomorphism of $(c P) B(R)$ onto $P B(R)$. Q.E.D.

Royden [11] proved the following comparison theorem entirely different in nature from ours:

If there exists a finite constant $c>1$ such that $c^{-1} Q \leqq P \leqq c Q$ outside a compact set in R, then there exists an isometric isomorphism of $P B(R)$ onto $Q B(R)$.
7. We turn to a comparison theorem for $P B D(R)$ and $Q B D(R)$. We will say that the ordered pair (P, Q) satisfies the condition (D) if

$$
\begin{equation*}
\int_{P \times R} G^{Q}(x, y)|Q(x)-P(x)| \cdot|Q(y)-P(y)| d x d y<\infty . \tag{D}
\end{equation*}
$$

It is clear that (E) implies (B). In this no. 7 we always assume that (P, Q) and (Q, P) satisfy (D). In accordance with (11) we set
(22) $<\varphi, \psi>^{P Q}=\int_{R \times R} G^{Q}(x, y)(Q(x)-P(x))(Q(y)-P(y)) \varphi(x) \psi(y) d x d y$.

This is well defined for bounded continuous functions φ and ψ on R. By the Lebesgue convergence theorem we deduce

$$
\begin{equation*}
<\varphi, \psi>^{P Q}=\lim _{Q \rightarrow R}<\varphi, \psi>_{Q}^{P Q} . \tag{23}
\end{equation*}
$$

Theorem 2. $I f(P, Q)$ and (Q, P) satisfy the conidtion (D), then $S^{P Q}$ is an isometric isomorphism of $\operatorname{PBD}(R)$ onto $Q B D(R)$.

Proof. Since (D) implies (B), Theorem 1 implies that $S=S^{P Q}$ is an isometric isomorphism of $P B(R)$ onto $Q B(R)$. Let $u \in P B D(R)$. By (14) we have

$$
\begin{equation*}
\left(D\left({ }_{\Omega} S_{\mathrm{a}} u\right)\right)^{1 / 2} \leqq\left(D_{\mathrm{a}}(u)\right)^{1 / 2}+\left(<u, u>_{\mathrm{a}}\right)^{1 / 2} . \tag{24}
\end{equation*}
$$

From (19) for $\varphi=u \in P B(R)$ it follows that

$$
\begin{equation*}
\lim _{\Omega \rightarrow R} d S_{\mathrm{a}} u \wedge * d S_{\mathrm{o}} u=d S u \wedge * d S u \tag{25}
\end{equation*}
$$

on R. By (23) and the Fatou lemma, we deduce from (24)

$$
\left(D_{R}(S u)\right)^{1 / 2} \leqq\left(D_{R}(u)\right)^{1 / 2}+(<u, u>)^{1 / 2}<\infty .
$$

Therefore $S(P B D(R)) \subset Q B D(R)$. To obtain the reversed inclusion let $u \in P B(R)$ and $S u \in Q B D(R)$. Since $u=S u+T u$ on R,

$$
\begin{equation*}
\left(D_{R}(u)\right)^{1 / 2} \leqq\left(D_{R}(S u)\right)^{1 / 2}+\left(D_{R}(T u)\right)^{1 / 2} . \tag{26}
\end{equation*}
$$

By (25), $\left|\operatorname{grad} T_{0} u\right|^{2}$ converges to $|\operatorname{grad} T u|^{2}$ on R. By the Fatou lemma and the relations (10) and (23), we infer that

$$
\begin{aligned}
D_{\mathrm{a}}(T u) & \leqq{\lim \inf _{\mathrm{Q} \rightarrow R} D_{\mathrm{Q}}\left(T_{\mathrm{Q}} u\right)} \\
& \leqq \lim _{\mathrm{Q} \rightarrow R}<u, u>_{\mathrm{Q}}=<u, u><\infty
\end{aligned}
$$

From (26) it follows that $D_{R}(u)<\infty$, i. e. $S(P B D(R))=Q B D(R)$. Q.E.D.

Corollary 2.1. If P satisfies

$$
\begin{equation*}
\int_{R} G^{P}(x, y) P(x) P(y) d x d y<\infty \tag{27}
\end{equation*}
$$

then $P B D(R)$ and $(c P) B D(R)$ are isomorphic for $c>0$.
Proof. The condition (27) implies that $(c P, P)$ and $(P, c P)$ satisfy the condition (D). Therefore $S^{(c P) P}$ is an isometric isomorphism of $(c P) B D(R)$ onto $P B D(R)$. Q.E.D.
8. We turn to a comparison theorem for $\operatorname{PBE}(R)$ and $Q B E(R)$. We will say that the ordered pair (P, Q) satisfies the condition (E) if
(E)

$$
\int_{R}|Q(x)-P(x)| d x<\infty
$$

It is clear that (E) implies (B). The following comparison theorem was obtained by [11] (see also Glasner-Katz [1]):

THEOREM 3. If (P, Q) satisfies the condition (E), then $S^{P Q}$ is an isometric isomorphism of $P B E(R)$ onto $Q B E(R)$.

Proof. Since (E) implies (B), Theorem 1 entails that $S=S^{P Q}$ is an isometric isomorphism of $P B(R)$ onto $Q B(R)$. Let $u \in P B E(R)$. From (15) it follows that

$$
E_{\mathrm{Q}}^{Q}\left(S_{\mathrm{Q}} u\right) \leqq E_{\mathrm{Q}}^{P}(u)+\|u\|^{2} \int_{\mathrm{a}}|Q(x)-P(x)| d x
$$

By (25) and the Fatou lemma, we obtain

$$
E_{R}^{Q}(S u) \leqq E_{R}^{p}(u)+\|u\|^{2} \int_{R}|Q(x)-P(x)| d x<\infty
$$

i. e. $S(P B E(R)) \subset Q B E(R)$. Conversely let $u \in P B(R)$ and $S u \in Q B E(R)$. By (15) and $\left\|S_{\mathrm{o}} u\right\|=\|u\|$, we have

$$
E_{\mathrm{Q}}^{P}(u) \leqq E_{\mathrm{Q}}^{P}\left(S_{\mathrm{Q}} u\right)+\|u\|^{2} \int_{\mathrm{a}}|Q(x)-P(x)| d x
$$

On setting $S_{\mathrm{\Omega}} u=u$ on $R-\Omega$ we infer by Green's formula that

$$
E_{\Omega}^{q}\left(S_{\mathrm{Q}} u-S_{\mathbf{Q}^{\prime}} u\right)=E_{\mathrm{Q}}^{q}\left(S_{\mathrm{Q}} u\right)-E_{\mathbf{Q}^{\prime}}^{\alpha}\left(S_{\mathrm{a}^{\prime}} u\right)
$$

for $\Omega^{\prime} \supset \Omega$. Therefore $E_{\Omega}^{Q}\left(S_{\Omega} u\right) \rightarrow E_{R}^{Q}(S u)$ as $\Omega \rightarrow R$, and a fortiori

$$
E_{R}^{P}(u) \leqq E_{R}^{Q}(S u)+\|u\|^{2} \int_{0}|Q(x)-P(x)| d x<\infty
$$

We have shown that $S(P B E(R))=Q B E(R)$. Q.E.D.
Corollary 3.1. If P satisfies

$$
\begin{equation*}
\int_{R} P(x) d x<\infty \tag{28}
\end{equation*}
$$

then $P B E(R)$ and $(c P) B E(R)$ are isomorphic for $c>0$.
Proof. The condition (28) implies that $(c P, P)$ and $(P, c P)$ satisfy the condition (E). Therefore $S^{(c P) P}$ is an isometric isomorphism of $(c P) B E(R)$ onto $P B E(R)$. Q.E.D.
9. As usual we denote by $H(R)$ the space of harmonic functions u on R, i.e. $\Delta u=0$. Comparison theorems between $P X(R)$ and $H X(R)$ for $X=B, B D$, and $B E$ can be obtained on replacing Q by 0 in nos. 1-8. We will denote by $G(x, y)=G_{R}(x, y)$ the harmonic Green's function on R. If $R \in O_{G}$, then $P B(R)=\{0\}$ (Ozawa [10], Royden [11]). Therefore excluding trivial cases, we assume in this no. 9 that $R \notin O_{G}$. We will say that P satisfies the condition $\left(\mathrm{B}_{0}\right),\left(\mathrm{D}_{0}\right)$, or $\left(\mathrm{E}_{0}\right)$ if
(B_{0})

$$
\int_{R} G(x, y) P(y) d y<\infty
$$

$$
\begin{equation*}
\int_{R \times R} G(x, y) P(x) P(y) d x d y<\infty \tag{0}
\end{equation*}
$$

or
(E_{0})

$$
\int_{R} P(x) d x<\infty
$$

Since $G^{P}(x, y)<G(x, y)$, the conditions $\left(\mathrm{B}_{0}\right)$, $\left(\mathrm{D}_{0}\right)$, and $\left(\mathrm{E}_{0}\right) \operatorname{imply}(21),(27)$, and (28), respectively.

Dicussions in no. 6 are valid if Q is replaced by 0 :
Corollary 1.2. If P satisfies the condition $\left(\mathrm{B}_{0}\right)$, then $S^{P_{0}}$ is an isometric isomorphism of $P B(R)$ onto $H B(R)$.

The replacement of Q by 0 does not affect the validity of the reasoning in nos. 7 and 8 . With this in view we maintain:

Corollary 2.2. If P satisfies the condition $\left(\mathrm{D}_{0}\right)$, then $S^{P 0}$ is an isometric isomorphism of $\operatorname{PBD}(R)$ onto $H B D(R)$.

Corollary 3.2. If P satisfies the condition $\left(\mathrm{E}_{0}\right)$, then $S^{P 0}$ is an isometric isomorphism of $\operatorname{PBE}(R)$ onto $H B D(R)$.

Equations on Euclidean spaces.

10. Hereafter we take the Euclidean space $E^{m}(m \geqq 3)$ as the base Riemannian manifold for the equation $\Delta u=P u$. We fix an orthogonal coordinate so that the metric tensor is $\left(\delta_{i j}\right)$. For a point $x \in E^{m}$, its coordinate will be denoted by $\left(x^{1}, \cdots, x^{m}\right)$. The volume element is thus $d x=d x^{1} \cdots d x^{m}$. We also write $|x|=\left(\sum_{i=1}^{m}\left(x^{i}\right)^{2}\right)^{1 / 2}$.

The harmonic Green's function $G(x, y)$ on E^{m} is given by

$$
\begin{equation*}
c_{m} G(x, y)=|x-y|^{2-m}, \tag{29}
\end{equation*}
$$

where $c_{m}=(m-2) \omega_{m}$ with ω_{m} the surface area $2 \pi^{m / 2} / \Gamma(m / 2)$ of the unit ball in E^{m}. We first observe the following elementary identity (a special case of the Riesz composition theorem):

$$
\begin{equation*}
\int_{E^{m}} G(x, y)|y|^{-\alpha} d y=a|x|^{-(\alpha-))}(m>\alpha>2) \tag{30}
\end{equation*}
$$

where $a=a(m, \alpha)$ is a finite strictly positive constant depending on m and α but not on $x \neq 0$.

In fact let $z=\Lambda(y)$ be an affine transformation of E^{m} given by

$$
\begin{equation*}
z^{i}=\Lambda^{i}(y)=|x|^{-1} \sum_{j=1}^{m} p_{i j}\left(y^{j}-x^{j}\right)(i=1, \cdots, m) \tag{31}
\end{equation*}
$$

where $\left(p_{i j}\right)$ is an orthonormal matrix such that

$$
\begin{equation*}
\delta^{1 i}=-\sum p_{i j}|x|^{-1} x^{3}(i=1, \cdots, m) \tag{32}
\end{equation*}
$$

From (31) and (32) it follows that

$$
\begin{equation*}
|y-x|=|x||z|,|y|=|x||z-e| \tag{33}
\end{equation*}
$$

with $e=(1,0, \cdots, 0)$. The Jacobian of Λ is

$$
J=\operatorname{det}\left(\frac{\partial z^{i}}{\partial y^{j}}\right)=\operatorname{det}\left(|x|^{-1} p_{i j}\right)=|x|^{-m}
$$

and therefore $d z=|x|^{-m} d y$. Hence

$$
\begin{aligned}
\int_{E^{m}} G(x, y)|y|^{-\alpha} d y & =c_{m}^{-1} \int_{E^{m}}|x-y|^{2-m}|y|^{-\alpha} d y \\
& =c_{m}^{-1} \int_{E^{m}}|x|^{2-m}|z|^{2-m} \cdot|x|^{-\alpha}|z-e|^{-\alpha} \cdot|x|^{m} d z \\
& =a|x|^{-(\alpha-y)}
\end{aligned}
$$

where

$$
a=c_{m}^{-1} \int_{E^{m}}|z|^{2-m}|z-e|^{-a} d z<\infty
$$

if $\alpha>2$.
11. Let $\lambda(t)$ be a real-valued C^{2} function on $[0, \infty)$ such that $\frac{d}{d t} \lambda(t)$ $\geqq 0, \frac{d^{2}}{d t^{2}} \lambda(t) \geqq 0, \lambda(t) \geqq t$, and

$$
\begin{cases}\lambda(t) \equiv \varepsilon & (t \in[0, \varepsilon / 2]) \tag{34}\\ \lambda(t) \equiv t & (t \in,[\varepsilon+\delta, \infty))\end{cases}
$$

where ε and δ are arbitrarily fixed positive number. Consider the equation

$$
\begin{equation*}
\Delta u(x)=Q_{\alpha}(x) u(x), Q_{\alpha}(x)=\lambda(|x|)^{-\alpha} \tag{35}
\end{equation*}
$$

where $\alpha \in(-\infty, \infty)$ and $\Delta \cdot=\sum_{i=1}^{m} \frac{\partial^{2}}{\partial x^{i 2}}$. We maintain:

$$
\begin{equation*}
\operatorname{dim} Q_{\alpha} B\left(E^{m}\right) \leqq 1 \tag{36}
\end{equation*}
$$

for every $\alpha \in(-\infty, \infty)$.
For the proof let $\operatorname{dim} Q_{\alpha} B\left(E^{m}\right)>0$. Take two positive functions u_{i} in $Q_{\alpha} B\left(E^{m}\right)(i=1,2)$. Let $\Omega(n)=\left\{x \in E^{m}| | x \mid<n\right\}(n=1,2, \cdots)$ and $S_{n}=S_{Q(n)}^{q \alpha 0}, S$ $=S_{R}^{0 \alpha 0}$. Then

$$
S_{n} u_{i}(x)=u_{i}(x)+\int_{\mathbf{Q}(n)} G_{\mathbf{Q}(n)}(x, y) Q_{\alpha}(y) u_{i}(y) d y .
$$

Observe that $S_{n} u_{i} \in H B(\Omega(u))$ and $\left\|S_{n} u_{i}\right\|_{\mathrm{Q}(n)}=\left\|u_{i}\right\|_{\Omega(n)} \leqq\left\|u_{i}\right\|$. Since $u_{i}>0$, we obtain by the Lebesgue-Fatou convergence theorem that

$$
\begin{equation*}
S u_{i}(x)=u_{i}(x)+\int_{E^{m}} G(x, y) Q_{\alpha}(y) u_{i}(y) d y \tag{37}
\end{equation*}
$$

and $S u_{i} \in H B\left(E^{m}\right)$. Since

$$
\begin{equation*}
H B\left(E^{m}\right)=E^{1}, \tag{38}
\end{equation*}
$$

$S u_{i} \equiv c_{i}>0$. Set $w=c_{2} u_{1}-c_{1} u_{2} \in Q_{\alpha} B\left(E^{m}\right)$. Then by (37)

$$
w(x)=-\int_{E^{*}} G(x, y) Q_{\alpha}(y) w(y) d y=-(T w)(x)
$$

and consequently $|w| \leqq T|w|$ on E^{m}. Since $|w|$ is subharmonic and $T|w|$ is a potential, we obtain $|w| \equiv 0$. Thus u_{1} and u_{2} are linearly dependent. The space $Q_{\alpha} B\left(E^{m}\right)$ is generated by positive functions in $Q_{\alpha} B\left(E^{m}\right)$. We conclude that $\operatorname{dim} Q_{\alpha} B\left(E^{m}\right)=1$.
12. We have seen that either $\operatorname{dim} Q_{\alpha} B\left(E^{m}\right)=0$ or 1 . We next study for what α the first or the second alternative occurs. Let $\omega=\left(\omega_{i j}\right)$ be an orthonormal matrix and f_{ω} be the function defined by $f_{\omega}(x)=f(x \omega)$ for a given function f on E^{m}. Here x is viewed as the matrix of type $(1, m)$. Since $\left(Q_{\alpha}\right)_{\omega}=Q_{\alpha}$, rotation free, we conclude that $u_{\omega} \in Q_{a} B\left(E^{m}\right)$ for $u \in Q_{a} B\left(E^{m}\right)$. Because of (36), we must have $u=u_{\omega}$ for every ω. Therefore:

Every function $u \in Q_{a} B\left(E^{m}\right)$ is rotation free.
A fortiori there exists a C^{2} function $\phi_{u}(t)$ on $[0, \infty]$ such that

$$
\begin{equation*}
u(x)=\phi_{u}(|x|) . \tag{39}
\end{equation*}
$$

Suppose $\operatorname{dim} Q_{\alpha} B\left(E^{m}\right)=1$. Then for $u \in Q_{\alpha} B\left(E^{m}\right)$ such that $u>0$ we maintain:

$$
\begin{equation*}
\lim \inf _{|x| \rightarrow \infty} u(x)>0 \tag{40}
\end{equation*}
$$

If this were not the case, there would exist an increasing divergent sequence $\left\{r_{n}\right\} \subset E^{m}$ such that $\varphi_{u}\left(r_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let $\Omega\left(r_{n}\right)=\left\{x \in E^{m}| | x \mid<r_{n}\right\}$. The maximum principle implies that $\|u\|_{\Omega\left(r_{n}\right)}=\boldsymbol{\varphi}_{u}\left(r_{n}\right)$ and a fortiori $u \equiv 0$, a contradiction. By (37)

$$
S u(x)=u(x)+\int_{E^{m}} G(x, y) Q_{\alpha}(y) u(y) d y
$$

Since (40) and the maximum principle imply that $\inf _{E^{2}} u=b>0$,

$$
\int_{E^{*}} G(x, y) Q_{\alpha}(y) \mathrm{dy} \leqq b^{-1}(S u(x)-u(x))<\infty,
$$

i.e. Q_{α} satisfies the condition $\left(\mathrm{B}_{0}\right)$. Conversely if Q_{α} satisfies the condition $\left(\mathrm{B}_{0}\right)$, then by Corollary 1.2, $Q_{a} B\left(E^{m}\right)$ is isomorphic to $H B\left(E^{m}\right)$ and therefore $\operatorname{dim} Q_{a} B\left(E^{m}\right)=1$.

We have shown that $\left(E^{m}, Q_{a}\right) \in \mathcal{O}_{P B}$ is equivalent to

$$
\begin{equation*}
c_{x}=c_{m} \int_{E^{m}} G(x, y) Q_{a}(y) d y=\infty \tag{41}
\end{equation*}
$$

Clearly there exists a constant $d_{x}>1$ such that

$$
d_{x}^{-1} c_{x} \leqq e=\int_{|y|>c+\delta} \frac{1}{|y|^{m-2}} \cdot \frac{1}{|y|^{\alpha}} d y \leqq d_{x} c_{x}
$$

By using the polar coordinate we infer that $e=c_{m} \int_{c}^{\infty} r^{-(\alpha-1)} d r=\infty$ if and only if $(\alpha-1) \leqq 1$, i. e. $\alpha \leqq 2$.

The conclusion of this no. 12 is:

$$
\begin{equation*}
\left(E_{m}, Q_{\alpha}\right) \in \mathcal{O}_{P B}(\alpha \leqq 2), \quad\left(E^{m}, Q_{\alpha}\right) \notin \mathcal{O}_{P B}(\alpha>2) . \tag{42}
\end{equation*}
$$

13. Since $Q_{a} B D\left(E^{m}\right) \subset Q_{a} B\left(E^{m}\right),(36)$ implies that either $\operatorname{dim} Q_{a} B D\left(E^{m}\right)=0$ or 1. Suppose the latter alternative is the case. Let $u>0$ be the generator of $Q_{a} B D\left(E^{m}\right)$. From (37) it follows that

$$
\begin{equation*}
u(x)=c-\int_{E^{m}} G(x, y) Q_{\alpha}(y) u(y) d y \tag{43}
\end{equation*}
$$

where $c \in E^{1}$. Let $\Omega(n)=\left\{x \in E^{m}| | x \mid<n\right\}$ and $G_{n}=G_{\Omega(n)}$. Since $u \mid \partial \Omega(n)=c_{n}$, a constant, we also have

$$
u(x)=c_{n}-\int_{\Omega(n)} G_{n}(x, y) Q_{\alpha}(y) u(y) d y .
$$

By (10), we infer

$$
D_{\mathrm{Q}(n)}(u)=\int_{\mathbf{Q}(n) \times \mathbf{Q}(n)} G_{n}(x, y) Q_{\alpha}(x) Q_{\alpha}(y) u(x) u(y) d x d y .
$$

Since the integrand is nonnegative and converges increasingly to $G(x, y) Q_{\alpha}(x) Q_{\alpha}(y) \times$ $u(x) u(y)$ on $E^{m} \times E^{m}$, the Lebesgue-Fatou theorem yields

$$
\begin{equation*}
D_{E^{m}}(u)=\int_{E^{m} \times E^{m}} G(x, y) Q_{\alpha}(x) Q_{\alpha}(y) u(x) u(y) d x d y \tag{44}
\end{equation*}
$$

As in no. $12, \inf _{E^{m}} u=b>0$. Thus

$$
\int_{E^{=} \times E^{m}} G(x, y) Q_{\alpha}(x) Q_{\alpha}(y) d x d y \leqq b^{-2} D_{E^{-}}(u)<\infty,
$$

i. e. Q_{α} satisfies the condition $\left(\mathrm{D}_{0}\right)$. Conversely if Q_{α} satisfies the condition $\left(\mathrm{D}_{0}\right)$, then by Corollary 2.2, $Q_{\alpha} B D\left(E^{m}\right)$ is isomorphic to $\operatorname{HBD}\left(E^{m}\right)$. A fortiori dim $Q_{\alpha} B D\left(E^{m}\right)=1$.

We have seen that $\left(E^{m}, Q_{\alpha}\right) \in \mathcal{O}_{P B D}=\mathcal{O}_{P D}$ is equivalent to

$$
\begin{equation*}
c=c_{m} \int_{E^{m} \times E^{m}} G(x, y) Q_{\alpha}(x) Q_{\alpha}(y) d x d y=\infty . \tag{45}
\end{equation*}
$$

In view of (42) and the relation $\mathcal{O}_{P B} \subset \mathcal{O}_{P D}$, we only have to consider the case $\alpha>2$. Clearly there exists a constant $d>1$ such that

$$
d^{-1} c \leqq l=c_{m} \int_{\left(B^{m} x-V\right) \times E^{m_{y}}} G(x, y) Q_{\alpha}(x)|y|^{-a} d x d y \leqq d c
$$

where $V=\{|x| \leqq \varepsilon+\delta\}$. Let c_{m} be as in no. 10. Assume $\alpha<m$. By (30),

$$
\begin{aligned}
l & =c_{m} \int_{E^{m}-V}\left(\int_{E^{m}} G(x, y)|y|^{-\alpha} d y\right) Q_{\alpha}(x) d x=a c_{m} \int_{E^{m}-V}|x|^{-(\alpha-2)} \cdot|x|^{-\alpha} d x \\
& =a c_{m}^{2} \int_{\varepsilon+\delta}^{\infty} r^{-2 \alpha+m+1} d r .
\end{aligned}
$$

The condition $l=\infty$ is then equivalent to $-2 \alpha+m+1 \geqq-1$, i. e. $\alpha \leqq(m+2) / 2$ for $\alpha<m$. Clearly $l<\infty$ for $\alpha \geqq m$.

The conclusion of this no. 13 is:

$$
\begin{equation*}
\left(E^{m}, Q_{\alpha}\right) \in \mathcal{O}_{P B D}(\alpha \leqq(m+2) / 2), \quad\left(E^{m}, Q_{\alpha}\right) \notin \mathcal{O}_{P B D}(\alpha>(m+2) / 2) . \tag{46}
\end{equation*}
$$

14. Since $Q_{a} B E\left(E^{m}\right) \subset Q_{\alpha} B\left(E^{m}\right),(36)$ implies that either $\operatorname{dim} Q_{\alpha} B E\left(E^{m}\right)=0$ or 1 . Suppose that the latter is the case. Let $u>0$ be the generator of $Q_{a} B E\left(E^{m}\right)$. Recall that $\inf _{k^{m}} u=b>0$ (no. 12). Since

$$
E_{g_{m}}^{g^{2}}(u)=D^{k^{m}}(u)+\int_{E^{m}} Q_{\alpha}(x)(u(x))^{2} d x,
$$

we infer that

$$
\int_{E^{m}} Q_{\alpha}(x) d x \leqq b^{-2} E_{E_{m}^{m}}^{\alpha}(u)<\infty
$$

i. e. Q_{α} satisfies the condition $\left(\mathrm{E}_{0}\right)$. Conversely if Q_{α} satisfies the condition $\left(\mathrm{E}_{0}\right)$, then by Corollary 3.2, $Q_{\alpha} B E\left(E^{m}\right)$ is isomorphic to $\operatorname{HBD}\left(E^{m}\right)$. A fortiori dim $Q_{\alpha} B E\left(E^{m}\right)=1$.

We have seen that $\left(E^{m}, Q_{\alpha}\right) \in \mathcal{O}_{P B E}=\mathcal{O}_{P E}$ is equivalent to

$$
\begin{equation*}
c=\int_{E^{n}} Q_{\alpha}(x) d x=\infty . \tag{47}
\end{equation*}
$$

Let $V=\{x| | x \mid \leqq \varepsilon+\delta\}$. Clearly there exists a constant $d>1$ such that

$$
d^{-1} c<p=\int_{E^{-\pi}-V} Q_{\alpha}(x) d x<c .
$$

Using c_{m} in no. 10 , we deduce

$$
p=\int_{E^{m}-V}|x|^{-\alpha} d x=c_{m} \int_{\sigma+\delta}^{\infty} r^{-\alpha+m-1} d r
$$

and therefore $p=\infty$ if and only if $-\alpha+m-1 \geqq-1$, i.e. $\alpha \leqq m$.
The conclusion of this no. 14 is:

$$
\begin{equation*}
\left(E^{m}, Q_{\alpha}\right) \in \mathcal{O}_{P B E}(\alpha \leqq m), \quad\left(E^{m}, Q_{\alpha}\right) \notin \mathcal{O}_{P E}(\alpha>m) \tag{48}
\end{equation*}
$$

15. From the results obtained in nos. 10-14, we have the following strict inclusion relations:

$$
\begin{equation*}
\mathcal{O}_{G}<\mathcal{O}_{P B}<\mathcal{O}_{P D}=\mathcal{O}_{P B D}<\mathcal{O}_{P E}=\mathcal{O}_{P B E} \tag{49}
\end{equation*}
$$

where $\mathfrak{A}<\mathfrak{B}$ means that \mathfrak{A} is a proper subset of \mathfrak{B}. It is perhaps more or less trival to merely establish the strict inclusions in (49) but we are interested in this paper in giving a unified way for finding counter examples. The strict inclusion $\mathcal{O}_{G}<\mathcal{O}_{P B}$ was remarked by Royden [11] for $m=2$. Glasner-Katz-Nakai [2] remarked $\mathcal{O}_{P B}<\mathcal{O}_{P D}$ for $m \geqq 2$ except for $m=3$.
16. We next study the equation

$$
\begin{equation*}
\Delta u(x)=P_{a}(x) u(x), P_{a}(x) \sim|x|^{-a}(|x| \rightarrow \infty) \tag{50}
\end{equation*}
$$

on $E^{m}(m \geqq 3)$. Here $P_{\alpha}(x) \sim|x|^{-a}(|x| \rightarrow \infty)$ means that there exist positive constants $c>1$ and $\rho>1$ such that

$$
\begin{equation*}
c^{-1}|x|^{-\alpha} \leqq P_{a}(x) \leqq c|x|^{-\alpha}(|x| \geqq \rho) . \tag{51}
\end{equation*}
$$

Thus $P_{a}(x)$ is "almost rotation free." We are assuming that $P_{a}(x)$ is of class C^{1} and $P_{\alpha}(x) \geqq 0$ on E^{m}.

THEOREM 4. The following degeneracy relations are valid

$$
\begin{align*}
& \left(E^{m}, P_{\alpha}\right) \in \mathcal{O}_{P B}-\mathcal{O}_{G} \text { for every } \alpha \in(-\infty, 2] ; \tag{52}\\
& \left(E^{m}, P_{\alpha}\right) \in \mathcal{O}_{P B}-\mathcal{O}_{P D} \text { for every } \alpha \in(2,(m+2) / 2] ; \tag{53}\\
& \left(E^{m}, P_{\alpha}\right) \in \mathcal{O}_{P E}-\mathcal{O}_{P D} \text { for every } \alpha \in((m+2) / 2, m] ; \tag{54}\\
& \quad\left(E^{m}, P_{\alpha}\right) \notin \mathcal{O}_{P E} \text { for every } \alpha \in(m, \infty) . \tag{55}
\end{align*}
$$

Proof. Since $m \geqq 3, E^{m}$ always carries the harmonic Green's function given by (29). Therefore $\left(E^{m}, P_{\alpha}\right) \notin \mathcal{O}_{G}$ for every $\alpha \in E^{1}$. Observe that there exist some positive constants $c>1$ and $\rho>1$ such that

$$
\begin{equation*}
c^{-1} Q_{\alpha}(x) \leqq P_{a}(x) \leqq c Q_{\alpha}(x) \tag{56}
\end{equation*}
$$

on $\Lambda(\rho)=\left\{x \in E^{m}| | x \mid>\rho\right\}$. In particular

$$
\begin{equation*}
P_{a}(x) \leqq c Q_{a}(x) \tag{57}
\end{equation*}
$$

everywhere on E^{m}. By Royden's comparison theorem referred to in no. 6,

$$
\begin{equation*}
\operatorname{dim} P_{a} B\left(E^{m}\right)=\operatorname{dim} Q_{\alpha} B\left(E^{m}\right) \tag{58}
\end{equation*}
$$

Therefore (42) implies (52) and a half of (53), i. e. $\left(E^{m}, P_{a}\right) \notin \mathcal{O}_{P B}$ for $\alpha>2$.
Hereafter we always assume $\alpha>2$. Then $\operatorname{dim} \quad P_{a} B\left(E^{m}\right)=\operatorname{dim} Q_{a} B\left(E^{m}\right)=$ $\operatorname{dim}\left(c Q_{\alpha}\right) B\left(E^{m}\right)$. Let p_{α} and q_{α} be positive generators of $P_{\alpha} B\left(E^{m}\right)$ and $\left(c Q_{\alpha}\right) B\left(E^{m}\right)$ respectively. We set $S=S^{P_{\alpha(c e q \alpha)}}$. Since

$$
\begin{equation*}
\left|P_{\alpha}(x)-c Q_{\alpha}(x)\right| \leqq(c-1) Q_{\alpha}(x) \tag{59}
\end{equation*}
$$

and $\int_{E^{m}} G(x, y) Q_{\alpha}(x) d y<\infty$ for $\alpha>2,\left(P_{\alpha}, c Q_{\alpha}\right)$ satisfies (B) and a fortiori S is an isometric isomorphism of $P_{\alpha} B\left(E^{m}\right)$ onto ($\left.c Q_{\alpha}\right) B\left(E^{m}\right)$. We may assume

$$
q_{\alpha}=S p_{\alpha}=p_{\alpha}-\int_{E^{n}} G^{c \alpha a}(\cdot, y)\left(c Q_{\alpha}(y)-P_{\alpha}(y)\right) p_{\alpha} d y<p_{\alpha}
$$

Observe that q_{a} is rotation free and thus the maximum principle implies $\inf _{E^{-}} q_{a}>0$ (see (40)). Therefore

$$
\inf _{E^{m}} p_{a}=d>0
$$

If $\alpha \in(2,(m+2) / 2]$, then by (44)

$$
\begin{aligned}
D_{B^{m}}\left(p_{a}\right) & =\int_{E^{*} \times E^{m}} G(x, y) P_{a}(x) P_{\alpha}(y) p_{a}(x) p_{\alpha}(y) d x d y \\
& \geqq d^{2} \int_{E^{*} \times E^{m}} G(x, y) P_{\alpha}(x) P_{\alpha}(y) d x d y .
\end{aligned}
$$

If $D_{E^{m}}\left(p_{a}\right)$ were finite, then (56) would imply that

$$
\int_{E^{-} \times \times E^{-}} G(x, y) Q_{a}(x) Q_{a}(y) d x d y<\infty .
$$

This contradicts (46). A fortiori $\left(E^{m}, P_{\alpha}\right) \in \mathcal{O}_{P D}$ for $\alpha \in(2,(m+2) / 2]$. This establishes (53).

Let $\alpha \in((m+2) / 2, m]$. From(46), (59), and no. 7, it follows that $\left(E_{,}^{m} P_{a}\right) \notin \mathcal{O}_{P D}$. Suppose $E_{E^{m}}^{P_{a}}\left(\boldsymbol{p}_{\alpha}\right)<\infty$. Then the relation

$$
E_{E^{m}}^{p_{a}}\left(p_{a}\right)>\int_{E^{m}} P_{a}(x)\left(p_{a}(x)\right)^{2} d x \geqq d^{2} \int_{E^{*}} P_{a}(x) d x
$$

and (56) imply $\int_{E^{-}} Q_{\alpha}(x) d x<\infty$, in violation of (48). The relation (54) is thus proved.
Finally if $\alpha \in(m, \infty)$, then (48), (59), and no. 8 imply the assertion (55). Q. E. D.

References

[1] M. GIASNER-R. KATZ, On the behavior of solutions of $\Delta u=P u$ at the Royden boundary, J. D'Analyse Math., 22(1969), 345-354.
[2] M. Giasner -R. Katz -M. Nakai, Examples in the classification theory of Riemannian manifolds and the equation $\Delta u=P u$, Math. Z., 121(1971), 233-238.
[3] S. ITÔ, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27(1957), 55-102.
[4] F-Y. MAEDA, Boundary value problems for the equation $\Delta u-p u=0$ with respect to an ideal boundary, J. Sci. Hiroshima univ., 32(1968), 85-146.
[5] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, 1970.
[6] L. Myrberg, Üher die Existenz der Greenschen Funktion der Gleichung $\Delta u=c(P) u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170(1954).
[7] M. NAKAI, The space of bounded solutions of the equation $\Delta u=P u$ on a Riemann surface, Proc. Japan Acad., 36(1960), 267-272.
[8] M. NAKAI, Dirichlet finite solutions of $\Delta u=P u$, and classification of Riemann surfaces, Bull. Amer. Math. Soc., 77(1971), 381-385.
[9] M. nakar, Dirichlet finite solutions of $\Delta u=P u$ on open Riemann surfaces, Kôdai Math. Sem. Rep. (to appear).
[10] M. Ozawa, Classification of Riemann surfaces, Kôdai Math. Sem. Rep., 4(1952), 63-76.
[11] H. L. Royden, The eqation $\Delta u=P u$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271(1959).
[12] L. Sario-M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970.
Department of Mathematics
nagoya University
NAgOYA, Japan

[^0]: * Supported by the U. S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G20, UCLA.

