Tôhoku Math. Journ. 23(1971), 413-431.

THE EQUATION $\Delta u = Pu$ ON E^m WITH ALMOST ROTATION FREE $P \ge 0$

MITSURU NAKAI

(Rec. Nov. 17, 1970; Rev. Dec. 14, 1970)

Consider a connected C^{∞} Riemannian *m*-manifold R $(m \ge 2)$ and a continuously differentiable function P (≥ 0 and $\equiv 0$) on R. The space of solutions of d*du = Pu*1or $\Delta u = Pu$ on R will be denoted by P(R). Let \mathcal{O}_{Px} be the set of pairs (R, P) such that the subspace PX(R) of P(R) consisting of functions with a certain property X reduces to $\{0\}$. Here we let X be B which stands for boundedness, D for the finiteness of the Dirichlet integral $D_R(u) = \int_R du \wedge *du$, and E for the finiteness of the energy integral $E_R^P(u) = D_R(u) + \int_R Pu^2*1$; we also consider nontrivial combinations of these properties. We denote by $\mathcal{O}_{\mathcal{G}}$ the set of pairs (R, P) such that there exists no harmonic Green's function on R.

The purpose of this paper is to show that (E^m, P) will be an example for the strictness of each of the following inclusion relations

$$(1) \qquad \qquad \mathcal{O}_{G} \subset \mathcal{O}_{PB} \subset \mathcal{O}_{PD} \subset \mathcal{O}_{PE}$$

if P is properly chosen, where $E^m (m \ge 3)$ is m-dimensional Euclidean space and P is a continuously differentiable function on $E^m (\ge 0, \pm 0)$.

More precisely let

$$(2) P(x) \sim |x|^{-\alpha}$$

as $|x| \to \infty$, i.e. there exists a constant c > 1 such that $c^{-1}|x|^{-\alpha} \leq P(x) \leq c|x|^{-\alpha}$ for large |x|. Then the following is true:

(3)
$$\begin{cases} (E^{m}, P) \in \mathcal{O}_{PB} - \mathcal{O}_{G} \text{ if } \alpha \leq 2; \\ (E^{m}, P) \in \mathcal{O}_{PD} - \mathcal{O}_{PB} \text{ if } 2 < \alpha \leq (m+2)/2; \\ (E^{m}, P) \in \mathcal{O}_{PE} - \mathcal{O}_{PD} \text{ if } (m+2)/2 < \alpha \leq m. \end{cases}$$

^{*} Supported by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G20, UCLA.

By definition, $(E^m, P) \notin \mathcal{O}_{\mathcal{G}}$ for every α , and $(E^m, P) \notin \mathcal{O}_{PE}$ for $\alpha > m$.

These relations will be proven first for a P(x) which is invariant under every rotation of E^m with respect to the origin. To settle the general case (2) we will study the dependence of the linear space structure of PX(R) on P for general Riemannian manifolds R, where X=B, BD, and BE. This problem also has interest in its own right.

Comparison theorems

1. Let (g_{ij}) be the metric tensor on R, $(g^{ij}) = (g_{ij})^{-1}$, and $g = \det(g_{ij})$. We also denote simply by dx the volume element $\sqrt{g} dx^1 \cdots dx^m$. The Laplace-Beltrami operator is then

$$\Delta \cdot = \frac{1}{\sqrt{g}} \sum_{i=1}^{m} \frac{\partial}{\partial x^{i}} \left(\sum_{j=1}^{m} \sqrt{g} (x) g^{ij}(x) \frac{\partial}{\partial x^{j}} \right).$$

We always assume that the function P in the operator

$$A^{P} = \Delta - P$$

is of class C^1 , $P \ge 0$, and $\equiv 0$ in R, unless otherwise stated. We are interested in the vector space structure of PX(R) (X=B, BD, BE, D, or E). Observe the following:

The space PBD(R) (resp. PBE(R)) is dense in PD(R) (resp. PE(R)) with respect to the topology $\tau_D(resp. \tau_E)$ given by the simultaneous convergence in $D_R(\cdot)(resp. E_R(\cdot))$ and uniform convergence on every compact set in R. In particular

$$(4) \qquad \qquad \mathcal{O}_{PD} = \mathcal{O}_{PBD} \ (resp. \ \mathcal{O}_{PE} = \mathcal{O}_{PBE}) \,.$$

The *D*-part of this statement is the author's recent result ([8], [9]). The *E*-part was obtained by Royden [11](see also Glasner-Katz [1]). In view of these results we will only study the class PB(R) and its subspaces PBD(R) and PBE(R).

We also mention:

Any function in PX(R) is a difference of two nonnegative functions in PX(R).

2. The Green's function $G^{P}(x, y)$ of A^{P} on R is characterized as the smallest positive function on R such that

THE EQUATION
$$\Delta u = Pu$$
 ON E^m 415

$$(5) -A_x^P G^P(x,y) = \delta_y,$$

where δ_{ν} is the Dirac measure. Since $P \ge 0$ and $\equiv 0$, $G_R^P(x, y)$ always exists (cf. e. g. Sario-Nakai [12; Appendix]). This result was obtained by Myrberg [6], who also proved that there always exists a strictly positive solution of $A_x^P u = 0$ on R.

We will call a subregion Ω of R regular if the closure $\overline{\Omega}$ of Ω is compact and the relative boundary $\partial \Omega$ of Ω consists of a finite number of disjoint C^{∞} hypersurfaces. The Green's function $G^{P}_{\Omega}(x, y)$ of A^{P} on Ω always exists.

Let Q be another C^1 function on R such that $Q \ge 0$ and $\equiv 0$ on R. Consider the integral operator $T_{\mathbf{Q}} = T_{\mathbf{Q}}^{PQ}$:

(6)
$$T_{\mathfrak{a}}\varphi = \int_{\Omega} G_{\mathfrak{a}}^{\mathfrak{a}}(\cdot, y)(Q(y) - P(y))\varphi(y)dy$$

for functions φ on Ω such that the integral on the right is defined in the sense of Lebesgue. We also consider $S_{\alpha} = S_{\alpha}^{pq}$:

$$(7) S_{\mathfrak{Q}} = I_{\mathfrak{Q}} - T_{\mathfrak{Q}},$$

where I_{α} is the identity. If φ is bounded and continuous on Ω , then it is easy to see that $T_{\alpha}\varphi \in C(\overline{\Omega})$ and

(8)
$$(T_{\mathfrak{g}}\varphi)|\partial\Omega = 0.$$

If φ is bounded and locally uniformly Hölder continuous on Ω , then $T_{\mathfrak{a}}\varphi$ is of class C^2 and

(9)
$$\Delta T_{a}\varphi = -(Q-P)\varphi + QT_{a}\varphi$$

on $\Omega(cf. e. g. Itô [3], Miranda [5])$. Therefore by (8) and Green's formula we deduce

$$D_{\mathfrak{a}}(T_{\mathfrak{a}}\varphi) = -\int_{\mathfrak{a}} T_{\mathfrak{a}}\varphi(x) \cdot \Delta_x T_{\mathfrak{a}}\varphi(x) dx$$

By (9) the Fubini theorem implies that

(10)
$$D_{\mathfrak{a}}(T_{\mathfrak{a}}\varphi) = \langle \varphi, \varphi \rangle_{\mathfrak{a}}^{PQ} - \int_{\mathfrak{a}} Q(x)(T_{\mathfrak{a}}\varphi(x))^2 dx$$

where

(11)
$$\langle \varphi, \psi \rangle_{\mathfrak{a}}^{PQ} = \int_{\mathfrak{a} \times \mathfrak{a}} G_{\mathfrak{a}}^{Q}(x, y) (Q(x) - P(x)) (Q(y) - P(y)) \varphi(x) \psi(y) dx dy$$
.

3. Let $u \in PB(\Omega)$. By (9), $S_{\Omega}u = S_{\Omega}^{PQ}u \in QB(\Omega)$. Since $u - S_{\Omega}u = T_{\Omega}u$, the relation (8) and the maximum principle imply

(12)
$$\|S_{\Omega}u\|_{\Omega} = \|u\|_{\Omega},$$

where $\|\cdot\|_{\mathfrak{a}}$ is the supremum norm considered on Ω . Let $\overline{S}_{\mathfrak{a}} = S_{\mathfrak{a}}^{QP}$. Then $\overline{S}_{\mathfrak{a}}S_{\mathfrak{a}}u \in PB(\Omega)$. Since $u - \overline{S}_{\mathfrak{a}}S_{\mathfrak{a}}u \in PB(\Omega)$ and $u - \overline{S}_{\mathfrak{a}}S_{\mathfrak{a}}u = T_{\mathfrak{a}}^{PQ}u + T_{\mathfrak{a}}^{QP}S_{\mathfrak{a}}u$, the relation (8) implies that $u - \overline{S}_{\mathfrak{a}}S_{\mathfrak{a}}u \equiv 0$ on Ω . Therefore

(13)
$$S^{QP}_{\mathfrak{a}} \circ S^{PQ}_{\mathfrak{a}} = I^{Q}_{\mathfrak{a}}, \ S^{PQ}_{\mathfrak{a}} \circ S^{QP}_{\mathfrak{a}} = I^{P}_{\mathfrak{a}}.$$

We have thus proved that

 $S_{\mathfrak{a}} = S_{\mathfrak{a}}^{PQ}$ is an isometric isomorphism from the class $PB(\Omega)$ onto the class $QB(\Omega)$.

4. For regular regions $\Omega \subset R$, the classes $PBD(\Omega)$ and $PBE(\Omega)$ are always identical. Observe that

(14)
$$\begin{cases} (D_{\mathfrak{a}}(S_{\mathfrak{a}}^{PQ}u))^{1/2} \leq (D_{\mathfrak{a}}(u))^{1/2} + (\langle u, u \rangle_{\mathfrak{a}}^{PQ})^{1/2}, \\ (D_{\mathfrak{a}}(u))^{1/2} \leq (D_{\mathfrak{a}}(S_{\mathfrak{a}}^{PQ}u))^{1/2} + (\langle u, u \rangle_{\mathfrak{a}}^{PQ})^{1/2} \end{cases}$$

for every $u \in PB(\Omega)$. By Green's formula we also deduce

(15)
$$\begin{cases} E_{\mathfrak{a}}^{\varrho}(S_{\mathfrak{a}}^{P\varrho}u) + E_{\mathfrak{a}}^{\varrho}(T_{\mathfrak{a}}^{P\varrho}u) = E_{\mathfrak{a}}^{P}(u) + \int_{\mathfrak{a}} (Q(x) - P(x))(u(x))^{2} dx, \\ E_{\mathfrak{a}}^{P}(u) + E_{\mathfrak{a}}^{\rho}(T_{\mathfrak{a}}^{P\varrho}u) = E_{\mathfrak{a}}^{\varrho}(S_{\mathfrak{a}}^{P\varrho}u) + \int_{\mathfrak{a}} (P(x) - Q(x))(S_{\mathfrak{a}}^{P\varrho}u(x))^{2} dx, \end{cases}$$

where $E_{a}^{P}(u) = D_{a}(u) + \int_{a}^{b} P(x)(u(x))^{2} dx$. From (14) it follows that

 $S_{\mathbf{Q}} = S_{\mathbf{Q}}^{PQ}$ is an isometric (with respect to $\|\cdot\|_{\mathbf{Q}}$) isomorphism from the class $PBD(\Omega) = PBE(\Omega)$ onto the class $QBD(\Omega) = QBE(\Omega)$.

5. We proceed to the comparison of PX(R) and QX(R) for X = B, BD, and BE. Consider the integral operator $T = T^{PQ}$:

THE EQUATION $\Delta u = Pu$ ON E^m 417

(16)
$$T\varphi = \int_{R} G^{Q}(x, y)(Q(y) - P(y))\varphi(y)dy$$

for functions φ on R such that the integral on the right is defined in the sense of Lebesgue. We will say that the ordered pair (P,Q) satisfies the condition (B) if

(B)
$$\int_{\mathbb{R}} G^{q}(x,y) |Q(y) - P(y)| dy < \infty.$$

By the Harnack inequality (B) is satisfied for every $x \in R$ if and only if (B) is valid for some $x \in R$. In this no. 5 we assume that (P, Q) and (Q, P) satsfy (B). If φ is bounded and continuous on R, then $T\varphi$ is defined and continuous on R. If moreover φ is locally uniformly Hölder continuous, then $T\varphi$ is of class C^2 and

(17)
$$A^{\varrho}T\varphi = -(Q-P)\varphi$$

on R (cf.(9)). We also consider $S = S^{PQ}$:

$$(18) S = I - T,$$

where I is the identity operator.

Let $\{\Omega\}$ be a directed set of regular regions Ω such that the union of $\{\Omega\}$ is R. For a continuous function φ_{Ω} on Ω we use the same notation φ_{Ω} for the function which is φ_{Ω} on Ω and 0 on $R-\Omega$. Assume that

$$\|\varphi_{\mathfrak{g}}\| = \sup_{R} |\varphi_{\mathfrak{g}}| < k < \infty$$

for every Ω . Moreover suppose there exists a bounded continuous function φ on R such that $\lim_{\Omega \to R} \varphi_{\Omega} = \varphi$ uniformly on each compact set in R. Then

$$S\varphi = \lim_{\alpha \to R} S_{\alpha} \varphi_{\alpha}$$

uniformly on each compact set in R. In fact,

$$\begin{aligned} |S\varphi(x) - S_{\mathfrak{a}}\varphi_{\mathfrak{a}}(x)| &\leq |S\varphi(x) - S_{\mathfrak{a}}\varphi(x)| + |S_{\mathfrak{a}}\varphi(x) - S_{\mathfrak{a}}\varphi_{\mathfrak{a}}(x)| \\ &\leq (|T| - |T_{\mathfrak{a}}|) |\varphi|(x) + |\varphi(x) - \varphi_{\mathfrak{a}}(x)| + |T_{\mathfrak{a}}||\varphi - \varphi_{\mathfrak{a}}|(x). \end{aligned}$$

Here $|T| \varphi = \int_{R} G^{q}(., y) |Q(y) - P(y)| \varphi(y) dy$ and $|T_{\mathfrak{a}}|$ is similarly defined. Since $G^{q}_{\mathfrak{a}}(x, y) \leq G^{q}(x, y)$ and $\lim_{\mathfrak{a}\to R} G^{q}_{\mathfrak{a}}(x, y) = G^{q}(x, y)$ on R, we infer that

 $|S\varphi(x) - S_{\mathtt{Q}}\varphi_{\mathtt{Q}}(x)| \leq (|T| - |T_{\mathtt{Q}}|)|\varphi|(x) + |\varphi(x) - \varphi_{\mathtt{Q}}(x)| + |T||\varphi - \varphi_{\mathtt{Q}}|(x)$

and by the Lebesgue convergence theorem the right-hand side of the above inequality converges to 0 on R. By the Harnack inequality applied to $G^{2}-G^{2}_{0}$ and G^{2} , we conclude that the convergence is uniform on each compact set in R. Therefore (19) is established.

6. We will first prove a comparison theorem for PB(R) and QB(R). This result is already suggested in the author's earlier paper [7] (see also [9] and Maeda [4]):

THEOREM 1. If (P,Q) and (Q,P) satisfy the condition (B), then S^{PQ} is an isometric isomorphism of PB(R) onto QB(R).

PROOF. Let $u \in PB(R)$. From (17) it follows that $Su \in Q(R)$. By the identity (12) we deduce $||S_{\alpha}u||_{\alpha} = ||u||_{\alpha} \leq ||u||$ and a fortiori

$$\|Su\| \leq \|u\|,$$

i.e. $Su \in QB(R)$. Suppose Su=0. By (13) and (19), $S^{QP}Su=u$ and a fortiari $u\equiv 0$. Thus S is an isomorphism of PB(R) into QB(R).

To prove that S is surjective let $v \in QB(R)$ and $u_{\alpha} = S_{\alpha}^{oP}v$. Observe that $u_{\alpha} \in PB(\Omega), ||u_{\alpha}||_{\alpha} \leq ||v||$, and by (13), $v = S_{\alpha}u_{\alpha}$. Let $\{\Omega\}$ be a directed set of regular subregions Ω such that

$$u = \lim_{\Omega \to R} u_{\Omega} \in PB(R)$$

uniformly on each compact set in R. By (19) we infer that

$$Su = \lim_{\Omega \to R} S_{\Omega} u_{\Omega} = v$$
,

i. e. S is surjective. Since $||Su|| \ge ||v||_{\mathfrak{a}} = ||S_{\mathfrak{a}}u_{\mathfrak{a}}|| = ||u_{\mathfrak{a}}||$, we deduce $|Su|| \ge ||u||$. This with (20) implies that S is isometric. Q.E.D.

COROLLARY 1.1. Since P satisfies

(21)
$$\int_{R} G^{P}(x, y) P(y) dy < \infty$$

(cf.[4]), PB(R) and (cP)B(R) are isomorphic for c > 0.

PROOF. The condition (21) implies that (cP, P) and (P, cP) satisfy the condition (B). Therefore $S^{(cP)P}$ is an isometric isomorphism of (cP)B(R) onto PB(R). Q.E.D.

Royden [11] proved the following comparison theorem entirely different in nature from ours:

If there exists a finite constant c > 1 such that $c^{-1}Q \leq P \leq cQ$ outside a compact set in R, then there exists an isometric isomorphism of PB(R) onto QB(R).

7. We turn to a comparison theorem for PBD(R) and QBD(R). We will say that the ordered pair (P, Q) satisfies the condition (D) if

(D)
$$\int_{P \times R} G^{q}(x, y) |Q(x) - P(x)| \cdot |Q(y) - P(y)| dx dy < \infty$$

It is clear that (E) implies (B). In this no. 7 we always assume that (P, Q) and (Q, P) satisfy (D). In accordance with (11) we set

(22)
$$\langle \varphi, \psi \rangle^{PQ} = \int_{\mathbb{R}\times\mathbb{R}} G^{Q}(x,y)(Q(x)-P(x))(Q(y)-P(y))\varphi(x)\psi(y)dxdy$$
.

This is well defined for bounded continuous functions φ and ψ on R. By the Lebesgue convergence theorem we deduce

(23)
$$\langle \varphi, \psi \rangle^{PQ} = \lim_{\Omega \to R} \langle \varphi, \psi \rangle^{PQ}_{\Omega}.$$

THEOREM 2. If (P, Q) and (Q, P) satisfy the condition (D), then S^{PQ} is an isometric isomorphism of PBD(R) onto QBD(R).

PROOF. Since (D) implies (B), Theorem 1 implies that $S=S^{PQ}$ is an isometric isomorphism of PB(R) onto QB(R). Let $u \in PBD(R)$. By (14) we have

(24)
$$(D({}_{\mathfrak{Q}}S_{\mathfrak{Q}}u))^{1/2} \leq (D_{\mathfrak{Q}}(u))^{1/2} + (\langle u, u \rangle_{\mathfrak{Q}})^{1/2}$$

From (19) for $\varphi = u \in PB(R)$ it follows that

(25)
$$\lim_{\mathfrak{a}\to R} dS_{\mathfrak{a}} u \wedge * dS_{\mathfrak{a}} u = dS u \wedge * dS u$$

on R. By (23) and the Fatou lemma, we deduce from (24)

$$(D_R(Su))^{1/2} \leq (D_R(u))^{1/2} + (\langle u, u \rangle)^{1/2} < \infty$$

Therefore $S(PBD(R)) \subset QBD(R)$. To obtain the reversed inclusion let $u \in PB(R)$ and $Su \in QBD(R)$. Since u = Su + Tu on R,

(26)
$$(D_R(u))^{1/2} \leq (D_R(Su))^{1/2} + (D_R(Tu))^{1/2}$$

By (25), $|\text{grad } T_{\mathfrak{Q}}u|^2$ converges to $|\text{grad } Tu|^2$ on R. By the Fatou lemma and the relations (10) and (23), we infer that

$$D_{\mathfrak{a}}(Tu) \leq \liminf_{\mathfrak{a} \to \mathbb{R}} D_{\mathfrak{a}}(T_{\mathfrak{a}}u)$$
$$\leq \lim_{\mathfrak{a} \to \mathbb{R}} \langle u, u \rangle_{\mathfrak{a}} = \langle u, u \rangle \langle \infty \rangle.$$

From (26) it follows that $D_R(u) < \infty$, i.e. S(PBD(R)) = QBD(R). Q.E.D.

COROLLARY 2.1. If P satisfies

(27)
$$\int_{R} G^{P}(x, y) P(x) P(y) dx dy < \infty,$$

then PBD(R) and (cP)BD(R) are isomorphic for c > 0.

PROOF. The condition (27) implies that (cP, P) and (P, cP) satisfy the condition (D). Therefore $S^{(cP)P}$ is an isometric isomorphism of (cP)BD(R) onto PBD(R). Q.E.D.

8. We turn to a comparison theorem for PBE(R) and QBE(R). We will say that the ordered pair (P, Q) satisfies the condition (E) if

(E)
$$\int_{\mathbb{R}} |Q(x) - P(x)| dx < \infty.$$

It is clear that (E) implies (B). The following comparison theorem was obtained by [11] (see also Glasner-Katz [1]):

THEOREM 3. If (P, Q) satisfies the condition (E), then S^{PQ} is an isometric isomorphism of PBE(R) onto QBE(R).

PROOF. Since (E) implies (B), Theorem 1 entails that $S = S^{Pq}$ is an isometric isomorphism of PB(R) onto QB(R). Let $u \in PBE(R)$. From (15) it follows that

$$E^{Q}_{\mathfrak{a}}(S_{\mathfrak{a}}u) \leq E^{P}_{\mathfrak{a}}(u) + ||u||^{2} \int_{\mathfrak{a}} |Q(x) - P(x)| dx.$$

By (25) and the Fatou lemma, we obtain

$$E^{q}_{R}(Su) \leq E^{P}_{R}(u) + \|u\|^{2} \int_{R} |Q(x) - P(x)| dx < \infty$$
 ,

i.e. $S(PBE(R)) \subset QBE(R)$. Conversely let $u \in PB(R)$ and $Su \in QBE(R)$. By (15) and $||S_{a}u|| = ||u||$, we have

$$E^{\mathbf{P}}_{\mathbf{a}}(u) \leq E^{\mathbf{Q}}_{\mathbf{a}}(S_{\mathbf{a}}u) + \|u\|^2 \int_{\mathbf{a}} |Q(x) - P(x)| dx.$$

On setting $S_{\Omega}u = u$ on $R - \Omega$ we infer by Green's formula that

$$E^{o}_{\mathfrak{a}}(S_{\mathfrak{a}}u - S_{\mathfrak{a}'}u) = E^{o}_{\mathfrak{a}}(S_{\mathfrak{a}}u) - E^{o}_{\mathfrak{a}'}(S_{\mathfrak{a}'}u)$$

for $\Omega' \supset \Omega$. Therefore $E^{o}_{\mathfrak{a}}(S_{\mathfrak{a}}u) \rightarrow E^{o}_{\mathfrak{K}}(Su)$ as $\Omega \rightarrow R$, and a fortiori

$$E^p_R(u) \leq E^q_R(Su) + \|u\|^2 \int_{\mathfrak{g}} |Q(x) - P(x)| dx < \infty$$

We have shown that S(PBE(R)) = QBE(R). Q.E.D.

COROLLARY 3.1. If P satisfies

(28)
$$\int_{R} P(x) dx < \infty ,$$

then PBE(R) and (cP)BE(R) are isomorphic for c > 0.

PROOF. The condition (28) implies that (cP, P) and (P, cP) satisfy the condition (E). Therefore $S^{(cP)P}$ is an isometric isomorphism of (cP)BE(R) onto PBE(R). Q.E.D.

9. As usual we denote by H(R) the space of harmonic functions u on R, i.e. $\Delta u = 0$. Comparison theorems between PX(R) and HX(R) for X = B, BD, and BE can be obtained on replacing Q by 0 in nos. 1–8. We will denote by $G(x, y) = G_R(x, y)$ the harmonic Green's function on R. If $R \in O_G$, then $PB(R) = \{0\}$ (Ozawa [10], Royden [11]). Therefore excluding trivial cases, we assume in this no. 9 that $R \notin O_G$. We will say that P satisfies the condition $(B_0), (D_0)$, or (E_0) if

$$(\mathbf{B}_{\mathfrak{o}}) \qquad \qquad \int_{R} G(x,y) P(y) dy < \infty ,$$

(D₀)
$$\int_{R\times R} G(x, y) P(x) P(y) dx dy < \infty$$

or

$$(\mathbf{E}_0) \qquad \qquad \int_{R} P(x) dx < \infty$$

Since $G^{P}(x, y) < G(x, y)$, the conditions (B₀), (D₀), and (E₀) imply(21), (27), and (28), respectively.

Dicussions in no. 6 are valid if Q is replaced by 0:

COROLLARY 1.2. If P satisfies the condition (B_0) , then S^{P_0} is an isometric isomorphism of PB(R) onto HB(R).

The replacement of Q by 0 does not affect the validity of the reasoning in nos. 7 and 8. With this in view we maintain:

COROLLARY 2.2. If P satisfies the condition (D_0) , then S^{P_0} is an isometric isomorphism of PBD(R) onto HBD(R).

COROLLARY 3.2. If P satisfies the condition (E_0) , then S^{P0} is an isometric isomorphism of PBE(R) onto HBD(R).

Equations on Euclidean spaces.

10. Hereafter we take the Euclidean space $E^m(m \ge 3)$ as the base Riemannian manifold for the equation $\Delta u = Pu$. We fix an orthogonal coordinate so that the metric tensor is (δ_{ij}) . For a point $x \in E^m$, its coordinate will be denoted by (x^1, \dots, x^m) . The volume element is thus $dx = dx^1 \cdots dx^m$. We also write $|x| = \left(\sum_{i=1}^m (x^i)^2\right)^{1/2}$.

The harmonic Green's function G(x, y) on E^m is given by

(29)
$$c_m G(x, y) = |x - y|^{2-m}$$
,

where $c_m = (m-2)\omega_m$ with ω_m the surface area $2\pi^{m/2}/\Gamma(m/2)$ of the unit ball in E^m . We first observe the following elementary identity (a special case of the Riesz composition theorem):

(30)
$$\int_{B^{\alpha}} G(x,y) |y|^{-\alpha} dy = a |x|^{-(\alpha-2)} (m > \alpha > 2),$$

where $a = a(m, \alpha)$ is a finite strictly positive constant depending on m and α but not on $x \neq 0$.

In fact let $z = \Lambda(y)$ be an affine transformation of E^m given by

(31)
$$z^{i} = \Lambda^{i}(y) = |x|^{-1} \sum_{j=1}^{m} p_{ij}(y^{j} - x^{j})(i = 1, \cdots, m)$$

where (p_{ij}) is an orthonormal matrix such that

(32)
$$\delta^{1i} = -\sum p_{ij} |x|^{-1} x^j (i = 1, \cdots, m) .$$

From (31) and (32) it follows that

(33)
$$|y-x| = |x| |z|, |y| = |x| |z-e|$$

with $e = (1, 0, \dots, 0)$. The Jacobian of Λ is

$$J = \det\left(\frac{\partial z^i}{\partial y^j}\right) = \det\left(|x|^{-1}p_{ij}\right) = |x|^{-m}$$

and therefore $dz = |x|^{-m} dy$. Hence

$$\begin{split} \int_{E^{\mathbf{m}}} G(x,y) |y|^{-\alpha} dy &= c_m^{-1} \int_{E^{\mathbf{m}}} |x-y|^{2-m} |y|^{-\alpha} dy \\ &= c_m^{-1} \int_{E^{\mathbf{m}}} |x|^{2-m} |z|^{2-m} \cdot |x|^{-\alpha} |z-e|^{-\alpha} \cdot |x|^m dz \\ &= a |x|^{-(\alpha-2)}, \end{split}$$

where

$$a=c_m^{-1}\int_{E^m}|z|^{2-m}|z-e|^{-\alpha}dz<\infty$$

if $\alpha > 2$.

11. Let $\lambda(t)$ be a real-valued C^2 function on $[0, \infty)$ such that $\frac{d}{dt}\lambda(t)$ $\geq 0, \frac{d^2}{dt^2}\lambda(t) \geq 0, \ \lambda(t) \geq t$, and

(34)
$$\begin{cases} \lambda(t) \equiv \mathcal{E} \quad (t \in [0, \mathcal{E}/2]), \\ \lambda(t) \equiv t \quad (t \in , [\mathcal{E} + \delta, \infty)), \end{cases}$$

where ε and δ are arbitrarily fixed positive number. Consider the equation

(35)
$$\Delta u(x) = Q_{\alpha}(x)u(x), \ Q_{\alpha}(x) = \lambda(|x|)^{-\alpha}$$

where $\alpha \in (-\infty, \infty)$ and $\Delta \cdot = \sum_{i=1}^{m} \frac{\partial^{2}}{\partial x^{i2}}$. We maintain:

$$\dim Q_{\alpha}B(E^m) \leq 1$$

for every $\alpha \in (-\infty, \infty)$.

For the proof let dim $Q_{\alpha}B(E^m) > 0$. Take two positive functions u_i in $Q_{\alpha}B(E^m)(i=1,2)$. Let $\Omega(n) = \{x \in E^m \mid |x| < n\} (n=1,2,\cdots)$ and $S_n = S_{\Omega(n)}^{q_{\alpha 0}}, S = S_R^{q_{\alpha 0}}$. Then

$$S_n u_i(x) = u_i(x) + \int_{\mathfrak{q}(n)} G_{\mathfrak{q}(n)}(x, y) Q_a(y) u_i(y) dy.$$

Observe that $S_n u_i \in HB(\Omega(u))$ and $||S_n u_i||_{\Omega(n)} = ||u_i||_{\Omega(n)} \leq ||u_i||$. Since $u_i > 0$, we obtain by the Lebesgue-Fatou convergence theorem that

(37)
$$Su_i(x) = u_i(x) + \int_{E^m} G(x, y) Q_a(y) u_i(y) dy$$

and $Su_i \in HB(E^m)$. Since

$$HB(E^m) = E^1,$$

 $Su_i \equiv c_i > 0$. Set $w = c_2 u_1 - c_1 u_2 \in Q_{\alpha} B(E^m)$. Then by (37)

$$w(x) = -\int_{E^{\mathbf{a}}} G(x, y) Q_{\mathbf{a}}(y) w(y) dy = -(Tw)(x)$$

and consequently $|w| \leq T |w|$ on E^m . Since |w| is subharmonic and T |w| is a potential, we obtain $|w| \equiv 0$. Thus u_1 and u_2 are linearly dependent. The space $Q_{\alpha}B(E^m)$ is generated by positive functions in $Q_{\alpha}B(E^m)$. We conclude that dim $Q_{\alpha}B(E^m) = 1$.

12. We have seen that either dim $Q_{\alpha}B(E^m)=0$ or 1. We next study for what α the first or the second alternative occurs. Let $\omega = (\omega_{ij})$ be an orthonormal matrix and f_{ω} be the function defined by $f_{\omega}(x) = f(x\omega)$ for a given function f on E^m . Here x is viewed as the matrix of type (1, m). Since $(Q_{\alpha})_{\omega} = Q_{\alpha}$, rotation free, we conclude that $u_{\omega} \in Q_{\alpha}B(E^m)$ for $u \in Q_{\alpha}B(E^m)$. Because of (36), we must have $u = u_{\omega}$ for every ω . Therefore :

Every function $u \in Q_{\alpha}B(E^m)$ is rotation free.

A fortiori there exists a C^2 function $\varphi_u(t)$ on $[0, \infty]$ such that

$$u(x) = \varphi_u(|x|).$$

Suppose dim $Q_{\alpha}B(E^m)=1$. Then for $u \in Q_{\alpha}B(E^m)$ such that u>0 we maintain:

(40)
$$\lim \inf_{|x|\to\infty} u(x) > 0.$$

If this were not the case, there would exist an increasing divergent sequence $\{r_n\} \subset E^m$ such that $\varphi_u(r_n) \to 0$ as $n \to \infty$. Let $\Omega(r_n) = \{x \in E^m \mid |x| < r_n\}$. The maximum principle implies that $||u||_{\Omega(r_n)} = \varphi_u(r_n)$ and a fortiori $u \equiv 0$, a contradiction.

By (37)

$$Su(x) = u(x) + \int_{E^{\bullet}} G(x,y)Q_{\alpha}(y)u(y)dy.$$

Since (40) and the maximum principle imply that $\inf_{E^{-u}} u = b > 0$,

$$\int_{E^{\bullet}} G(x,y) Q_{\mathfrak{a}}(y) \mathrm{d} y \leq b^{-1} (Su(x) - u(x)) < \infty$$
 ,

i.e. Q_{α} satisfies the condition (B₀). Conversely if Q_{α} satisfies the condition (B₀), then by Corollary 1.2, $Q_{\alpha}B(E^m)$ is isomorphic to $HB(E^m)$ and therefore dim $Q_{\alpha}B(E^m) = 1$.

We have shown that $(E^m, Q_a) \in \mathcal{O}_{PB}$ is equivalent to

(41)
$$c_x = c_m \int_{E^m} G(x, y) Q_a(y) dy = \infty .$$

Clearly there exists a constant $d_x > 1$ such that

$$d_x^{-1}c_x \leq e = \int_{|y|>\epsilon+\delta} \frac{1}{|y|^{m-2}} \cdot \frac{1}{|y|^{\alpha}} dy \leq d_x c_x.$$

By using the polar coordinate we infer that $e = c_m \int_{a}^{\infty} r^{-(\alpha-1)} dr = \infty$ if and only if $(\alpha-1) \leq 1$, i.e. $\alpha \leq 2$.

The conclusion of this no. 12 is:

(42)
$$(E_m, Q_\alpha) \in \mathcal{O}_{PB} \ (\alpha \leq 2), \qquad (E^m, Q_\alpha) \notin \mathcal{O}_{PB} \ (\alpha > 2).$$

13. Since $Q_{\alpha}BD(E^m) \subset Q_{\alpha}B(E^m)$, (36) implies that either dim $Q_{\alpha}BD(E^m) = 0$ or 1. Suppose the latter alternative is the case. Let u > 0 be the generator of $Q_{\alpha}BD(E^m)$. From (37) it follows that

(43)
$$u(x) = c - \int_{E^{\mathfrak{m}}} G(x, y) Q_{\mathfrak{a}}(y) u(y) dy,$$

where $c \in E^1$. Let $\Omega(n) = \{x \in E^m \mid |x| < n\}$ and $G_n = G_{\Omega(n)}$. Since $u \mid \partial \Omega(n) = c_n$, a constant, we also have

$$u(x) = c_n - \int_{\mathfrak{Q}(n)} G_n(x,y) Q_{\mathfrak{a}}(y) u(y) dy.$$

By (10), we infer

$$D_{\mathfrak{q}(n)}(u) = \int_{\mathfrak{q}(n)\times\mathfrak{q}(n)} G_n(x,y) Q_a(x) Q_a(y) u(x) u(y) dx dy.$$

Since the integrand is nonnegative and converges increasingly to $G(x, y)Q_{\alpha}(x)Q_{\alpha}(y) \times u(x)u(y)$ on $E^m \times E^m$, the Lebesgue-Fatou theorem yields

(44)
$$D_{E^{\mathfrak{m}}}(u) = \int_{E^{\mathfrak{m}} \times E^{\mathfrak{m}}} G(x, y) Q_{\mathfrak{a}}(x) Q_{\mathfrak{a}}(y) u(x) u(y) dx dy .$$

As in no. 12, $\inf_{E^{m}} u = b > 0$. Thus

$$\int_{E^{\mathbf{a}}\times E^{\mathbf{a}}} G(x,y)Q_{\mathfrak{a}}(x)Q_{\mathfrak{a}}(y)dxdy \leq b^{-2}D_{E^{\mathbf{a}}}(u) < \infty ,$$

i.e. Q_{α} satisfies the condition (D_0) . Conversely if Q_{α} satisfies the condition (D_0) , then by Corollary 2.2, $Q_{\alpha}BD(E^m)$ is isomorphic to $HBD(E^m)$. A fortiori dim $Q_{\alpha}BD(E^m) = 1$.

We have seen that $(E^m, Q_a) \in \mathcal{O}_{PBD} = \mathcal{O}_{PD}$ is equivalent to

(45)
$$c = c_m \int_{E^m \times E^m} G(x, y) Q_a(x) Q_a(y) dx dy = \infty$$

In view of (42) and the relation $\mathcal{O}_{PB} \subset \mathcal{O}_{PD}$, we only have to consider the case $\alpha > 2$. Clearly there exists a constant d > 1 such that

$$d^{-1}c \leq l = c_m \int_{(E^m x - V) \times E^m y} G(x, y) Q_a(x) |y|^{-a} dx dy \leq dc,$$

where $V = \{ |x| \leq \varepsilon + \delta \}$. Let c_m be as in no. 10. Assume $\alpha < m$. By (30),

$$l = c_m \int_{E^m - V} \left(\int_{E^m} G(x, y) |y|^{-\alpha} dy \right) Q_{\alpha}(x) dx = a c_m \int_{E^m - V} |x|^{-(\alpha - 2)} \cdot |x|^{-\alpha} dx$$
$$= a c_m^2 \int_{s+\delta}^{\infty} r^{-2\alpha + m+1} dr \cdot dx$$

The condition $l = \infty$ is then equivalent to $-2\alpha + m + 1 \ge -1$, i.e. $\alpha \le (m+2)/2$ for $\alpha < m$. Clearly $l < \infty$ for $\alpha \ge m$.

The conclusion of this no. 13 is:

(46)
$$(E^m, Q_a) \in \mathcal{O}_{PBD} \ (\alpha \leq (m+2)/2), \ (E^m, Q_a) \notin \mathcal{O}_{PBD} \ (\alpha > (m+2)/2).$$

14. Since $Q_{\alpha}BE(E^m) \subset Q_{\alpha}B(E^m)$, (36) implies that either dim $Q_{\alpha}BE(E^m) = 0$ or 1. Suppose that the latter is the case. Let u>0 be the generator of $Q_{\alpha}BE(E^m)$. Recall that $\inf_{E^m} u = b > 0$ (no. 12). Since

$$E_{E^{m}}^{qa}(u) = D^{E^{m}}(u) + \int_{E^{m}} Q_{a}(x)(u(x))^{2} dx$$
,

we infer that

$$\int_{E^{\mathbf{m}}}Q_{\mathbf{a}}(x)dx \leq b^{-2}E_{L^{\mathbf{m}}}^{\mathbf{Qa}}(u)<\infty$$
 ,

i. e. Q_{α} satisfies the condition (E_0) . Conversely if Q_{α} satisfies the condition (E_0) , then by Corollary 3. 2, $Q_{\alpha}BE(E^m)$ is isomorphic to $HBD(E^m)$. A fortiori dim $Q_{\alpha}BE(E^m) = 1$.

We have seen that $(E^m, Q_a) \in \mathcal{O}_{PBE} = \mathcal{O}_{PE}$ is equivalent to

(47)
$$c = \int_{E^{\bullet}} Q_a(x) dx = \infty .$$

Let $V = \{x \mid |x| \leq \varepsilon + \delta\}$. Clearly there exists a constant d > 1 such that

$$d^{-1}c .$$

Using c_m in no. 10, we deduce

$$p = \int_{E^m - V} |x|^{-\alpha} dx = c_m \int_{\epsilon+\delta}^{\infty} r^{-\alpha + m - 1} dr$$

and therefore $p = \infty$ if and only if $-\alpha + m - 1 \ge -1$, i.e. $\alpha \le m$.

The conclusion of this no. 14 is:

(48)
$$(E^m, Q_a) \in \mathcal{O}_{PBE} \ (\alpha \leq m), \qquad (E^m, Q_a) \notin \mathcal{O}_{PE} \ (\alpha > m).$$

15. From the results obtained in nos. 10-14, we have the following strict inclusion relations:

$$(49) \qquad \qquad \mathcal{O}_{g} < \mathcal{O}_{PB} < \mathcal{O}_{PD} = \mathcal{O}_{PBD} < \mathcal{O}_{PE} = \mathcal{O}_{PBE}$$

where $\mathfrak{A} < \mathfrak{B}$ means that \mathfrak{A} is a proper subset of \mathfrak{B} . It is perhaps more or less trival to merely establish the strict inclusions in (49) but we are interested in this paper in giving a unified way for finding counter examples. The strict inclusion $\mathcal{O}_{g} < \mathcal{O}_{PB}$ was remarked by Royden [11] for m=2. Glasner-Katz-Nakai [2] remarked $\mathcal{O}_{PB} < \mathcal{O}_{PD}$ for $m \ge 2$ except for m=3.

16. We next study the equation

(50)
$$\Delta u(x) = P_{\alpha}(x)u(x), \ P_{\alpha}(x) \sim |x|^{-\alpha}(|x| \to \infty)$$

on $E^m(m \ge 3)$. Here $P_{\alpha}(x) \sim |x|^{-\alpha}(|x| \to \infty)$ means that there exist positive constants c > 1 and $\rho > 1$ such that

(51)
$$c^{-1}|x|^{-\alpha} \leq P_{\alpha}(x) \leq c|x|^{-\alpha}(|x| \geq \rho)$$

Thus $P_{\alpha}(x)$ is "almost rotation free." We are assuming that $P_{\alpha}(x)$ is of class C^{1} and $P_{\alpha}(x) \ge 0$ on E^{m} .

(52)
$$(E^m, P_a) \in \mathcal{O}_{PB} - \mathcal{O}_{\mathcal{G}} \text{ for every } \alpha \in (-\infty, 2]$$

(53)
$$(E^m, P_a) \in \mathcal{O}_{PB} - \mathcal{O}_{PD} \text{ for every } \alpha \in (2, (m+2)/2];$$

(54)
$$(E^m, P_a) \in \mathcal{O}_{PE} - \mathcal{O}_{PD} \text{ for every } \alpha \in ((m+2)/2, m];$$

(55) $(E^m, P_a) \notin \mathcal{O}_{PE} \text{ for every } \alpha \in (m, \infty).$

PROOF. Since $m \ge 3$, E^m always carries the harmonic Green's function given by (29). Therefore $(E^m, P_a) \notin \mathcal{O}_{\mathcal{G}}$ for every $\alpha \in E^1$. Observe that there exist some positive constants c > 1 and $\rho > 1$ such that

(56)
$$c^{-1}Q_{\alpha}(x) \leq P_{\alpha}(x) \leq cQ_{\alpha}(x)$$

on $\Lambda(\rho) = \{x \in E^m \mid |x| > \rho\}$. In particular

$$(57) P_{a}(x) \leq cQ_{a}(x)$$

everywhere on E^m . By Royden's comparison theorem referred to in no. 6,

(58)
$$\dim P_{\alpha}B(E^m) = \dim Q_{\alpha}B(E^m).$$

Therefore (42) implies (52) and a half of (53), i.e. $(E^m, P_a) \notin \mathcal{O}_{PB}$ for $\alpha > 2$.

Hereafter we always assume $\alpha > 2$. Then dim $P_{\alpha}B(E^m) = \dim Q_{\alpha}B(E^m) = \dim (cQ_{\alpha})B(E^m)$. Let p_{α} and q_{α} be positive generators of $P_{\alpha}B(E^m)$ and $(cQ_{\alpha})B(E^m)$ respectively. We set $S = S^{P\alpha(cQ\alpha)}$. Since

$$|P_{\alpha}(x) - cQ_{\alpha}(x)| \leq (c-1)Q_{\alpha}(x)$$

and $\int_{E^m} G(x,y)Q_{\alpha}(x)dy < \infty$ for $\alpha > 2$, $(P_{\alpha}, cQ_{\alpha})$ satisfies (B) and a fortiori S is an isometric isomorphism of $P_{\alpha}B(E^m)$ onto $(cQ_{\alpha})B(E^m)$. We may assume

$$q_{\mathfrak{a}} = Sp_{\mathfrak{a}} = p_{\mathfrak{a}} - \int_{E^{\mathfrak{a}}} G^{cQa}(\cdot, y) (cQ_{\mathfrak{a}}(y) - P_{\mathfrak{a}}(y)) p_{\mathfrak{a}} dy < p_{\mathfrak{a}}.$$

Observe that q_a is rotation free and thus the maximum principle implies $\inf_{B^{-}}q_a > 0$ (see (40)). Therefore

(60)
$$\inf_{E^{*}} p_{a} = d > 0.$$

If $\alpha \in (2, (m+2)/2]$, then by (44)

$$D_{E^{m}}(p_{a}) = \int_{E^{m}\times E^{m}} G(x, y) P_{a}(x) P_{a}(y) p_{a}(x) p_{a}(y) dxdy$$
$$\geq d^{2} \int_{E^{m}\times E^{m}} G(x, y) P_{a}(x) P_{a}(y) dxdy.$$

If $D_{E^{n}}(p_{\alpha})$ were finite, then (56) would imply that

$$\int_{E^{\mathfrak{m}}\times E^{\mathfrak{m}}} G(x, y) Q_{\mathfrak{a}}(x) Q_{\mathfrak{a}}(y) dx dy < \infty .$$

This contradicts (46). A fortiori $(E^m, P_a) \in \mathcal{O}_{PD}$ for $\alpha \in (2, (m+2)/2]$. This establishes (53).

Let $\alpha \in ((m+2)/2, m]$. From(46), (59), and no. 7, it follows that $(E^m, P_\alpha) \notin \mathcal{O}_{PD}$. Suppose $E^{P\alpha}_{E^m}(p_\alpha) < \infty$. Then the relation

$$E_{E^{\mathbf{m}}}^{Pa}(p_{\mathbf{a}}) > \int_{E^{\mathbf{m}}} P_{\mathbf{a}}(x) (p_{\mathbf{a}}(x))^2 dx \ge d^2 \int_{E^{\mathbf{m}}} P_{\mathbf{a}}(x) dx$$

and (56) imply $\int_{E^{\bullet}} Q_{\alpha}(x) dx < \infty$, in violation of (48). The relation (54) is thus proved. Finally if $\alpha \in (m, \infty)$, then (48), (59), and no. 8 imply the assertion (55). Q. E. D.

References

- [1] M. GIASNER-R. KATZ, On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. D'Analyse Math., 22(1969), 345-354.
- [2] M. GIASNER -R. KATZ -M. NAKAI, Examples in the classification theory of Riemannian manifolds and the equation $\Delta u = Pu$, Math. Z., 121(1971), 233-238.
- [3] S. ITÔ, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math., 27(1957), 55-102.
- [4] F-Y. MAEDA, Boundary value problems for the equation $\Delta u pu = 0$ with respect to an ideal boundary, J. Sci. Hiroshima univ., 32(1968), 85-146.
- [5] C. MIRANDA, Partial Differential Equations of Elliptic Type, Springer, 1970.
- [6] L. MYRBERG, Üher die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., 170(1954).
- [7] M. NAKAI, The space of bounded solutions of the equation $\Delta u = Pu$ on a Riemann surface, Proc. Japan Acad., 36(1960), 267-272.
- [8] M.NAKAI, Dirichlet finite solutions of $\Delta u = Pu$, and classification of Riemann surfaces, Bull. Amer. Math. Soc., 77(1971), 381–385.

- [9] M. NAKAI, Dirichlet finite solutions of $\Delta u = Pu$ on open Riemann surfaces, Kôdai Math. Sem. Rep. (to appear). [10] M. OZAWA, Classification of Riemann surfaces, Kôdai Math. Sem. Rep., 4(1952), 63-76.
- [11] H. L. ROYDEN, The equation $\Delta u = Pu$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271(1959).
- [12] L. SARIO-M. NAKAI, Classification Theory of Riemann Surfaces, Springer, 1970.

DEPARTMENT OF MATHEMATICS NAGOYA UNIVERSITY NAGOYA, JAPAN