MINIMAL SUBMANIFOLDS WITH M-INDEX 2 IN RIEMANNIAN MANIFOLDS OF CONSTANT CURVATURE

Tominosuke Otsuki

(Received October 8, 1970)
For a submanifold M in a Riemannian manifold \bar{M}, the minimal index (M-index) at a point of M is defined by the dimension of the linear space of all 2nd fundamental forms with vanishing trace. The geodesic codimension of M in \bar{M} is defined by the minimum of codimensions of M in totally geodesic submanifolds of \bar{M} containing M.

It is clear in general that for M in \bar{M}
M-index \leqq geodesic codimension .
In [7], the author investigated minimal submanifolds with M-index 2 in Riemannian manifolds of constant curvature and gave some typical examples of such submanifolds with geodesic codimension 3 in the space forms which is quite analogous to the case of helicoids in E^{3} when \bar{M} is Euclidean. In the present paper, he will give some examples of such submanifolds with geodesic codimension 4 in the space forms. In the previous case, the base surface (analogous to the helix for a helicoid) must be locally flat, but in the present case it must be of positive constant curvature.

We will use the notations in [7].

1. Preliminaries. Let $\bar{M}=\bar{M}^{n+\nu}$ be a Riemannian manifold of dimension $n+\nu$ and of constant curvature \bar{c} and $M=M^{n}$ be an n-dimensional submanifold in \bar{M}. Let $\bar{\omega}_{A}, \bar{\omega}_{A B}=-\bar{\omega}_{B A}, A, B=1,2, \cdots, n+\nu$, be the basic and connection forms of \bar{M} on the orthonormal frame bundle $F(\bar{M})$ which satisfy the structure equations

$$
\begin{equation*}
d \bar{\omega}_{A}=\sum_{B} \bar{\omega}_{A B} \wedge_{B} \bar{\omega}, d \bar{\omega}_{A B}=\sum_{C} \bar{\omega}_{A C} \wedge \bar{\omega}_{C B}-\bar{c} \bar{\omega}_{A} \wedge \bar{\omega}_{B} \tag{1.1}
\end{equation*}
$$

Let B be the subbundle of $F(\bar{M})$ over M such that $b=\left(x, e_{1}, \cdots, e_{n}, \cdots, e_{n+\nu}\right) \in F(\bar{M})$ and $\left(x, e_{1}, \cdots, e_{n}\right) \in F(M)$, where $F(M)$ is the orthonormal frame bundle of M with the induced Riemannian metric from \bar{M}, then deleting the bars of $\bar{\omega}_{A}$, $\bar{\omega}_{A B}$ on B, we have

$$
\begin{equation*}
\omega_{\alpha}=0, \omega_{i \alpha}=\sum_{j} A_{\alpha i j} \omega_{j}, A_{\alpha i j}=A_{\alpha j i} \quad \alpha=n+1, \cdots, n+\nu ; i, j=1,2, \cdots, n . \tag{1.2}
\end{equation*}
$$

For any point $x \in M$, let N_{x} be the normal space to $M_{x}=T_{x} M$ in $\bar{M}_{x}=T_{x} \bar{M}$. For any $b \in B$, let φ_{b} be a linear mapping from N_{x} into the set of all symmetric matrices of order n defined by

$$
\boldsymbol{\varphi}_{b}\left(\sum_{\alpha} v_{\alpha} e_{\alpha}\right)=\sum_{\alpha} v_{\alpha} A_{\alpha}, A_{\alpha}=\left(A_{\alpha i j}\right)
$$

Now, we suppose that M is minimal in \bar{M} and of M-index 2 at each point. Then, N_{x} is decomposed as

$$
N_{x}=N_{x}^{\prime}+O_{x}, \quad N_{x}^{\prime} \perp O_{x}
$$

where $O_{x}=\varphi_{b}^{-1}(0)$ and $\operatorname{dim} N_{x}^{\prime}=2$, which does not depend on the choice of b over x and is smooth with respect to x. Let B_{1} be the set of b such that e_{n+1}, $e_{n+2} \in N_{x}^{\prime}$. By means of Lemma 1 in [7], on B_{1} we have

$$
\omega_{n+1, \beta} \equiv \omega_{n+2, \beta} \equiv 0\left(\bmod \omega_{1}, \cdots, \omega_{n}\right) \quad(\beta>n+2) .
$$

Then, for any $v \in N_{x}^{\prime}$, we can define a linear mapping $\psi_{v}: M_{x} \rightarrow O_{x}$ by

$$
\begin{equation*}
\psi_{v}(X)=\sum_{\beta>n+2}<v, e_{n+1} \omega_{n+1, \beta}(X)+e_{n+2} \omega_{n+2, \beta}(X)>e_{\beta} \tag{1.3}
\end{equation*}
$$

The mapping $\psi: M_{x} \times N_{x}^{\prime} \rightarrow O_{x}, \psi(X, v)=\psi_{v}(X)$, may be called the 1st torsion operator of M in \bar{M}. According to Lemmas 1,2 and Theorem 1 in [7], we have

Theorem A. Let M^{n} be minimal and of M-index 2 everywhere in $\bar{M}^{n+\nu}$ of constant curvature. Then we have the following:
(i) M^{n} is of geodesic codimension 2 if and omly if $\psi \equiv 0$.
(ii) If $\psi \neq 0$ everywhere, then $\operatorname{dim} \mathfrak{l}_{x}=n-2$, where \mathfrak{l}_{x} is the space of relative nullity of M^{n} in $\bar{M}^{n+\nu}$ at $x, \psi_{v}\left(\mathfrak{l}_{x}\right)=0$ for any $v \in N_{x}^{\prime}$ and $\psi_{v}, v \neq 0$, has a common image $\psi_{v}\left(M_{x}\right)$ whose dimension $\leqq 2$.

When $\psi \neq 0$ at $x \in M$, we decompose M_{x} as

$$
M_{x}=\mathfrak{W}_{x}+\mathfrak{l}_{x}, \quad \mathfrak{W}_{x} \perp \mathfrak{l}_{x} .
$$

We can choose frames $b \in B_{1}$ such that $e_{1}, e_{2} \in \mathfrak{W}_{x}, e_{3}, \cdots, e_{n} \in \mathfrak{l}_{x}$ and

$$
\left\{\begin{array}{l}
\omega_{1, n+1}=\lambda \omega_{1}, \omega_{2, n+1}=-\lambda \omega_{2}, \omega_{3, n+1}=\cdots=\omega_{n, n+1}=0, \tag{1.4}\\
\omega_{1, n+2}=\mu \omega_{2}, \omega_{2, n+2}=\mu \omega_{1}, \omega_{3, n+2}=\cdots=\omega_{n, n+2}=0, \\
\omega_{i \beta}=0, i=1, \cdots, n ; \beta>n+2, \lambda \neq 0, \mu \neq 0
\end{array}\right.
$$

and then (1.3) can be written as

$$
\begin{align*}
\psi_{v}(X)= & \left\{\frac{1}{\lambda}<v, e_{n+1}>\omega_{1}(X)-\frac{1}{\mu}<v, e_{n+2}>\omega_{2}(X)\right\} F \tag{1.5}\\
& +\left\{\frac{1}{\lambda}<v, e_{n+1}>\omega_{2}(X)+\frac{1}{\mu}<v, e_{n+2}>\omega_{1}(X)\right\} G,
\end{align*}
$$

where $F=\sum_{\gamma>n+2} f_{\gamma} e_{\gamma}$ and $G=\sum_{\gamma>n+2} g_{\gamma} e_{\gamma}$ and

$$
\begin{equation*}
\lambda \omega_{n+1, \gamma}+i \mu \omega_{n+2, \gamma}=\left(f_{\gamma}+i g_{\gamma}\right)\left(\omega_{1}-i \omega_{2}\right), \quad \gamma>n+2 . \tag{1.6}
\end{equation*}
$$

$\psi \neq 0$ implies $F \neq 0$ or $G \neq 0$.
Now, supposing $\psi \neq 0$ everywhere, we denote the set of $b \in B_{1}$ satisfying (1.4) by B_{2}. On B_{2}, we have

$$
\begin{equation*}
\omega_{1 r}+i \omega_{2 r}=\left(p_{r}+i q_{r}\right)\left(\omega_{1}+i \omega_{2}\right), 2<r \leqq n . \tag{1.7}
\end{equation*}
$$

The vector fields $P=\sum_{r=3}^{n} p_{r} e_{r}$ and $Q=\sum_{r=3}^{n} q_{r} e_{r}$ of M are called the principal and subprincipal asymptotic vector fields, respectively. According to Lemmas 3, 4 and Theorem 2 in [7], we have

THEOREM B. Let M^{n} be minimal and of M-index 2 everywhere in $\bar{M}^{n+\nu}$ of constant curvature \bar{c}. Supposing the 1 st torsion operator $\psi \neq 0$ everywhere, we have:
(1) The distribution $\mathfrak{l}=\left\{\mathfrak{l}_{x}, x \in M^{n}\right\}$ is completely integrable and its integral submanifolds are totally geodesic in \bar{M}^{n+v}.
(2) The distribution $\mathfrak{W}=\left\{\mathfrak{W}_{x}, x \in M^{n}\right\}$ is completely integrable if and only if $Q \equiv 0$.
(3) When $Q \equiv 0$, the integral surfaces of \mathfrak{M} are totally umbilic in M^{n}.
(4) When $P \neq 0$ and $Q \equiv 0$, the integral curves of the vector field P are geodesics in $\bar{M}^{n+\nu}$.

Under the conditions of Theorem B and $Q \equiv 0$, on B_{2} we have

$$
\begin{equation*}
\left\{d \log \lambda-<P, d x>-i\left(2 \omega_{12}-\sigma \hat{\omega}_{1}\right)\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0, \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\left\{d \sigma+i\left(1-\sigma^{2}\right) \hat{\omega}_{1}\right\} \wedge\left(\omega_{1}+i \omega_{2}\right)=0 \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
d \omega_{12}=-\left\{\|P\|^{2}+\bar{c}-\lambda^{2}-\mu^{2}\right\} \omega_{1} \wedge \omega_{2}, \tag{1.10}
\end{equation*}
$$

$$
\begin{equation*}
d \hat{\omega}_{1}=-\frac{1}{\lambda \mu}\left\{2 \lambda^{2} \mu^{2}-\|F\|^{2}-\|G\|^{2}\right\} \omega_{1} \wedge \omega_{2}, \tag{1.11}
\end{equation*}
$$

where $\sigma=\mu / \lambda, \quad \hat{\omega}_{1}=\omega_{n+1, n+2}$. $\quad \hat{\omega}_{1}$ is the connection form of the vector bundle $N^{\prime}=\cup N^{\prime}, x \in M^{n}$, and $<P, d x>=\sum_{r=3}^{n}<P, e_{r}>\omega_{r}$. In this case, we denote the set of frames $b \in B_{2}$ such that $P=p e_{3}, p>0$, by B_{3}. On B_{3} we have

$$
\begin{equation*}
\omega_{a 3}=p \omega_{a}, \omega_{a t}=0, p \omega_{3 t}=\bar{c} \omega_{t}, \quad a=1,2 ; \quad 3<t \leqq n \tag{1.12}
\end{equation*}
$$

According to Lemmas 7, 8, 9, 10 and Theorem 3 in [7], we have
THEOREM C. Let $M^{n}(n \geqq 3)$ be a maximal minimal submanifold in an $(n+\nu)$-dimensional space form $\bar{M}^{n+\nu}($ of constant curvature $\bar{c})$ which is of M index 2 and whose torsion operator $\psi \neq 0$, principal asymptotic vector field $P \neq 0$ everywhere and subprincipal asymptotic vector field $Q \equiv 0$, then it is a locus of ($n-2$)-dimensional totally geodesic subspaces $L^{n-2}(y)$ in $\bar{M}^{n+\nu}$ through points y of a base surface W^{2} lying in a Riemannian hypersphere in \bar{M}^{n+v} with center z_{0} such that
(i) $L^{n-2}(y)$ intersects orthogonally with W^{2} at y and contains the geodesic radius from z_{0} to y.
(ii) The ($n-3$)-dimensional tangent spaces to the intersection of $L^{n-2}(y)$ and the hypersphere at y are parallel along W^{2} in $\bar{M}^{n+\nu}$.
W^{2} in this theorem is an integral surface of the distribution \mathfrak{B} and the geodesic radius from z_{0} to y is the integral curve of P.

Denoting the length along geodesic rays starting at z_{0} measured from z_{0} by v, we have

$$
\begin{equation*}
\omega_{3}=-d v \tag{1,13}
\end{equation*}
$$

and

$$
p= \begin{cases}\sqrt{\bar{c}} \cot \sqrt{\bar{c}} v & (\bar{c}>0) \tag{1.14}\\ 1 / v & (\bar{c}=0) \\ \sqrt{-\bar{c}} \operatorname{coth} \sqrt{-\bar{c}} v & (\bar{c}<0)\end{cases}
$$

2. The 2nd torsion oberator ψ^{\prime}. In the following, we shall investigate M^{n} in $\bar{M}^{n+\nu}$ as in Theorem C and use the notations in $\S 1$.

If the rank of ψ is 1 everywhere, M^{n} is of geodesic codimension 3 by Theorem 4 in [7].

Now, we assume that the rank of ψ is 2 everywhere, that is $F \wedge G \neq 0$. At any point $x \in M^{n}$, we denote the 2 -dimensional normal space spanned by F and G by $N_{x}^{\prime \prime}$ and put $N^{\prime \prime}=\cup N_{x}^{\prime \prime}, x \in M^{n}, N^{\prime \prime}$ is a 2 -dimensional normal vector bundle over M^{n} as N^{\prime}. We can orthogonally decompose N_{x} as

$$
\begin{equation*}
N_{x}=N_{x}^{\prime}+N_{x}^{\prime \prime}+O_{x}^{\prime}, O_{x}=N_{x}^{\prime \prime}+O_{x}^{\prime}, N_{x}^{\prime \prime} \perp O_{x}^{\prime} \tag{2.1}
\end{equation*}
$$

By the above assumption for ψ, we denote the set of frames $b \in B_{3}$ such that e_{n+3}, $e_{n+4} \in N_{x}^{\prime \prime}$ by B_{4}. On B_{4}, we have

$$
\begin{equation*}
f_{\gamma}=g_{\gamma}=0, \quad \gamma>n+4, \text { and } f_{n+3} g_{n+4}-f_{n+4} g_{n+3} \neq 0 \tag{2.2}
\end{equation*}
$$

Hence, from (1.6), we have

$$
\begin{equation*}
\omega_{n+1, \gamma}=\omega_{n+2, \gamma}=0, \quad \gamma>n+4 \tag{2.3}
\end{equation*}
$$

from which we get

$$
\begin{aligned}
& d \omega_{n+1, \gamma}=\omega_{n+1, n+3} \wedge \omega_{n+3, \gamma}+\omega_{n+1, n+4} \wedge \omega_{n+4, \gamma}=0 \\
& d \omega_{n+2, \gamma}=\omega_{n+2, n+3} \wedge \omega_{n+3, \gamma}+\omega_{n+2, n+4} \wedge \omega_{n+4, \gamma}=0
\end{aligned}
$$

Using (1.6) and (2.2), we have

$$
\left\{\left(f_{n+3}+i g_{n+3}\right) \omega_{n+3, \gamma}+\left(f_{n+4}+i g_{n+4}\right) \omega_{n+4, \gamma}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right)=0
$$

and hence

$$
\begin{equation*}
\omega_{n+3, \gamma} \equiv \omega_{n+4, \gamma} \equiv 0 \quad\left(\bmod \omega_{1}, \omega_{2}\right), \quad \gamma>n+4 \tag{2.4}
\end{equation*}
$$

By virtue of (2.4), for any $v \in N_{x}^{\prime \prime}$, we can define a linear mapping $\psi_{v}^{\prime}: M_{x} \rightarrow O_{x}^{\prime}$ by

$$
\begin{equation*}
\psi_{v}^{\prime}(X)=\sum_{r>n+4}<v, e_{n+3} \omega_{n+3, \gamma}(X)+e_{n+4} \omega_{n+4, \gamma}(X)>e_{\gamma} \tag{2.5}
\end{equation*}
$$

The mapping $\psi^{\prime}: M_{x} \times N_{x}^{\prime \prime} \rightarrow O_{x}^{\prime}, \psi^{\prime}(X, v)=\psi_{v}^{\prime}(X)$, may be called the 2nd torsion operator of M in \bar{M}. Clearly ψ^{\prime} does not depend on the choice of b over x.

Lemma 1. $\psi_{v}^{\prime}, v \neq 0$, has the common image.
Proof. By means of the above argument, we can put

$$
\left(f_{n+3}+i g_{n+3}\right) \omega_{n+3, \gamma}+\left(f_{n+4}+i g_{n+4}\right) \omega_{n+4, \gamma}=\left(f_{\gamma}^{\prime}+i g_{\gamma}^{\prime}\right)\left(\omega_{1}-i \omega_{2}\right), \quad \gamma>n+4
$$

Hence we have

$$
\left\{\begin{array}{l}
\omega_{n+3, \gamma}=\frac{1}{\triangle}\left\{\left(g_{n+4} \omega_{1}+f_{n+4} \omega_{2}\right) f_{\gamma}^{\prime}-\left(f_{n+4} \omega_{1}-g_{n+4} \omega_{2}\right) g_{\gamma}^{\prime}\right\} \tag{2.6}\\
\omega_{n+4, \gamma}=\frac{1}{\triangle}\left\{-\left(g_{n+3} \omega_{1}+f_{n+3} \omega_{2}\right) f_{\gamma}^{\prime}+\left(f_{n+3} \omega_{1}-g_{n+3} \omega_{2}\right) g_{\gamma}^{\prime}\right\}
\end{array}\right.
$$

where $\Delta=f_{n+3} g_{n+4}-f_{n+4} g_{n+3}$. Putting $F^{\prime}=\sum_{\gamma>n+4} f_{\gamma}^{\prime} e_{\gamma}$ and $G^{\prime}=\sum_{\gamma>n+4} g_{\gamma}^{\prime} e_{\gamma}$, we have

$$
\begin{align*}
\psi_{v}^{\prime}(X)= & \frac{1}{\triangle}\left\{v_{1}\left(g_{n+4} X_{1}+f_{n+4} X_{2}\right)-v_{2}\left(g_{n+3} X_{1}+f_{n+3} X_{2}\right)\right\} F^{\prime} \tag{2.7}\\
& +\frac{1}{\triangle}\left\{-v_{1}\left(f_{n+4} X_{1}-g_{n+4} X_{2}\right)+v_{2}\left(f_{n+3} X_{1}-g_{n+3} X_{2}\right)\right\} G^{\prime}
\end{align*}
$$

where $v=v_{1} e_{n+3}+v_{2} e_{n+4}$ and $X=\sum_{i=1}^{n} X_{i} e_{i}$. Since

$$
\begin{gathered}
\left(g_{n+4} X_{1}+f_{n+4} X_{2}\right)\left(f_{n+3} X_{1}-g_{n+3} X_{2}\right)-\left(g_{n+3} X_{1}+f_{n+3} X_{2}\right)\left(f_{n+4} X_{1}-g_{n+4} X_{2}\right) \\
=\triangle\left(X_{1}^{2}+X_{2}^{2}\right)
\end{gathered}
$$

and $\triangle \neq 0$, the image of $\psi_{v s}^{\prime} v \neq 0$, is the space spanned by F^{\prime} and G^{\prime}. q.e.d.
By the lemma, we may say the rank of the 2 nd torsion operator ψ^{\prime} as the common rank of $\psi_{v}^{\prime}, v \neq 0$.

THEOREM 1. Let $M^{n}(n \geqq 3)$ be a minimal submanifold in $\bar{M}^{n+\nu}$ of constant curvature which is of M-index 2 everywhere and $Q \equiv 0$ and the rank of $\psi \equiv 2$. Then M^{n} is of geodesic codimension 4 if and only if the rank of $\psi^{\prime} \equiv 0$.

Proof. The necessity is trivial.
Let us suppose that the rank of $\psi^{\prime} \equiv 0$. This is equivalent to $F^{\prime} \equiv G^{\prime} \equiv 0$. Hence, by (2.6), we have

$$
\omega_{n+3, \gamma}=\omega_{n+4, \gamma}=0, \quad \gamma>n+4 .
$$

Combining these with (2.3) and (1.4), we see that there exists an ($n+4$)-dimensional totally geodesic submanifold in $\bar{M}^{n+\nu}$ containing M^{n} by means of the structure equations (1.1).
q. e. d.

By this theorem, if we consider the case $\psi^{\prime} \equiv 0$, we may put $\nu=4$ from the local point of view.
3. M^{n} in \bar{M}^{n+4}. In the following, we suppose $\boldsymbol{\nu}=4$. On B_{4}, putting

$$
\begin{equation*}
\Phi_{\gamma}=\frac{1}{\lambda}\left(f_{\gamma}+i g_{\gamma}\right), \quad \gamma>n+2 \tag{3.1}
\end{equation*}
$$

(2.2) implies that

$$
\begin{equation*}
\Phi_{n+3} \neq 0, \Phi_{n+4} \neq 0, \Phi=\Phi_{n+4} / \Phi_{n+3} \neq \text { real. } \tag{3.2}
\end{equation*}
$$

From (1.6), we have

$$
\begin{equation*}
\omega_{n+1, \gamma}+i \sigma \omega_{n+2, \gamma}=\Phi_{\gamma}\left(\omega_{1}-i \omega_{2}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{aligned}
d \omega_{n+1, \gamma}+i d \sigma & \wedge \omega_{n+2, \gamma}+i \sigma d \omega_{n+2, \gamma}=d \Phi_{\gamma} \wedge\left(\omega_{1}-i \omega_{2}\right) \\
& +\Phi_{\gamma}\left(\omega_{12} \wedge \omega_{2}+\omega_{13} \wedge \omega_{3}+i \omega_{12} \wedge \omega_{1}-i \omega_{23} \wedge \omega_{3}\right)
\end{aligned}
$$

by (1.12). Putting

$$
\begin{equation*}
\omega_{n+3, n+4}=\hat{\omega}_{2}, \tag{3.4}
\end{equation*}
$$

the above equation can be written as

$$
\begin{aligned}
\hat{\omega}_{1} \wedge & \omega_{n+2, \gamma}+\sum_{\delta>n+2} \omega_{n+1, \delta} \wedge \omega_{\delta \gamma}+i d \sigma \wedge \omega_{n+2, \gamma} \\
& +i \sigma\left\{-\hat{\omega}_{1} \wedge \omega_{n+1, \gamma}+\sum_{\delta>n+2} \omega_{n+2, \delta} \wedge \omega_{\delta \gamma}\right\} \\
& =d \Phi_{\gamma} \wedge\left(\omega_{1}-i \omega_{2}\right)+\Phi_{\gamma}\left\{i \omega_{12} \wedge\left(\omega_{1}-i \omega_{2}\right)-p \omega_{3} \wedge\left(\omega_{1}-i \omega_{2}\right)\right\}
\end{aligned}
$$

and using (3.3) this equation becomes

$$
\begin{align*}
& i\left\{d \sigma-i\left(1-\sigma^{2}\right) \hat{\omega}_{1}\right\} \wedge \omega_{n+2, \gamma} \\
& \quad=\left\{d \Phi_{\gamma}+\Phi_{\gamma}\left(i\left(\omega_{12}+\sigma \hat{\omega}_{1}\right)+p d v\right)+\sum_{\delta>n+2} \Phi_{\partial} \omega_{\delta \gamma}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right) .
\end{align*}
$$

For simplicity, we put $\Phi_{n+3}=\Phi_{1}, \Phi_{n+4}=\Phi_{2}$. Then (3.5) are two equations as follows :

$$
\begin{aligned}
& \frac{1}{\Phi_{1}} i\left\{d \sigma-i\left(1-\sigma^{2}\right)\right\} \hat{\omega}_{1} \wedge \omega_{n+2, n+3} \\
& \quad=\left\{d \log \Phi_{1}+i\left(\omega_{12}+\sigma \hat{\omega}_{1}\right)+p d v-\Phi \hat{\omega}_{2}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right), \\
& \frac{1}{\Phi_{2}} i\left\{d \sigma-i\left(1-\sigma^{2}\right) \hat{\omega}_{1}\right\} \wedge \omega_{n+2, n+4} \\
& \quad=\left\{d \log \Phi_{2}+i\left(\omega_{12}+\sigma \hat{\omega}_{1}\right)+p d v+\frac{1}{\Phi} \hat{\omega}_{2}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right) .
\end{aligned}
$$

Lemma 2. The curvature $d_{\hat{\omega}_{2}}$ of $N^{\prime \prime}$ is not zero everywhere.
Proof. From (3.3) we have easily

$$
\begin{aligned}
& \omega_{n+1, n+3}=\frac{1}{\lambda}\left(f_{n+3} \omega_{1}+g_{n+3} \omega_{2}\right), \\
& \omega_{n+2, n+3}=\frac{1}{\lambda \sigma}\left(g_{n+3} \omega_{1}-f_{n+3} \omega_{2}\right), \\
& \omega_{n+1, n+4}=\frac{1}{\lambda}\left(f_{n+4} \omega_{1}+g_{n+4} \omega_{2}\right), \\
& \omega_{n+2, n+4}=\frac{1}{\lambda \sigma}\left(g_{n+4} \omega_{1}-f_{n+4} \omega_{2}\right) .
\end{aligned}
$$

Hence we have the curvature form of the bundle $N^{\prime \prime}$ given by
(3. 6) $d \hat{\omega}_{2}=\omega_{n+3, n+1} \wedge \omega_{n+1, n+4}+\omega_{n+3, n+2} \wedge \omega_{n+2, n+4}=-\frac{\triangle}{\lambda^{2}}\left(1+\frac{1}{\sigma^{2}}\right) \omega_{1} \wedge \omega_{2}$.

Since $\Delta \neq 0$ by (2.2), $d \hat{\omega}_{2} \neq 0$ everywhere. q. e. d.

Corollary. The set of points where $\hat{\omega}_{2}=0$ is non dense in M^{n}.
THEOREM 2. Let M^{n} be a submanifold in \bar{M}^{n+4} as in Theorem 1. Assuming the following conditions:
(α) $\hat{\omega}_{1} \neq 0, \hat{\omega}_{2} \neq 0$ and σ and Φ are constant on W^{2},
(β) W^{2} is of constant curvature c,
where W^{2} is an integral surface of the distribution \mathfrak{M}, we have the following
for W^{2} :
(i) $\sigma=1$ or -1 and $\Phi=i$ or $-i$,
(ii) $\langle F, G\rangle=0$,
(iii) $c>0$.

Proof. Since σ is constant on W^{2}, we get from (1.9)

$$
\left(1-\sigma^{2}\right) \hat{\omega}_{1} \wedge\left(\omega_{1}+i \omega_{2}\right)=0
$$

hence

$$
\left(1-\sigma^{2}\right) \hat{\omega}_{1}=0 \quad \text { on } W^{2} .
$$

Since $\hat{\omega}_{1} \neq 0$ by (α), it must be $\sigma=1$ or -1 .
Then, from (3.5) and $\sigma^{2}=1$, we have the relations

$$
\begin{gather*}
\left\{d \log \Phi_{1}+i\left(\omega_{12}+\sigma \hat{\omega}_{1}\right)+p d v-\Phi \omega_{2}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right)=0 \tag{3.7}\\
\left\{d \log \Phi_{2}+i\left(\omega_{12}+\sigma \hat{\omega}_{1}\right)+p d v+\frac{1}{\Phi} \hat{\omega}_{2}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right)=0
\end{gather*}
$$

from which

$$
\left\{d \log \Phi+\left(\Phi+\frac{1}{\Phi}\right) \dot{\omega}_{2}\right\} \wedge\left(\omega_{1}-i \omega_{2}\right)=0
$$

Since Φ is constant on W^{2} by (α), we have

$$
\left(\Phi+\frac{1}{\Phi}\right) \hat{\omega}_{2} \wedge\left(\omega_{1}-i \omega_{2}\right)=0
$$

hence

$$
\left(\Phi+\frac{1}{\Phi}\right) \hat{\omega}_{2}=0
$$

Since $\hat{\omega}_{2} \neq 0$ on W^{2}, it must be $\Phi=i$ or $-i$, from which we obtain easily $<F, G>=0$.

Next, from (β), we may put

$$
d \omega_{12}=-c \omega_{1} \wedge \omega_{2} \quad \text { on } W^{2}
$$

hence from (1.10) we have

$$
p^{2}+\bar{c}-\lambda^{2}-\mu^{2}=c .
$$

Using $\sigma^{2}=1$, we have

$$
\begin{equation*}
2 \lambda^{2}=p^{2}+\bar{c}-c \text { on } W^{2}, \tag{3.8}
\end{equation*}
$$

which implies that λ and μ are constant on W^{2}, since by means of Theorem C and (1.14), p is constant on W^{2}. Hence (1.8) implies

$$
\begin{equation*}
\hat{\omega}_{1}=2 \sigma \omega_{12} \quad \text { on } W^{2} . \tag{3.9}
\end{equation*}
$$

Making use of this and (1.11), we have

$$
\begin{aligned}
2 c & =\frac{1}{\lambda^{2}}\left(2 \lambda^{4}-\|F\|^{2}-\|G\|^{2}\right) \\
& =2 \lambda^{2}-\left|\Phi_{1}\right|^{2}-\left|\Phi_{2}\right|^{2}=2\left(\lambda^{2}-\left|\Phi_{1}\right|^{2}\right),
\end{aligned}
$$

that is

$$
\begin{equation*}
\left|\Phi_{1}\right|^{2}=\lambda^{2}-c . \tag{3.10}
\end{equation*}
$$

This relation shows that Φ_{1} is constant on W^{2}. On the other hand, from (3.7), (3.9) we have

$$
i\left(3 \omega_{12}+d \theta_{1}+i \Phi \hat{\omega}_{2}\right) \wedge\left(\omega_{1}-i \omega_{2}\right)=0
$$

where θ_{1} is the argument of the function Φ_{1}. Hence we have

$$
\begin{equation*}
\hat{\omega}_{2}=-i \Phi\left(3 \omega_{12}+d \theta_{1}\right) \quad \text { on } W^{2} . \tag{3.11}
\end{equation*}
$$

From (3.6) and (3.11), we have

$$
d \hat{\omega}_{2}=-3 i \Phi d \omega_{12}=3 i c \Phi \omega_{1} \wedge \omega_{2}=-\frac{2}{\lambda^{2}} \Delta \omega_{1} \wedge \omega_{2}
$$

hence

$$
3 i c \Phi=-\frac{2}{\lambda^{2}}\left(f_{n+3} g_{n+4}-f_{n+4} g_{n+3}\right),
$$

that is

$$
\begin{equation*}
3 c=2\left|\Phi_{1}\right|^{2} \quad \text { on } W^{2} \tag{3.12}
\end{equation*}
$$

This relation shows that $c>0$.
q. e. d.

By (3.10) and (3.12) we have

$$
\begin{equation*}
2 \lambda^{2}=5 c, \quad\left|\Phi_{1}\right|^{2}=\frac{3}{2} c \quad \text { on } W^{2} \tag{3.13}
\end{equation*}
$$

4. Frenet formula of W^{2} under (α) and (β). In this section, we shall determine the Frenet formula of W^{2} in terms of an isothermal coordinate, when the conditions (α) and (β) in Theorem 2 are satisfied.

By means of (ii) in Theorem 2, we denote the set of frames b over W^{2} such that

$$
\begin{equation*}
F=f e_{n+3}, \quad G=g e_{n+4}, \quad f>0, g>0 \tag{4.1}
\end{equation*}
$$

by B_{5}.
Without loss of generality, we may put

$$
c=1 \quad \text { and } \quad \sigma=1
$$

Since $\Phi_{1}=f / \lambda$ and $\Phi_{2}=i g / \lambda$ on B_{5}, we have

$$
\begin{equation*}
\lambda=\mu=\frac{\sqrt{10}}{2}, \quad f=g=\frac{\sqrt{15}}{2} \quad \text { on } W^{2} \tag{4.2}
\end{equation*}
$$

by (3.13). Furthermore, from (3.9) and (3.11) we have

$$
\begin{equation*}
\hat{\omega}_{1}=2 \omega_{12}, \quad \dot{\omega}_{2}=3 \omega_{12} \tag{4.3}
\end{equation*}
$$

and from (3.3)

$$
\omega_{n+1, n+3}=\frac{\sqrt{6}}{2} \omega_{1}, \quad \omega_{n+1, n+4}=\frac{\sqrt{6}}{2} \omega_{2}
$$

$$
\begin{equation*}
\omega_{n+2, n+3}=-\frac{\sqrt{6}}{2} \omega_{2}, \quad \omega_{n+2, n+4}=\frac{\sqrt{6}}{2} \omega_{1} \tag{4.4}
\end{equation*}
$$

(3.8) becomes

$$
\begin{equation*}
p^{2}+\bar{c}=6 . \tag{4.5}
\end{equation*}
$$

Now, we figure the Frenet formula of W^{2}. First of all we have

$$
\begin{equation*}
d x=e_{1} \omega_{1}+e_{2} \omega_{2} . \tag{4.6}
\end{equation*}
$$

By means of (1.4), (1.12) and (4.2), we have easily
(4.7) $\bar{D}\left(e_{1}+i e_{2}\right)=-i\left(e_{1}+i e_{2}\right) \omega_{12}+p e_{3}\left(\omega_{1}+i \omega_{2}\right)+\frac{\sqrt{10}}{2}\left(e_{n+1}+i e_{n+2}\right)\left(\omega_{1}-i \omega_{2}\right)$

$$
\begin{equation*}
\bar{D} e_{3}=-p\left(e_{1} \omega_{1}+e_{2} \omega_{2}\right), \tag{4.8}
\end{equation*}
$$

where \bar{D} denotes the covariant differential operator in \bar{M}^{n+4}. Analogously, we have

$$
\begin{align*}
\bar{D}\left(e_{n+1}+i e_{n+2}\right)= & -\frac{\sqrt{10}}{2}\left(e_{1}+i e_{2}\right)\left(\omega_{1}+i \omega_{2}\right)-2 i\left(e_{n+1}+i e_{n+2}\right) \omega_{12} \tag{4.9}\\
& +\frac{\sqrt{6}}{2}\left(e_{n+3}+i e_{n+4}\right)\left(\omega_{1}-i \omega_{2}\right)
\end{align*}
$$

by means of (1.4), (4.2), (4.3) and (4.4). Lastly we have

$$
\begin{align*}
\bar{D}\left(e_{n+3}+i e_{n+4}\right)= & -\frac{\sqrt{6}}{2}\left(e_{n+1}+i e_{n+2}\right)\left(\omega_{1}+i \omega_{2}\right) \tag{4,10}\\
& -3 i\left(e_{n+3}+i e_{n+4}\right) \omega_{12} .
\end{align*}
$$

These equations (4.6) $\sim(4.10)$ constitute the Frenet formula of W^{2}. In order to solve these equations, we shall write these equations in terms of an isothermal coordinate of W^{2}.

On the other hand, for the unit sphere S^{2} we have the following formula, considering it as the Gaussian complex number sphere, as is well known,

$$
\begin{equation*}
d s^{2}=\frac{4 d z d \bar{z}}{(1+z \bar{z})^{2}}=\left(\omega_{1}^{*}\right)^{2}+\left(\omega_{2}^{*}\right)^{2}, \tag{4,11}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{1}^{*}+i \omega_{2}^{*}=\frac{2 d z}{1+z \bar{z}}, \quad \omega_{12}^{*}=i \frac{\bar{z} d z-z d \bar{z}}{1+z \bar{z}}, \tag{4.12}
\end{equation*}
$$

where ω_{12}^{*} is the connection form of S^{2}.
Since W^{2} is of constant curvature 1 , we may consider it locally as the unit sphere S^{2}. Then, we may put

$$
\begin{equation*}
\omega_{1}+i \omega_{2}=e^{-i \theta}\left(\omega_{1}^{*}+i \omega_{2}^{*}\right) . \tag{4.13}
\end{equation*}
$$

Substituting this into

$$
d\left(\omega_{1}+i \omega_{2}\right)=-i \omega_{12} \wedge\left(\omega_{1}+i \omega_{2}\right)
$$

we have

$$
\left(\omega_{12}-\omega_{12}^{*}-d \theta\right) \wedge\left(\omega_{1}^{*}+i \omega_{2}^{*}\right)=0
$$

hence

$$
\begin{equation*}
\omega_{12}=\omega_{12}{ }^{*}+d \theta . \tag{4.14}
\end{equation*}
$$

Substituting (1.13) and (4.14) into (4.6) $\sim(4.10)$ and putting

$$
\left\{\begin{array}{l}
e_{1}^{*}+i e_{2}^{*}=e^{i \theta}\left(e_{1}+i e_{2}\right), e_{n+1}^{*}+i e_{n+2}^{*}=e^{2 i \theta}\left(e_{n+1}+i e_{n+2}\right), \tag{4.15}\\
e_{n+3}^{*}+i e_{n+4}^{*}=e^{3 i \theta}\left(e_{n+3}+i e_{n+4}\right),
\end{array}\right.
$$

we have

$$
\begin{gather*}
d x=e_{1}^{*} \omega_{1}{ }^{*}+e_{2}^{*} \omega_{2}^{*}, \tag{4.6*}\\
\bar{D}\left(e_{1}^{*}+i e_{2}^{*}\right)=-i\left(e_{1}^{*}+i e_{2}^{*}\right) \omega_{12}^{*}+p e_{3}\left(\omega_{1}^{*}+i \omega_{2}^{*}\right) \\
+\frac{\sqrt{10}}{2}\left(e_{n+1}^{*}+i e_{n+2}^{*}\right)\left(\omega_{1}^{*}-i \omega_{2}^{*}\right),
\end{gather*}
$$

$$
\begin{equation*}
\bar{D} e_{3}=-p\left(e_{1}^{*} \omega_{1}^{*}+e_{2}^{*} \omega_{2}^{*}\right) \tag{*}
\end{equation*}
$$

(4. $\left.9^{*}\right) \quad \bar{D}\left(e_{n+1}^{*}+i e_{n+2}{ }^{*}\right)=-\frac{\sqrt{10}}{2}\left(e_{1}^{*}+i e_{2}{ }^{*}\right)\left(\omega_{1}^{*}+i \omega_{2}^{*}\right)-2 i\left(e_{n+1}^{*}+i e_{n+2}{ }^{*}\right) \omega_{12}{ }^{*}$.

$$
+\frac{\sqrt{6}}{2}\left(e_{n+3}^{*}+i e_{n+4}^{*}\right)\left(\omega_{1}^{*}-i \omega_{2}^{*}\right)
$$

$$
\begin{align*}
\bar{D}\left(e_{n+3}^{*}+i e_{n+4}^{*}\right)= & -\frac{\sqrt{6}}{2}\left(e_{n+1}^{*}+i e_{n+2}^{*}\right)\left(\omega_{1}^{*}+i \omega_{2}^{*}\right) \tag{*}\\
& -3 i\left(e_{n+3}^{*}+i e_{n+4}^{*}\right) \omega_{12}^{*} .
\end{align*}
$$

Therefore using (4.12) and putting

$$
\begin{equation*}
\xi=e_{1}^{*}+i e_{2}^{*}, \quad \eta=e_{n+1}^{*}+i e_{n+2}{ }^{*}, \quad \zeta=e_{n+3}^{*}+i e_{n+4}^{*}, \tag{4.16}
\end{equation*}
$$

we have the Frenet formula of W^{2} in the isothermal coordinate z as follows:

$$
\left\{\begin{array}{l}
d x=\frac{1}{h}(\xi d z+\xi d \bar{z}), \tag{4.17}\\
\bar{D} e_{3}=-\frac{p}{h}(\xi d z+\xi d \bar{z}), \\
\bar{D} \xi=\frac{1}{h} \xi(\bar{z} d z-z d \bar{z})+\frac{2 p}{h} e_{3} d z+\frac{\sqrt{10}}{h} \eta d \bar{z}, \\
\bar{D} \eta=-\frac{\sqrt{10}}{h} \xi d z+\frac{2}{h} \eta(z d z-z d \bar{z})+\frac{\sqrt{6}}{h} \zeta d \bar{z}, \\
\bar{D} \zeta=-\frac{\sqrt{6}}{h} \eta d z+\frac{3}{h} \zeta(\bar{z} d z-z d \bar{z}),
\end{array}\right.
$$

where $h=1+z \bar{z}$.
5. Solutions in Case $\overline{\boldsymbol{M}}^{n+4}=\boldsymbol{E}^{n+4}$. In this section, we shall find M^{n} in Euclidean space E^{n+4} as in Theorem 2, by solving the Frenet formula (4.17) of W^{2}.

In this case, by (4.5) we have

$$
\begin{equation*}
p=\sqrt{6} \tag{5.1}
\end{equation*}
$$

From the last equation of (4.17), we have

$$
\frac{\partial \zeta}{\partial \bar{z}}=-\frac{3 z}{h} \zeta
$$

Hence we can put

$$
\begin{equation*}
\zeta=\frac{1}{h^{3}} F(z), \tag{5.2}
\end{equation*}
$$

where $F(z)$ is a complex holomorphic vector field. Substituting (5.2) into the 5th of (4.17), we have

$$
\begin{aligned}
\frac{\partial \zeta}{\partial z} & =-\frac{3 \bar{z}}{h^{4}} F(z)+\frac{1}{h^{3}} F^{2}(z)=-\frac{\sqrt{6}}{h} \eta+\frac{3 \bar{z}}{h} \zeta \\
& =-\frac{\sqrt{6}}{h} \eta+\frac{3 \bar{z}}{h^{4}} F(z)
\end{aligned}
$$

hence

$$
\begin{equation*}
\eta=\sqrt{6} \frac{\bar{z}}{h^{3}} F(z)-\frac{1}{\sqrt{6} h^{2}} F^{\prime}(z) \tag{5.3}
\end{equation*}
$$

From (5.3) and (5.2), we have

$$
\frac{\partial \eta}{\partial \bar{z}}=\sqrt{6}\left(\frac{1}{h^{3}}-\frac{3 z \bar{z}}{h^{4}}\right) F(z)+\frac{2 z}{\sqrt{6} h^{3}} F^{\prime}(z)
$$

and

$$
\begin{aligned}
\frac{\sqrt{6}}{h} \zeta-\frac{2 z}{h} \eta & =\frac{\sqrt{6}}{h^{4}} F(z)-\frac{2 \sqrt{6} z \bar{z}}{h^{4}} F(z)+\frac{2 z}{\sqrt{6} h^{3}} F^{\prime}(z) \\
& =\sqrt{6}\left(\frac{1}{h^{3}}-\frac{3 z \bar{z}}{h^{4}}\right) F(z)+\frac{2 z}{\sqrt{6} h^{3}} F^{\prime}(z),
\end{aligned}
$$

hence

$$
\frac{\partial \eta}{\partial z}=\frac{\sqrt{6}}{h} \zeta-\frac{2 z}{h} \eta
$$

From the 4th of (4.17), we have

$$
\begin{aligned}
\frac{\partial \eta}{\partial z} & =-\frac{3 \sqrt{6} \bar{z}^{2}}{h^{4}} F(z)+\frac{\sqrt{6} z}{h^{3}} F^{\prime}(z)+\frac{2 \bar{z}}{\sqrt{6} h^{3}} F^{\prime}(z)-\frac{1}{\sqrt{6} h^{2}} F^{\prime \prime}(z) \\
& =-\frac{\sqrt{10}}{h} \xi+\frac{2 \bar{z}}{h} \eta=-\frac{\sqrt{10}}{h} \xi+\frac{2 \sqrt{6} \bar{z}^{2}}{h^{4}} F(z)-\frac{2 \bar{z}}{\sqrt{6} h^{3}} F^{\prime}(z),
\end{aligned}
$$

hence
(5. 4)

$$
\xi=\frac{\sqrt{15} \bar{z}^{2}}{h^{3}} F(z)-\frac{\sqrt{15} \bar{z}}{3 h^{2}} F^{\prime}(z)+\frac{1}{2 \sqrt{15} h} F^{\prime \prime}(z) .
$$

From (5.4) and (5.3), we have

$$
\begin{aligned}
\frac{\partial \xi}{\partial \bar{z}}= & \sqrt{15}\left(\frac{2 \bar{z}}{h^{3}}-\frac{3 z \bar{z}^{2}}{h^{4}}\right) F(z)-\frac{\sqrt{15}}{3}\left(\frac{1}{h^{2}}-\frac{2 z \bar{z}}{h^{3}}\right) F^{\prime}(z)-\frac{z}{2 \sqrt{15} h^{2}} F^{\prime \prime}(z) \\
& =\sqrt{15} z\left(\frac{3}{h^{4}}-\frac{1}{h^{3}}\right) F(z)-\frac{\sqrt{15}}{3}\left(\frac{2}{h^{3}}-\frac{1}{h^{2}}\right) F^{\prime}(z)-\frac{z}{2 \sqrt{15} h^{2}} F^{\prime \prime}(z),
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\sqrt{10}}{h} \eta-\frac{z}{h} \xi= & \frac{2 \sqrt{15} \bar{z}}{h^{4}} F(z)-\frac{\sqrt{15}}{3 h^{3}} F^{\prime}(z)-\frac{\sqrt{15} z \bar{z}^{2}}{h^{4}} F(z) \\
& +\frac{\sqrt{15} z \bar{z}}{3 h^{3}} F^{\prime}(z)-\frac{z}{2 \sqrt{15} h^{2}} F^{\prime \prime}(z) \\
= & \sqrt{15} \bar{z}\left(\frac{3}{h^{4}}-\frac{1}{h^{3}}\right) F(z)-\frac{\sqrt{15}}{3}\left(\frac{2}{h^{3}}-\frac{1}{h^{2}}\right) F^{\prime}(z)-\frac{z}{2 \sqrt{15} h^{2}} F^{\prime \prime}(z),
\end{aligned}
$$

hence

$$
\frac{\partial \xi}{\partial \bar{z}}=\frac{\sqrt{10}}{h} \eta-\frac{z}{h} \xi
$$

From the 3rd of (4.17), (5.3) and (5.4), we have

$$
\begin{aligned}
\frac{\partial \xi}{\partial z} & =-\frac{3 \sqrt{15} z^{3}}{h^{4}} F(z)+\frac{5 \sqrt{15} \bar{z}^{2}}{3 h^{3}} F^{\prime}(z)-\frac{11}{2 \sqrt{ } 15 h^{2}} \bar{z} F^{\prime \prime}(z)+\frac{1}{2 \sqrt{ } 15 h} F^{\prime \prime \prime}(z) \\
& =\frac{\bar{z}}{h} \xi+\frac{2 p}{h} e_{3}=\frac{\sqrt{15} z^{3}}{h^{4}} F(z)-\frac{\sqrt{15} \bar{z}^{2}}{3 h^{3}} F^{\prime}(z)+\frac{\bar{z}}{2 \sqrt{15} h^{2}} F^{\prime \prime}(z)+\frac{2 \sqrt{6}}{h} e_{3} .
\end{aligned}
$$

Hence we have

$$
\text { (5.5) } e_{3}=-\frac{\sqrt{10} \bar{z}^{3}}{h^{3}} F(z)+\frac{\sqrt{10} z^{2}}{2 h^{2}} F^{\prime}(z)-\frac{\bar{z}}{\sqrt{10} h} F^{\prime \prime}(z)+\frac{1}{12 \sqrt{10}} F^{\prime \prime \prime}(z)
$$

from which we have

$$
\begin{aligned}
\frac{\partial e_{3}}{\partial \bar{z}}= & -\sqrt{10}\left(\frac{3 \bar{z}^{2}}{h^{3}}-\frac{3 z \bar{z}^{3}}{h^{4}}\right) F(z)+\frac{\sqrt{10}}{2}\left(\frac{2 \bar{z}}{h^{2}}-\frac{2 z \bar{z}^{2}}{h^{3}}\right) F^{\prime}(z) \\
& -\frac{1}{\sqrt{10}}\left(\frac{1}{h}-\frac{z \bar{z}}{h^{2}}\right) F^{\prime \prime}(z)=-\frac{3 \sqrt{10} z^{2}}{h^{4}} F(z)+\frac{\sqrt{10} \bar{z}}{h^{3}} F^{\prime}(z) \\
& -\frac{1}{\sqrt{10} h^{2}} F^{\prime \prime}(z)=-\frac{\sqrt{6}}{h} \xi=-\frac{p}{h} \xi
\end{aligned}
$$

If e_{3} is real, then we have also

$$
\frac{\partial e_{3}}{\partial z}=-\frac{\sqrt{6}}{h} \bar{\xi}=-\frac{p}{h} \bar{\xi} .
$$

Hence, if we choose $F(z)$ so that e_{3} is real, then e_{3}, ξ, η, ζ given by (5.5), (5.4), (5.3), (5.2), satisfy the equations (4.17) respectively except the first one.

From now we search for $F(z)$ such that e_{3} is real. Since $h=1+z \bar{z}$ is real, it is equivalent to determine so that

$$
\begin{align*}
-12 \sqrt{10} h^{3} e_{3} & =120 z^{3} F(z)-60 h \vec{z}^{2} F^{\prime}(z)+12 h^{2} z F^{\prime \prime}(z)-h^{3} F^{\prime \prime \prime}(z) \\
& \equiv 6 G(z, \bar{z})
\end{align*}
$$

is real. $G(z, \bar{z})$ is a polynomial in \bar{z} of order at most 3 , hence it is also so in \boldsymbol{z} by means of $\overline{G(z, \bar{z})}=G(z, \bar{z})$.

Now, we have easily from (5.6)

$$
\begin{aligned}
6 G(z, \bar{z})= & \left\{120 F(z)-60 z F(z)+12 z^{2} F^{\prime \prime}(z)-z^{3} F^{\prime \prime \prime}(z)\right\} \bar{z}^{3} \\
& -3\left\{20 F^{\prime}(z)-8 z F^{\prime \prime}(z)+z^{2} F^{\prime \prime \prime}(z)\right\} \bar{z}^{2} \\
& +3\left\{4 F^{\prime \prime}(z)-z F^{\prime \prime \prime}(z)\right\} z-F^{\prime \prime \prime}(z)
\end{aligned}
$$

Since $G(z, \vec{z})$ is a vector valued polynomial in \boldsymbol{z} and \vec{z}, we see from the above relation that $F^{\prime \prime \prime}(z)$ is a polynomial in \boldsymbol{z}. Therefore, we may put

$$
\begin{equation*}
F(z)=A_{0}+A_{1} z+\cdots+A_{m} z^{m} \tag{5.7}
\end{equation*}
$$

where $A_{0}, A_{1}, \cdots, A_{m}$ are constant vectors in C^{4}. Then, by simple calculation, we have

$$
\begin{aligned}
120 F(z) & -60 z F^{\prime}(z)+12 z^{2} F^{\prime \prime}(z)-z^{3} F^{\prime \prime \prime}(z)=120 A_{0}+60 A_{1} z+24 A_{2} z^{2} \\
& +6 A_{3} z^{3}+\cdots+(4-m)(5-m)(6-m) A_{m} z^{m}, \\
20 F^{\prime}(z) & -8 z F^{\prime \prime}(z)+z^{2} F^{\prime \prime \prime}(z)=20 A_{1}+24 A_{2} z+18 A_{3} z^{2} \\
& +\cdots+m(5-m)(6-m) A_{m} z^{m-1}, \\
4 F^{\prime \prime}(z)- & z F^{\prime \prime \prime}(z)=8 A_{2}+18 A_{3} z+\cdots+m(m-1)(6-m) A_{m} z^{m-2},
\end{aligned}
$$

hence we have

$$
\begin{aligned}
6 G(z, \bar{z})= & \left\{120 A_{0}+60 A_{1} z+24 A_{2} z^{2}+6 A_{3} z^{3}+\cdots+(4-m)(5-m)(6-m) A_{m} z^{m}\right\} \bar{z}^{3} \\
& -3\left\{20 A_{1}+24 A_{2} z+18 A_{3} z^{2}+\cdots+m(5-m)(6-m) A_{m} z^{m-1}\right\} \bar{z}^{2} \\
& +3\left\{8 A_{2}+18 A_{3} z+\cdots+m(m-1)(6-m) A_{m} z^{m-2}\right\} z \\
& -\left\{6 A_{3}+24 A_{4} z+\cdots+m(m-1)(m-2) A_{m} z^{m-3}\right\} .
\end{aligned}
$$

Noticing that the polynomial inside of the first brace lacks the terms of order 4,5 and 6 in z, we may suppose that $m=6$. Then, we have

$$
\begin{align*}
G(z, \bar{z})= & \left(20 A_{0}+10 A_{1} z+4 A_{2} z^{2}+A_{\mathrm{s}} z^{3}\right) \bar{z}^{3} \tag{5.8}\\
& -\left(10 A_{1}+12 A_{2} z+9 A_{3} z^{2}+4 A_{4} z^{3}\right) \bar{z}^{2} \\
& +\left(4 A_{2}+9 A_{3} z+12 A_{4} z^{2}+10 A_{5} z^{3}\right) \bar{z} \\
& -\left(A_{3}+4 A_{4} z+10 A_{5} z^{2}+20 A_{6} z^{3}\right) .
\end{align*}
$$

Hence, it must be

$$
\begin{aligned}
\overline{G(z, \bar{z})}= & \left(-20 \bar{A}_{8}+10 \bar{A}_{5} z-4 \bar{A}_{4} z^{2}+\bar{A}_{3} z^{3}\right) \bar{z}^{3} \\
& -\left(10 \bar{A}_{5}-12 \bar{A}_{4} z+9 \bar{A}_{3} z^{2}-4 \bar{A}_{2} z^{3}\right) z^{2} \\
& +\left(-4 \bar{A}_{4}+9 \bar{A}_{3} z-12 \bar{A}_{2} z^{2}+10 \bar{A}_{1} z^{3}\right) \bar{z} \\
& -\left(\bar{A}_{3}-4 \bar{A}_{2} z+10 \bar{A}_{1} z^{2}-20 \bar{A}_{0} z^{3}\right) .
\end{aligned}
$$

Comparing this with (5.8), $G(z, \bar{z})=\overline{G(z, \bar{z})}$ is satisfied if and only if

$$
\begin{equation*}
A_{3}=\bar{A}_{3}, \quad A_{4}=-\bar{A}_{2}, \quad A_{5}=\bar{A}_{1}, \quad A_{6}=-\bar{A}_{0} . \tag{5.9}
\end{equation*}
$$

Making use of (5.9), $G(z, \bar{z})$ can be written as

$$
\begin{aligned}
G(z, \bar{z})= & \left(20 A_{0}+10 A_{1} z+4 A_{2} z^{2}+A_{3} z^{3}\right) \bar{z}^{3} \\
& -\left(10 A_{1}+12 A_{2} z+9 A_{3} z^{2}-4 \bar{A}_{2} z^{3}\right) \bar{z}^{2} \\
& +\left(4 A_{2}+9 A_{3} z-12 \bar{A}_{2} z^{2}+10 \bar{A}_{3} z^{3}\right) \bar{z} \\
& -\left(A_{3}-4 \bar{A}_{2} z+10 \bar{A}_{1} z^{2}-20 \bar{A}_{0} z^{3}\right) \\
= & -A_{3}+4\left(\bar{A}_{2} z+A_{2} z\right)+9 A_{3} z \bar{z}-10\left(\bar{A}_{1} z^{2}+A_{1} \bar{z}^{2}\right) \\
& -12\left(\bar{A}_{2} z+A_{2} \bar{z}\right) z \bar{z}+20\left(\bar{A}_{0} z^{3}+A_{0} z^{3}\right) \\
& +10\left(\bar{A}_{1} z^{2}+A_{1} \bar{z}^{2}\right) z \bar{z}-9 A_{3}(z \bar{z})^{2} \\
& +4\left(\bar{A}_{2} z+A_{2} \bar{z}\right)(z \bar{z})^{2}+A_{3}(z \bar{z})^{3} \\
= & -A_{3}\left\{1-9 z \bar{z}+9(z \bar{z})^{2}-(z \bar{z})^{3}\right\} \\
& +4\left(\bar{A}_{2} z+A_{2} \bar{z}\right)\left\{1-3 z \bar{z}+(z \bar{z})^{2}\right\} \\
& -10\left(\bar{A}_{1} z^{2}+A_{1} z^{2}\right)\{1-z \bar{z}\} \\
& +20\left(\bar{A}_{0} z^{3}+A_{0} \bar{z}^{3}\right) .
\end{aligned}
$$

Substituting this into (5.6), we have

$$
\begin{align*}
e_{3}= & \frac{1}{2 \sqrt{10} h^{3}}\left\{A_{3}\left(1-9 z \bar{z}+9 z^{2} \bar{z}^{2}-z^{3} z^{3}\right)\right. \tag{5.10}\\
& -4\left(\bar{A}_{2} z+A_{2} \bar{z}\right)\left(1-3 z \bar{z}+z^{2} \bar{z}^{2}\right) \\
& \left.+10\left(\bar{A}_{1} z^{2}+A_{1} z^{2}\right)(1-z \bar{z})-20\left(\bar{A}_{0} z^{3}+A_{0} \bar{z}^{3}\right)\right\} .
\end{align*}
$$

Analogously from (5.2), we have

$$
\begin{equation*}
\zeta=\frac{1}{h^{3}}\left\{z^{3} A_{3}+\left(z^{2} A_{2}-z^{4} \bar{A}_{2}\right)+\left(z A_{1}+z^{5} \bar{A}_{1}\right)+A_{0}-z^{8} \bar{A}_{0}\right\} . \tag{5.11}
\end{equation*}
$$

On the other hand, (5.3) and (5.4) can be written as

$$
\eta=\frac{1}{\sqrt{6} h^{3}}\left\{6 \bar{z} F(z)-(1+z \bar{z}) F^{\prime}(z)\right\}
$$

and

$$
\xi=\frac{1}{\sqrt{15} h^{3}}\left\{15 \bar{z}^{2} F(z)-5(1+z \bar{z}) \bar{z} F^{\nu}(z)+\frac{1}{2}(1+z \bar{z})^{2} F^{\prime \prime}(z)\right\} .
$$

Since we have

$$
\begin{aligned}
6 \bar{z} F(z)-(1+z \bar{z}) F^{\prime}(z)= & 6 \bar{z}\left(z^{3} A_{3}+z^{2} A_{2}-z^{4} \bar{A}_{2}+z A_{1}+z^{5} \bar{A}_{1}+A_{0}-z^{6} \bar{A}_{0}\right) \\
& -(1+z \bar{z})\left(3 z^{2} A_{3}+2 z A_{2}-4 z^{3} \bar{A}_{2}+A_{1}+5 z^{4} \bar{A}_{1}-6 z^{5} \bar{A}_{0}\right) \\
= & -3(1-z \bar{z}) z^{2} A_{3}+2(-1+2 z \bar{z}) z A_{2}+2(2-z \bar{z}) z^{3} \bar{A}_{2} \\
& +(-1+5 z \bar{z}) A_{1}+(-5+z \bar{z}) z^{4} \bar{A}_{1}+6 z A_{0}+6 z^{5} \bar{A}_{0},
\end{aligned}
$$

$$
15 z^{2} F(z)-5(1+z \bar{z}) \vec{z} F^{\prime}(z)+\frac{1}{2}(1+z \bar{z})^{2} F^{\prime \prime}(z)
$$

$$
=15 \bar{z}^{2}\left(z^{3} A_{3}+z^{2} A_{2}-z^{4} \bar{A}_{2}+z A_{1}+z^{5} \bar{A}_{1}+A_{0}-z^{6} \bar{A}_{0}\right)
$$

$$
-5(1+z \bar{z}) \bar{z}\left(3 z^{2} A_{3}+2 z A_{2}-4 z^{3} \bar{A}_{2}+A_{1}+5 z^{4} \bar{A}_{1}-6 z^{5} \bar{A}_{0}\right)
$$

$$
+\left(1+2 z \bar{z}+z^{2} z^{2}\right)\left(3 z A_{3}+A_{2}-6 z^{2} \bar{A}_{2}+10 z^{3} \bar{A}_{1}-15 z^{4} \bar{A}_{0}\right)
$$

$$
=3\left(1-3 z \bar{z}+z^{2} \bar{z}^{2}\right) z A_{3}+\left(1-8 z \bar{z}+6 z^{2} \bar{z}^{2}\right) A_{2}
$$

$$
-\left(6-8 z \bar{z}+z^{2} \bar{z}^{2}\right) z^{2} \bar{A}_{2}+5(-1+2 z \bar{z}) z A_{1}+5(2-z \bar{z}) z^{3} \bar{A}_{1}
$$

$$
+15 z^{2} A_{0}-15 z^{4} \bar{A}_{0}
$$

η and ξ can be written as:

$$
\begin{align*}
\eta= & \frac{1}{\sqrt{6} h^{3}}\left\{-3(1-z \bar{z}) z^{2} A_{3}+2(-1+2 z \bar{z}) z A_{2}+2(2-z \bar{z}) z^{3} \bar{A}_{2}\right. \tag{5.12}\\
& \left.+(-1+5 z \bar{z}) A_{1}+(-5+z \bar{z}) z^{4} \bar{A}_{1}+6 \bar{z} A_{0}+6 z^{5} \bar{A}_{0}\right\}
\end{align*}
$$

and

$$
\begin{align*}
\xi= & \frac{1}{\sqrt{15} h^{3}}\left\{3\left(1-3 z \bar{z}+z^{2} \bar{z}^{2}\right) z A_{3}+\left(1-8 z \bar{z}+6 z^{2} \bar{z}^{2}\right) A_{2}\right. \tag{5.13}\\
& -\left(6-8 z \bar{z}+z^{2} \bar{z}^{2}\right) z^{2} \bar{A}_{2}+5(-1+2 z \bar{z}) \bar{z} A_{1}+5(2-z \bar{z}) z^{3} \bar{A}_{1} \\
& \left.+15 \bar{z}^{2} A_{0}-15 z^{4} \bar{A}_{0}\right\} .
\end{align*}
$$

Now, we must find the conditions such that ξ, η, ζ, e_{3} make an orthonormal frame. In the case of this section, (4.17) are

$$
\begin{aligned}
& d e_{3}=-\frac{\sqrt{6}}{h}(\xi d z+\xi d \bar{z}), \\
& \left\{\begin{array}{l}
d \xi=\frac{1}{h} \xi(z d z-z d \bar{z})+\frac{2 \sqrt{6}}{h} e_{3} d z+\frac{\sqrt{10}}{h} \eta d \bar{z}, \\
d \bar{\xi}=-\frac{1}{h} \bar{\xi}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{6}}{h} e_{3} d \bar{z}+\frac{\sqrt{10}}{h} \bar{\eta} d z,
\end{array}\right. \\
& \left\{\begin{array}{l}
d \eta=-\frac{\sqrt{10}}{h} \xi d z+\frac{2}{h} \eta(\bar{z} d z-z d \bar{z})+\frac{\sqrt{6}}{h} \xi d \bar{z}, \\
d \bar{\eta}=-\frac{\sqrt{10}}{h} \xi d \bar{z}-\frac{2}{h} \bar{\eta}(\bar{z} d z-z d \bar{z})+\frac{\sqrt{6}}{h} \bar{\zeta} d z,
\end{array}\right. \\
& \left\{\begin{array}{l}
d \zeta=-\frac{\sqrt{6}}{h} \eta d z+\frac{3}{h} \zeta(\bar{z} d z-z d \bar{z}), \\
d \zeta=-\frac{\sqrt{6}}{h} \bar{\eta} d \bar{z}-\frac{3}{h} \bar{\zeta}(\bar{z} d z-z d \bar{z}) .
\end{array}\right.
\end{aligned}
$$

In the following calculation, " \equiv " denotes the equality modulus the quantities:

$$
\begin{aligned}
& e_{3} \cdot \xi, e_{3} \cdot \eta, e_{3} \cdot \zeta, e_{3} \bar{\xi}, e_{3} \cdot \bar{\eta}, e_{3} \cdot \bar{\zeta} \\
& \xi \cdot \xi, \xi \cdot \eta, \xi \cdot \zeta, \xi \cdot \bar{\eta}, \xi \cdot \bar{\xi}, \\
& \bar{\xi} \cdot \xi, \bar{\xi} \cdot \eta, \bar{\xi} \cdot \zeta, \bar{\xi} \cdot \bar{\eta}, \bar{\xi} \cdot \bar{\zeta}, \\
& \eta \cdot \eta, \eta \cdot \zeta, \eta \cdot \bar{\xi}, \bar{\eta} \cdot \bar{\eta}, \bar{\eta} \cdot \zeta, \bar{\eta} \cdot \bar{\xi}, \zeta \cdot \zeta, \bar{\zeta} \cdot \bar{\zeta} .
\end{aligned}
$$

Then, making use of the above ralations, we have easily the relations:

$$
\begin{aligned}
& d\left(e_{3} \cdot e_{3}\right) \equiv 0 \\
& d\left(e_{3} \cdot \xi\right) \equiv \frac{\sqrt{6}}{h}\left(2 e_{3} \cdot e_{3}-\xi \cdot \bar{\xi}\right) d z \\
& d\left(e_{3} \cdot \eta\right) \equiv d\left(e_{3} \cdot \xi\right) \equiv 0 \\
& d(\xi \cdot \bar{\xi}) \equiv d(\xi \cdot \xi) \equiv d(\xi \cdot \eta) \equiv d(\xi \cdot \zeta) \equiv d(\xi \cdot \bar{\zeta}) \equiv 0 \\
& d(\xi \cdot \bar{\eta}) \equiv \frac{\sqrt{10}}{h}(\eta \cdot \bar{\eta}-\xi \cdot \xi) d \bar{z} \\
& d(\eta \cdot \bar{\eta}) \equiv d(\eta \cdot \eta) \equiv d(\eta \cdot \zeta) \equiv 0 \\
& d(\eta \cdot \bar{\zeta}) \equiv \frac{\sqrt{6}}{h}(\zeta \cdot \bar{\zeta}-\eta \cdot \bar{\eta}) d \bar{z} \\
& d(\zeta \cdot \bar{\zeta}) \equiv d(\zeta \cdot \zeta) \equiv 0
\end{aligned}
$$

from which we see that if we can choose $A_{0}, A_{1}, A_{2}, A_{3}$ so that all the above quantities 10 lines before and

$$
e_{3} \cdot \cdot e_{3}-1, \xi \cdot \bar{\xi}-2, \eta \cdot \bar{\eta}-2, \zeta \cdot \bar{\zeta}-2
$$

are zero at $z=0$, then these are identically zero.
By means of (5.10), (5.11), (5.12), (5.13), when $z=0$, we have

$$
e_{3}=\frac{1}{2 \sqrt{10}} A_{3}, \quad \xi=\frac{1}{\sqrt{15}} A_{2}, \quad \eta=-\frac{1}{\sqrt{6}} A_{1}, \quad \zeta=A_{0} .
$$

Thus, the conditions for $A_{0}, A_{1}, A_{2}, A_{3}$ are

$$
\left\{\begin{array}{l}
A_{3}=\bar{A}_{3} \tag{5.14}\\
A_{2} \cdot A_{2}=A_{1} \cdot A_{1}=A_{0} \cdot A_{0}=0, \\
A_{3} \cdot A_{3}=40, A_{2} \cdot \bar{A}_{2}=30, A_{1} \cdot \bar{A}_{1}=12, A_{0} \cdot \bar{A}_{0}=2, \\
A_{3} \cdot A_{2}=A_{3} \cdot A_{1}=A_{3} \cdot A_{0}=0, \\
A_{2} \cdot A_{1}=A_{2} \cdot \bar{A}_{1}=A_{2} \cdot A_{0}=A_{2} \cdot \bar{A}_{0}=0, \\
A_{1} \cdot A_{0}=A_{1} \cdot \bar{A}_{0}=0
\end{array}\right.
$$

Now, we give the equation of W^{2} by means of the above result. First of all, we choose four constant vectors $A_{0}, A_{1}, A_{2}, A_{3}$ in \boldsymbol{C}^{4} which satisfy the condition (514) and determine e_{3} given by (5.10) which is real and a unit vector field in $E^{8} \cong C^{4}$. On the other hand, we may consider as

$$
x+\frac{1}{p} e_{3}=0
$$

by (4.17). Hence we have a general solution of W^{2} as follows:

$$
\begin{align*}
x= & -\frac{1}{\sqrt{6}} e_{3}=\frac{1}{4 \sqrt{15}(1+z \bar{z})^{3}}\left\{-\left(1-9 z \bar{z}+9 z^{2} \bar{z}^{2}-z^{3} \bar{z}^{3}\right) A_{3}\right. \tag{5.15}\\
& +4\left(1-3 z \bar{z}+z^{2} \bar{z}^{2}\right)\left(\bar{z} A_{2}+z \bar{A}_{2}\right)-10(1-z \bar{z})\left(\bar{z}^{2} A_{1}+z^{2} \bar{A}_{1}\right) \\
& \left.+20\left(\bar{z}^{3} A_{0}+z^{3} \bar{A}_{0}\right)\right\} .
\end{align*}
$$

If we put

$$
\begin{aligned}
& A_{3}=2 \sqrt{10} \partial / \partial x_{7} \\
& A_{2}=\sqrt{15}\left(\partial / \partial x_{1}+i \partial / \partial x_{2}\right) \\
& A_{1}=-\sqrt{6}\left(\partial / \partial x_{3}+i \partial / \partial x_{4}\right) \\
& A_{0}=\partial / \partial x_{5}+i \partial / \partial x_{6}
\end{aligned}
$$

then we can write (5.15) in the canonical coordinates $x_{1}, x_{2}, \cdots, x_{7}$ as follows:

$$
\left\{\begin{array}{l}
x_{1}=\frac{1-3 z \bar{z}+z^{2} \bar{z}^{2}}{(1+z \bar{z})^{3}}(z+\bar{z}) \tag{5.16}\\
x_{2}=-i \frac{1-3 z \bar{z}+z^{2} \bar{z}^{2}}{(1+z \bar{z})^{3}}(z-\bar{z}) \\
x_{3}=\frac{\sqrt{5}(1-z \bar{z})}{\sqrt{2}(1+z \bar{z})^{3}}\left(z^{2}+\bar{z}^{2}\right) \\
x_{4}=-i \frac{\sqrt{5}(1-z \bar{z})}{\sqrt{2(1+z \bar{z})^{3}}\left(z^{2}-\bar{z}^{2}\right)} \\
x_{5}=\frac{\sqrt{5}}{\sqrt{3}(1+z \bar{z})^{3}}\left(z^{3}+\bar{z}^{3}\right) \\
x_{6}=-i \frac{\sqrt{5}}{\sqrt{3}(1+z \bar{z})^{3}}\left(z^{3}-\bar{z}^{3}\right) \\
z_{7}=-\frac{1-9 z \bar{z}+9 z^{2} \bar{z}^{2}-z^{3} \bar{z}^{3}}{\sqrt{6(1+z \bar{z})^{3}}}
\end{array}\right.
$$

Finally, we show how ts construct M^{n} in E^{n+4} as in Theorem 2. First of all, we consider as

$$
E^{n+4}=R^{n-4} \times R^{8}, R^{8} \cong C^{4}
$$

and construct a surface W^{2} given by (5.15) in C^{4}. This surface is clearly of geodesic codimension 5 in R^{8}. Hence, we may consider as

$$
W^{2} \subset R^{7} \quad \text { and } \quad C^{4}=R \times R^{7}
$$

For any point $y \in W^{2}$, we denote a linear subspace $L^{n-2}(y)$ through y such that

$$
L^{n-2}(y) \| R^{n-4} \times R \quad \text { and } \quad L^{n-2}(y) \| e_{3}(z), y=y(z)
$$

Then, the locus of points on the moving $L^{n-2}(y)$ makes an n-dimensional submanifold M^{n} in E^{n+4} which is minimal and of M-index 2 everywhere and satisfies the conditions in Theorem 2.

Remark. As is well known, the Veronese surface is given by

$$
\begin{aligned}
& x_{1}=\sqrt{3} u_{2} u_{3}, \quad x_{2}=\sqrt{3} u_{3} u_{1}, \quad x_{3}=\sqrt{3} u_{1} u_{2}, \\
& x_{4}=\frac{\sqrt{3}}{2}\left(u_{1} u_{1}-u_{2} u_{2}\right), \quad x_{5}=\frac{1}{2}\left(3 u_{1} u_{1}+3 u_{2} u_{2}-2\right),
\end{aligned}
$$

where $u_{1} u_{1}+u_{2} u_{2}+u_{3} u_{3}=1$. Through the stereographic projection, we put

$$
u_{1}=\frac{z+\bar{z}}{1+z \bar{z}}, \quad u_{2}=-i \frac{z-\bar{z}}{1+z \bar{z}}, \quad u_{3}=\frac{z \bar{z}-1}{1+z \bar{z}}
$$

and substituting these into the above equations we have

$$
\left\{\begin{array}{l}
x_{1}=i \sqrt{3} \frac{1-z \bar{z}}{(1+z \bar{z})^{2}}(z-\bar{z}) \tag{5.17}\\
x_{2}=-\sqrt{3} \frac{1-z \bar{z}}{(1+z \bar{z})^{2}}(z+\bar{z}) \\
x_{3}=-i \sqrt{3} \frac{1}{(1+z \bar{z})^{2}}\left(z^{2}-\bar{z}^{2}\right) \\
x_{4}=\sqrt{3} \frac{1}{(1+z \bar{z})^{2}}\left(z^{2}+\bar{z}^{2}\right) \\
x_{5}=-\frac{1-4 z \bar{z}+z^{2} \bar{z}^{2}}{(1+z \bar{z})^{2}}
\end{array}\right.
$$

Comparing (5.16) multiplied by $\sqrt{6}$ with (5.17), we see that W^{2} may be considered as a generalization of the Veronese surface. It is minimal in a 6 -dimensional sphere as the Veronese surface is minimal in the 4 -dimensional unit sphere. Both of them are isometric imbeddings of the projective plane with a canonical metric of constant curvature.
6. Solutions in Case $\overline{\boldsymbol{M}^{n+4}}=\boldsymbol{S}^{n+4}(\boldsymbol{R})$. In this section, we shall find M^{n} in $(n+4)$-dimensional sphere as in Theorem 2.

In this case, we regard as $\bar{M}^{n+4}=S^{n+4}(R) \subset E^{n+5}$, where $\frac{1}{R^{2}}=\bar{c}$. Putting

$$
\begin{equation*}
\frac{x}{R}=e_{n+5}, \tag{6.1}
\end{equation*}
$$

we have

$$
d x=R d e_{n+5}=e_{1}^{*} \omega_{1}^{*}+e_{2}^{*} \omega_{2}^{*} .
$$

Hence, denoting the ordinary differential operator in E^{n+5} by d, we have easily

$$
\begin{equation*}
d e_{3}=\bar{D} e_{3}=-\frac{p}{h}(\bar{\xi} d z+\xi d \bar{z}), \tag{6.2}
\end{equation*}
$$

and

$$
d \xi=\bar{D} \xi-\frac{1}{R}\left(\omega_{1}{ }^{*}+i \omega_{2}{ }^{*}\right) e_{n+5},
$$

i. e.

$$
\begin{equation*}
d \xi=\frac{1}{h} \xi(-d z-z d \bar{z})+\frac{2 p}{h} e_{3} d z+\frac{\sqrt{10}}{h} \eta d \bar{z}-\frac{2}{R h} e_{n+5} d z \tag{6.3}
\end{equation*}
$$

by (4.17) and (4.12).
On the other hand, we have
(6.4)

$$
p=\sqrt{\bar{c}} \cot \sqrt{\bar{c}} v=\frac{1}{R} \cot \frac{v}{R}
$$

Since the point

$$
x+\frac{1}{p} e_{3}=R\left(e_{n+5}+e_{3} \tan \frac{v}{R}\right)
$$

is a fixed point, the unit vector

$$
e_{0}=e_{n+5} \cos \frac{v}{R}+e_{3} \sin \frac{v}{R}
$$

is fixed on W^{2}. Hence W^{2} lies on the linear space E_{1}^{n+4} which is orthogonal to e_{0} and passes through the point $O_{1}=e_{0} R \cos \frac{v}{R}$.

Now, we have

$$
\overrightarrow{O_{1} x}=-e_{3}^{*} R \sin \frac{v}{R},
$$

where

$$
\begin{equation*}
e_{3}^{*}=e_{3} \cos \frac{v}{R}-e_{n+5} \sin \frac{v}{R} . \tag{6.5}
\end{equation*}
$$

Since we have

$$
p e_{3}-\frac{1}{R} e_{n+5}=\frac{1}{R} e_{3} \cot \frac{v}{R}-\frac{1}{R} e_{n+5}=\frac{1}{R \sin \frac{v}{R}} e_{3}^{*}
$$

and

$$
p^{2}+\bar{c}=\left(\frac{1}{R} \cot \frac{v}{R}\right)^{2}+\frac{1}{R^{2}}=\frac{1}{\left(R \sin \frac{v}{R}\right)^{2}}=6
$$

by (4.5), (6.3) can be written as

$$
\begin{equation*}
d \xi=\frac{1}{h} \xi(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{6}}{h} e_{3}^{*} d z+\frac{\sqrt{10}}{h} \eta d \bar{z} . \tag{6.6}
\end{equation*}
$$

Next, we compute $d e_{3}^{*}$ on W^{2}. By means of (6.1), (6.2) and (6.5), we have

$$
\begin{aligned}
d e_{3}{ }^{*} & =\cos \frac{v}{R} d e_{3}-\sin \frac{v}{R} d e_{n+5} \\
& =-\left(\frac{p}{h} \cos \frac{v}{R}+\frac{1}{R h} \sin \frac{v}{R}\right)(\xi d z+\xi d z)
\end{aligned}
$$

and

$$
\frac{p}{h} \cos \frac{v}{R}+\frac{1}{R h} \sin \frac{v}{R}=\frac{1}{R h \sin \frac{v}{R}}=\frac{\sqrt{6}}{h}
$$

hence

$$
\begin{equation*}
d e_{3}^{*}=-\frac{\sqrt{6}}{h}(\xi d z+\xi d \bar{z}) . \tag{6.7}
\end{equation*}
$$

Therefore, the Frenet formula (4.17) of W^{2} in $S^{n+4}(R)$ becomes the following one in E_{1}^{n+4} :

$$
\left\{\begin{align*}
d x & =\frac{1}{h}(\bar{\xi} d z+\xi d \bar{z}) \tag{6.8}\\
d e_{3}{ }^{*} & =-\frac{\sqrt{6}}{h}(\bar{\xi} d z+\xi d \bar{z}) \\
d \xi & =\frac{1}{h} \xi(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{6}}{h} e_{3}^{*} d z+\frac{\sqrt{10}}{h} \eta d \bar{z} \\
d \eta & =-\frac{\sqrt{10}}{h} \xi d z+\frac{2}{h} \eta(z d z-z d \bar{z})+\frac{\sqrt{6}}{h} \zeta d \bar{z} \\
d \zeta & =-\frac{\sqrt{6}}{h} \eta d z+\frac{3}{h} \zeta(\bar{z} d z-z d \bar{z})
\end{align*}\right.
$$

which is completely identical with the system of equations in Case $\bar{M}^{n+4}=E^{n+4}$.
We can construct a minimal submanifold M^{n} with M-index 2 of geodesic codimension 4 in the sphere $S^{n+4}(R)$ by means of the results of the previous sections.
7. Solutions in Case $\overline{\boldsymbol{M}}^{n+4}=\boldsymbol{H}^{n+4}(\overline{\boldsymbol{c}})$. In this section, we shall find M^{n} in $(n+4)$-dimensional hyperbolic space $H^{n+4}(\bar{c})$ of curvature \bar{c} as in Theorem 2.

In this case, (4.5) and (1.14) imply

$$
\bar{c}=6-p^{2}=6+\bar{c} \operatorname{coth}^{2} \sqrt{-\bar{c}} v,
$$

i. e.

$$
\begin{equation*}
-\bar{c}=6 \sinh ^{2} \sqrt{-\bar{c}} v \tag{7.1}
\end{equation*}
$$

We use the Poincare representation of $H^{n+4}(\bar{c})$ in the unit disk in E^{n+4} with the canonical coordinates $x_{1}, x_{2}, \cdots, x_{n+4}$. Its line element, as is well known, is given by

$$
\begin{equation*}
d s^{2}=\frac{4 R^{2} d x \cdot d x}{(1-x \cdot x)^{2}}, \quad R=\sqrt{\frac{1}{-\bar{c}}} \tag{7.2}
\end{equation*}
$$

Since the components of the Riemannian metric are

$$
g_{i j}=\frac{4 R^{2}}{L^{2}} \delta_{i j}, \quad g^{i j}=\frac{L^{2}}{4 R^{2}} \delta_{i j},
$$

where

$$
L=1-x \cdot x,
$$

we have its components of the connection:

$$
\begin{equation*}
\Gamma_{i j}^{k}=2\left(\delta_{i}^{k} x_{j}+\delta_{j}^{k} x_{i}-\delta_{i j} x_{k}\right) / L . \tag{7.3}
\end{equation*}
$$

For any two tangent vectors X and Y, we have

$$
<X, Y>=\frac{4 R^{2}}{L^{2}} X \cdot Y
$$

where $<X, Y>$ and $X \cdot Y$ denote the inner products of X and Y in $H^{n+4}(\bar{c})$ and E^{n+4}, respectively. Hence, if $\left(x, e_{1}, \cdots, e_{n+4}\right)$ is an orthonormal frame in $H^{n+4}(\bar{c})$, then $\left(x, \frac{2 R}{L} e_{1}, \cdots, \frac{2 R}{L} e_{n+4}\right)$ is the one in E^{n+4}.

Now, for any tangent vector field $X=\sum_{j=1}^{n+4} X^{j} \partial / \partial x^{j}$, by means of (7.3) we have easily

$$
\begin{equation*}
\bar{D} x=\frac{L}{2 R}\left[d\left(\frac{2 R}{L} X\right)+\frac{2}{L}\left\{\left(x \cdot \frac{2 R}{L} X\right) d x-x\left(\frac{2 R}{L} X \cdot d x\right)\right\}\right] \tag{7.4}
\end{equation*}
$$

Putting

$$
\begin{equation*}
e_{3}^{*}=\frac{2 R}{L} e_{3}, \quad \xi^{*}=\frac{2 R}{L} \xi, \quad \eta^{*}=\frac{2 R}{L} \eta, \quad \zeta^{*}=\frac{2 R}{L} \zeta, \tag{7.5}
\end{equation*}
$$

we rewrite the formula (4.17) in these terms. First of all, we have

$$
\begin{equation*}
d x=\frac{L}{2 R h}\left(\bar{\xi}^{*} d z+\xi^{*} d \bar{z}\right) \tag{7.6}
\end{equation*}
$$

From the 2nd of (4.17) and (7.4),

$$
d e_{3}^{*}+\frac{2}{L}\left\{\left(x \cdot e_{3}^{*}\right) d x-x\left(e_{3}^{*} \cdot d x\right)\right\}=-\frac{p}{h}\left(\bar{\xi}^{*} d z+\xi^{*} d \bar{z}\right) .
$$

By (7.6) and $\left(e_{3}^{*} \cdot d x\right)=0$, the above equation becomes

$$
d e_{3}^{*}=-\left\{p+\frac{1}{R}\left(x \cdot e_{3}^{*}\right)\right\} \frac{1}{h}\left(\bar{\xi}^{*} d z+\xi^{*} d \bar{z}\right) .
$$

Now, from the third of (4.17), we have analogously

$$
\begin{gathered}
d \xi^{*}+\frac{2}{L}\left\{\left(x \cdot \xi^{*}\right) d x-x\left(\xi^{*} \cdot d x\right)\right\}=\frac{1}{h} \xi^{*}(\bar{z} d z-z d \bar{z}) \\
+\frac{2 p}{h} e_{3}^{*} d z+\frac{\sqrt{10}}{h} \eta^{*} d \bar{z}
\end{gathered}
$$

Since we have

$$
\xi^{*} \cdot d x=\frac{L}{2 R h} \xi^{*} \cdot\left(\xi^{*} d z+\xi^{*} d \bar{z}\right)=\frac{L}{R h} d z
$$

the above equation becomes

$$
\begin{align*}
d \xi^{*}= & \frac{1}{h} \xi^{*}(\bar{z} d z-z d \bar{z})+\frac{2}{h}\left(p e_{3}^{*}+\frac{1}{R} x\right) d z+\frac{\sqrt{10}}{h} \eta^{*} d \bar{z} \tag{7.7}\\
& -\frac{1}{R h}\left(x \cdot \xi^{*}\right)\left(\xi^{*} d z+\xi^{*} d \bar{z}\right)
\end{align*}
$$

Next, from the fourth of (4.17), we have

$$
\begin{aligned}
d \eta^{*} & +\frac{2}{L}\left\{\left(x \cdot \eta^{*}\right) d x-x\left(\eta^{*} \cdot d x\right)\right\} \\
& =-\frac{\sqrt{10}}{h} \xi^{*} d z+\frac{2}{h} \eta^{*}(\bar{z} d z-z d \bar{z})+\frac{\sqrt{6}}{h} \zeta^{*} d \bar{z} .
\end{aligned}
$$

Since $\eta^{*} \cdot d x=0$, the above relation becomes

$$
\begin{align*}
d \eta^{*}= & -\frac{\sqrt{10}}{h} \xi^{*} d z+\frac{2}{h} \eta^{*}(\bar{z} d z-z d \bar{z})+\frac{6}{h} \zeta^{*} d \bar{z} \tag{7.8}\\
& -\frac{1}{R h}\left(x \cdot \eta^{*}\right)\left(\bar{\xi}^{*} d z+\xi^{*} d \bar{z}\right)
\end{align*}
$$

Last of all, we have from the fifth of (4.17) and (7.4)

$$
d \zeta^{*}+\frac{2}{L}\left\{\left(x \cdot \zeta^{*}\right) d x-x\left(\zeta^{*} \cdot d x\right)\right\}=-\frac{\sqrt{6}}{h} \eta^{*} d z+\frac{3}{h} \zeta^{*}(\bar{z} d z-z d \bar{z}),
$$

that is

$$
\begin{equation*}
d \zeta^{*}=-\frac{\sqrt{6}}{h} \eta^{*} d z+\frac{3}{h} \zeta^{*}(\bar{z} d z-z d \bar{z})-\frac{1}{R h}\left(x \cdot \zeta^{*}\right)\left(\xi^{*} d z+\xi^{*} d \bar{z}\right) . \tag{7.9}
\end{equation*}
$$

On the other hand, any geodesic starting from the origin $O=(0, \cdots, 0)$ in $H^{n+4}(\bar{c})$ is a Euclidean straight line segment in the unit disk. The arc lengths v and r in $H^{n+4}(\bar{c})$ and E^{n+4} have the relations as follows:

$$
v=R \log \frac{1+r}{1-r}, \quad r=\tanh \frac{v}{2 R}
$$

Since any W^{2} is congruent to others under the hyperbolic motions, we may suppose the forcal point z_{0} in Theorem C is the origin O. Then, we have

$$
x=-e_{3}^{*} r=-e_{3} \tanh \frac{v}{2 R},
$$

and hence

$$
\begin{gathered}
x \cdot \xi^{*}=x \cdot \eta^{*}=x \cdot \xi^{*}=0 \\
L=1-x \cdot x=1-r^{2}=1-\tanh ^{2} \frac{v}{2 R}=\frac{1}{\cosh ^{2} \frac{v}{2 R}},
\end{gathered}
$$

and

$$
\begin{aligned}
p+\frac{1}{R}\left(x \cdot e_{3}^{*}\right) & =p-\frac{r}{R}=\frac{1}{R} \operatorname{coth} \frac{v}{R}-\frac{1}{R} \tanh \frac{v}{2 R} \\
& =\frac{1}{R \sinh \frac{v}{R}}=\sqrt{6}
\end{aligned}
$$

by (1.14) and (7.1).
Making use of these relations, (7.6) $\sim(7.9)$ can be written as

$$
\left\{\begin{array}{l}
d x=\frac{1}{\left(\cosh \frac{v}{R}+1\right) R} \frac{1}{h}\left(\xi^{*} d z+\xi^{*} d \bar{z}\right), \tag{7.10}\\
d e_{3}^{*}=-\frac{\sqrt{6}}{h}\left(\xi^{*} d z+\xi^{*} d \bar{z}\right), \\
d \xi^{*}=\frac{1}{h} \xi^{*}(\bar{z} d z-z d \bar{z})+\frac{2 \sqrt{6}}{h} e_{3}^{*} d z+\frac{\sqrt{10}}{h} \eta^{*} d \bar{z}, \\
d \eta^{*}=-\frac{\sqrt{10}}{h} \xi^{*} d z+\frac{2}{h} \eta^{*}(\bar{z} d z-z d \bar{z})+\frac{\sqrt{6}}{h} \zeta^{*} d \bar{z}, \\
d \zeta^{*}=-\frac{\sqrt{6}}{h} \eta^{*} d z+\frac{3}{h} \zeta^{*}(\bar{z} d z-z d \bar{z}),
\end{array}\right.
$$

which is completely identical with the system of equations for W^{2} in Case \bar{M}^{n+4} $=E^{n+4}$ except the first one.

Therefore, we can construct W^{2} in $H^{n+4}(\bar{c})$ by the formula (5.10) and

$$
\begin{equation*}
x=-\frac{1}{\sqrt{6} R\left(\cosh \frac{v}{R}+1\right)} e^{*} . \tag{7.11}
\end{equation*}
$$

Then, we can construct a minimal submanifold M^{n} with M-index 2 of geodesic condimension 4 , taking W^{2} as the base surface, according to Theorem C.

References

[1] S. S. Chern, M. Do Carmo and S. Kobayasht, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional analysis and related fields, Proc. Conf. in Honor of Marshall Stone, Springer, Berlin, 1970.
[2] T. Otsuki, A theory of Riemannian submanifolds, Kōdai Math. Sem. Rep., 20 (1968), 282-295.
[3] T. OTsuki, Pseudo-umbilical submanifolds with M-index $\leqq 1$ in Euclidean spaces, Kōdai Math. Sem. Rep., 20 (1968), 296-304.
[4] T. OTSUKI, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92 (1970), 145-173.
[5] T. OTSUKI, On principal normal vector fields of submanifolds in a Riemannian Manifold of constant curvatune, J. Math. Soc. Japan, 22 (1970), 35-46.
[6] T. OTSUKI, Submanifolds with a regular principal normal vector field in a sphere, J. Differential Geometry, 4 (1969), 1-11.
[7] T. OTSUKI, On minimal submanifolds with M-index 2, to appear in J. Differential Geometry.

DEPARTMENT OF MATHEMATICS Tokyo Institute of Technology TOKYO, JAPAN

