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For a submanifold M in a Riemannian manifold M, the minimal index
(M-index) at a point of M is defined by the dimension of the linear space of all
2nd fundamental forms with vanishing trace. The geodesic codimension of M in M
is defined by the minimum of codimensions of M in totally geodesic submanifolds
of M containing M.

It is clear in general that for M in M

M-index r=g geodesic codimension.

In [ 7 ], the author investigated minimal submanifolds with M-index 2 in Riemannian
manifolds of constant curvature and gave some typical examples of such submanifolds
with geodesic codimension 3 in the space forms which is quite analogous to the
case of helicoids in Es when M is Euclidean. In the present paper, he will give some
examples of such submanifolds with geodesic codimension 4 in the space forms. In
the previous case, the base surface (analogous to the helix for a helicoid) must be
locally flat, but in the present case it must be of positive constant curvature.

We will use the notations in [ 7 ].

1. Preliminaries. Let M=Mn+v be a Riemannian manifold of dimension n+v
and of constant curvature c and M=Mn be an w-dimensional submanifold in M. Let
&A> &AB= —&BA9 A,B = l,2, ' ,n + v, be the basic and connection forms of M
on the orthonormal frame bundle F(M) which satisfy the structure equations

(1.1) dωA = ^ © ^ A B ® , dωAB = Σ™ACAG>CB—cωA/\ωB .
B C

Let B be the subbundle of F(M) over Msuch that b={x,e1, ",en,*»>en+v) € F(M)
and (x,e19 >en) zF(M), where F(M) is the orthonormal frame bundle of M with
the induced Riemannian metric from M, then deleting the bars of ωA, ωAB on B,
we have

(1.2) ω β =0, ωia=
3
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For any point xz M, let Nx be the normal space to MX = TXM in MX = TXM.
For any b <= B, let φh be a linear mapping from JVX into the set of all symmetric
matrices of order n defined by

<Pb[Σv«e«)=Σv«A«> Aa = (A*,).

Now, we suppose that M is minimal in M and of M-index 2 at each point.
Then, Nx is decomposed as

NX=N'X + OX, NX±OX,

where Ox = φϊ\ 0 ) and dim Nx = 2, which does not depend on the choice of b
over x and is smooth with respect to x. Let Bx be the set of b such that en+19

en+2^Nx. By means of Lemma 1 in [ 7 ] , on Bι we have

®n+i.* = ®n+2,̂  = 0 (mod ©1, ,®J (/β>Λ + 2) .

Then, for any veNxf we can define a linear mapping ψυ' Mx—>Ox by

(1. 3) ^ ( X ) = E < v> en+ιωn+u0[X) + e n + 2 ω n + 2 ^ (X) > ^ .
i3>n+2

The mapping ψ:MxxN'x-*Ox, ψ(X,v) =ψυ{X), may be called the 1st torsion
operator of M in M. According to Lemmas 1,2 and Theorem 1 in [ 7 ], we have

THEOREM A. Let Mn be minimal and of M-index 2 everywhere in Mn+V

of constant curvature. Then we-have the following:
(i) Mn is of geodesic codimension 2 if and only if ψ = 0.
(ii) If ψΦO everywhere, then dim ίx = n—2, where ίx is the space of relative

nullity of Mn in Mn+V at x, ψυ{tx) = 0 for any vzN'x and ψυ, v±?0, has a
common image ψv(Mx) whose dimension ^ 2 .

When ψ Φ 0 at x € M, we decompose Mx as

We can choose frames b$Bx such that ex,e2 ζ 2SX, e3, , en <= lx and

G>i,n+i = λθ>i, 6>2,n+i = "~ λ ω 2 > ®3,n+i = = ω n > n + 1 = 0 ,

( 1 . 4 ) β>i, n+2 = /xω2, ω 2 , n + 2 = fM»!, G>3,Π+2 = ••• = ω n ί n + 2 = 0 ,

ωi/3 = 0, £ = 1, , n; β> 7*4-2, λ =̂  0, μ =̂ 0
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and then (1.3) can be written as

(1. 5) fv(X) = j-£- < v, en+1 > βl(X) -~<v, en+2 \

< * > (X) + <

where F = ^ Λ^r and G = ]Γ ^ 7e γ and

(1. 6) λωΛ+l.y + *>»n+2,τ = (fy +

implies
Now, supposing ψ =̂ 0 everywhere, we denote the set of b € Bx satisfying (1.4)

by B2. On B2> we have

(1. 7) ω l r + iω2r = (pr + iqr)(ωί + iω2), 2 < r ^ n .

n n

The vector fields P=Σ Prer and Q = ]P <7r£r of M are called the principal and
r=3 r=3

sυbprincipal asymptotic vector fields, respectively. According to Lemmas 3, 4 and
Theorem 2 in [7] , we have

THEOREM B. Let Mn be minimal and of M-index 2 everywhere in Mn+V

of constant curvature c. Supposing the 1st torsion operator ψ Φ 0 everywhere,
we have:

(1) The distribution ί = {lχyx € Mn} is completely integrable and its integral
stώmanifolds are totally geodesic in Mn+V.

( 2 ) The distribution 223= {2BX, xz Mn}is completely integrable if and only

(3 ) When Q = 0, the integral surfaces of 333 are totally umbϊlic in Mn.
( 4) When P^O and Q = 0, the integral curves of the vector field P are

geodesies in Mn+V.

Under the conditions of Theorem B and Q = 0, on B2 we have

(1. 8) {dlogX- <P,dx>- i(2ω12 - σώ,)} Λ («i + ίω2) = 0 ,

(1. 9) ίdσ + z(l - σ^ώx} Λ (*>i + iω2) = 0 ,

(1.10) dω12 = - {||P||2 + c - λ2 - μι}ω1λω1,
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(1.11) dωγ = - - ± - {2λV -
Λf

where σ = μ/X, ώ1 = ωn+lt7l+2. ωx is the connection form of the vector bundle
n

N' = \jN'x, x€ Mn, and<P,dx>=Σ<P,er>ωr. In this case, we denote the
r=3

set of frames b <Ξ B2 such that P = p e3, p>0, by B3. On B3 we have

(1.12) ωα3 = pωa, ωat = 0, pωu = cωυ α = 1, 2; 3 < ί ^ r c .

According to Lemmas 7,8,9,10 and Theorem 3 in [7], we have

THEOREM C. Let Mn(n^3) be a maximal minimal submanifold in an
(n + v)-dimensional space form Mn+V{of constant curvature c) which is of M-
index 2 and whose torsion operator ψ ^ 0, principal asymptotic vector field
PΦO everywhere and subprincipal asymptotic vector field Q=0, then it is a
locus of (n—2)-dimensional totally geodesic subspaces Ln~2(y) in Mn+V through
points y of a base surface W2 lying in a Riemannian hypersphere in Mn+V

with center z0 such that
(i) Ln~2(y) intersects orthogonally with W2 at y and contains the geodesic

radius from z0 to y.
(ii) The (n—3)-dimensional tangent spaces to the intersection of Ln~2(y) and

the hypersphere at y are parallel along W2 in Mn+V.

W2 in this theorem is an integral surface of the distribution 333 and the geodesic
radius from z0 to y is the integral curve of P.

Denoting the length along geodesic rays starting at z0 measured from z0 by v,
we have

(1.13) ω3=-dv

and

(Λ/C cot+/c v (c > 0),

(1.14) P

*/—c coth ΛJ-C v (c < 0).

2. The 2nd torsion oberator ψ. In the following, we shall investigate
Mn in Mn+V as in Theorem C and use the notations in §1.

If the rank of ψ is 1 everywhere, Mn is of geodesic codimension 3 by Theorem
4 in [7] .
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Now, we assume that the rank of ψ is 2 everywhere, that is F Λ G Φ 0. At
any point x € Mn, we denote the 2-dimensional normal space spanned by F and G
by N'χ and put N" = vN'x'9 xe Mn, N" is a 2-dimansional normal vector bundle
over Mn as N'. We can orthogonally decompose Nx as

;'+o;, ox = NΪ+O'X9 Nϊ

By the above assumption for -ψ , we denote the set of frames bz B3 such that en+3,

en+i € N'χ by .64. On β 4 , we have

(2. 2) / γ = gΊ = 0 , 7 > * + 4, and fn+3 gn+i -fn+,gn+3 * 0 .

Hence, from (1.6), we have

(2. 3) ωn+lt7 = ωn + 2 > γ = 0 , Ί > n + 4 ,

from which we get

dωn+ltΎ = ω n + i, n + 3 Λ ωn + 3 > γ + ω n + 1 , n + 4 Λ ωn+4,γ = 0 ,

dωn+2t7 = ωn + 2 )n+3 Λ ωΛ+3,γ + «n+2,«+4 Λ ωn+4,r = 0 .

Using (1.6) and (2.2), we have

{(fn+S + i9n+s)ωn+3,y + (Λ+4 + ^n+4)«>n+4,γ} Λ (®l ~ ^ 2 ) = 0 ,

and hence

(2. 4) a>n+3,γ = «n+4,γ = 0 (mod ωuω2), Ί>n + A.

By virtue of (2.4), for any ΌGN'X, we can define a linear mapping -ψv M x -^Oi by

(2. 5) ψ;(X) = X; < v, en+3ωn+3tΎ(X) + ^n+4ωn+4,τ(X) > eΎ .

The mapping ψ: MxxN'x'^>Ox, ψ(X,v) = ψΌ(X), may be called the 2nd torsion

operator of M in M. Clearly 'ψ 'does not depend on the choice of b over x.

LEMMA 1. ψv, vΦO, has the common image.

PROOF. By means of the above argument, we can put
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Hence we have

_ J^

1
(2.6)

where Δ = / n + 3 9n+ι-fn+ι dn+s. Putting F'= Σf'Ίey and G' = ][>;£ 7 , we have
γ>n+4 7>n+4

(2. 7) ^

n

where v = v1en+3+v2en+4: and X=^2Xieί. Since

and Δ ^ 0, the image of ^> vΦO, is the space spanned by F'and G\ q.e.d.

By the lemma, we may say the rank of the 2nd torsion operator ψ as the
common rank of ψv, v^O.

THEOREM 1. Let Mn (ή^3) be a minimal submanifold in Mn+V of constant
curvature which is of M-index 2 everywhere and Q = 0 and the rank ofψ=2.
Then Mn is of geodesic codimensίon 4 if and only if the rank of ψ = 0.

PROOF. The necessity is trivial.

Let us suppose that the rank of "ψ ' ^ 0 . This is equivalent to F Ξ G ' Ξ O . Hence,
by (2. 6), we have

ωn+3>γ = ωn+4t7 = 0 , 7 > n + 4 .

Combining these with (2.3) and (1.4), we see that there exists an (w+4)-dimensional
totally geodesic submanifold in Mn+V containing Mn by means of the structure
equations (1.1). q. e. d.
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By this theorem, if we consider the case ψ = 0, we may put v = 4 from the
local point of view.

3. Mn in Mn+*. In the following, we suppose i/=4. On Z?4, putting

(3.1) Φ y γ

(2.2) implies that

(3. 2) Φ n + 3 Φ 0, Φ n + 4 Φ 0, Φ = Φ n + 4 /Φ n + 3 Φ real.

From (1.6), we have

(3. 3) ωn+lt7 + iσωn+2t7 = Φ7(ωi - iωt)

and

by (1.12). Putting

(3. 4) ω n + 3 t n + 4 = ώ 2 ,

the above equation can be written as

ώi Λ ®»+2j + Σ ωn+i,δ A ω*? + idσ f\ ωn+2t7
δ>n+2

+ ίσ j - ώx Λ ©n+lj + Σ2 ωn+2,* Λ
3>»+2

(ω1-iω2)+ΦΎ{tω12 /\ {ωι — iω2)—

and using (3.3) this equation becomes

(3. 5) i {Jσ ~ /(I - σ2)ώi} Λ ωw+2,r

σωx) + />ίfo) + Σ Φ3ωίγ} Λ (®i -

For simplicity, we put Φ n + 3 = Φi, Φ n + 4 = Φ 2 . Then (3.5) are two equations as
follows:
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i { d i ( l 2
ω

n + 2 , n + 3

= {dlogΦ1 + i(ω12 + σώi) 4- pdv — Φώ2] /\ [ωx — iω2),

-±-i{dσ-i{l-σ2)ωλ} Λ ωn + 2,n + 4

- i(ω12 + σωj+pdv + -φ"ώ2

LEMMA 2. The curvature dω2 of N" is not zero everywhere.

PROOF. From (3.3) we have easily

1 / r
ω n+l,π+3 = — (/n+3*>i

n+i.n+4 = -T"(/n+4®i
Λ

Hence we have the curvature form of the bundle N" given by

(3. 6) dώ2 = ω n + 3 ι n + 1 Λ *> w + l f n + 4 + ω n + 3 , n + 2 Λ ω w + 2 f W + 4 = - T τ U + - T ω i Λ ω 2 .
Λ \ σ /

Since Δ Φ 0 by (2.2), Jω 2 ̂  0 everywhere. q. e. d.

COROLLARY. The set of points where ω2 = 0 is non dense in Mn.

THEOREM 2. Let Mn be a submanifold in Mn+i as in Theorem 1.
Assuming the following conditions :

(ά) ώ^O, 6ί)2Φ0 and σ and Φ are constant on W2,
(β) W2 is of constant curvature c,
where W2 is an integral surface of the distribution 2S, we have the following
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for W*:

(i) σ = 1 or — 1 and Φ = i or — i,
(ii) <F, G>=0,
(iii) c > 0 .

PROOF. Since σ is constant on W2, we get from (1.9)

( 1 - σ 2 ) ^ Λ (ωx+iωj) = 0,

hence

(1 - σ2)&! = 0 on W\

Since ωx 7^ 0 by (Λ), it must be σ = 1 or—1.

Then, from (3.5) and σ2 = 1, we have the relations

(3.7)

from which

{dlog Φx +

dlog Φ2 + i

σωx) + jίxit; - Φω2} Λ (ω^iω^) = 0 ,

+ /><î  + "φ~®2 [ Λ (®i — ̂ 2 ) = 0 ,

dlog Φ + (Φ + ~ - ) ώ Λ A(ω1 - tω2) = 0.

Since Φ is constant on W2 by (a), we have

/ 1
I Φ H
l φ

hence

/

\ Φ + φ .

Since ίό2Φ0 on W 2 , it must be Φ = * ' o r — z, from which we obtain easily
r> G > = 0.

N e x t , from (β), we may put

dωί2 = — c α>! Λ ω2 °π W^2,
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hence from (1.10) we have

ρ2 + c - λ 2 - μ2 = c .

Using σ 2 = l , we have

(3. 8) 2λ2 = ρ2 + c - c on W2,

which implies that λ and μ are constant on W2

9 since by means of Theorem C and
(1.14), p is constant on W2. Hence (1.8) implies

(3.9) ώx = 2σω12 on W2.

Making use of this and (1.11), we have

= 2 λ 2 - I Φ J 2 - | Φ 2 | 2

that is

(3.10) | φ 1 | * = χ « - c .

This relation shows that Φi is constant on W2. On the other hand, from (3.7),
(3.9) we have

t(3fl>i2 + dθ1 + iΦώ2) Λ (®i — i®2) = 0 ,

where θx is the argument of the function Φ lβ Hence we have

(3.11) ω2 = -iΦ^ω^ + dθ,) on W2.

From (3.6) and (3.11), we have

dώ2 = — 3iΦdω12 = 3zV
2
A

hence

2
—
A



MINIMAL SUBMANIFOLDS WITH Af-INDEX 2 381

that is

(3.12) 3c = 2 | Φ 1 | 2 onU^ 2 .

This relation shows that c > 0. q. e. d.

By (3.10) and (3.12) we have

(3.13) 2λ2 = 5c, |ΦX |
2 = -ψc onW*.

4. Frenet formula of W2 under (a) and (#). In this section, we shall
determine the Frenet formula of W2 in terms of an isothermal coordinate, when
the conditions (a) and (β) in Theorem 2 are satisfied.

By means of (ii) in Theorem 2, we denote the set of frames b over W2 such
that

(4.1) F =fen+it G = gen+i, f> 0, g > 0

by #5.
Without loss of generality, we may put

c — 1 and σ = 1.

Since Φx = / / λ and Φ2 = ig/X on J55, we have

(4.2) X = μ ψ ψ

by (3.13). Furthermore, from (3.9) and (3.11) we have

(4.3) ώx = 2ω12, ώ2 = 3α>12

and from (3.3)

(4-4)
VU Λ/Ό



382 T. OTSUKI

(3.8) becomes

(4.5) ρ* + c=6.

Now, we figure the Frenet formula of W2. First of all we have

(4. 6) dx = e1ωι + e2ω2.

By means of (1.4), (1.12) and (4.2), we have easily

(4.7) D{eλ+ie2) = - i(ex + ie2)ωl2 + pe3fa + iω2) + ^ — (en+1 + i en+2) fa - iω2)

(4. 8) De3 = - p(e1ω1 + e2ω2),

where D denotes the covariant differential operator in Mn+i. Analogously, we have

(4. 9) D(en+1 + ien+2) = - ^ — {ex + ie2)fa + iω%) - 2i(en+1 + ien+2)ω12

TQ

+ ~2~ (en + 3 + ien+A)fa - iω2)

by means of (1.4), (4.2), (4.3) and (4.4). Lastly we have

(4 10) D(en+Z + ien+i) =

These equations (4.6)^(4.10) constitute the Frenet formula of W2. In order to
solve these equations, we shall write these equations in terms of an isothermal
coordinate of W2.

On the other hand, for the unit sphere S2 we have the following formula,
considering it as the Gaussian complex number sphere, as is well known,

(4.11)

and
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» . zdz—zdz
1+sz 1 + zz

where ω12* is the connection form of S2.

Since W 2 is of constant curvature 1, we may consider it locally as the unit
sphere S2. Then, we may put

(4.13) fi>i -f iω2 = e'tβ(ωί^ + iω2*).

Substituting this into

d\(ύχ + ίfi)2) = — £ά>i2 Λ ( ω l "̂ " ί®ί) >

we have

(ω12 — ω1 2^ — dθ) Λ (»i*-+ iωi*) = 0 ,

hence

(4.14) G>I2 = G>I2* + dθ.

Substituting (1.13) and (4.14) into (46)—(410) and putting

(4.15)
(en+3*+ien+*=e3i9{en+3+ien+i),

we have

(4. 6*) dx = e^ωγ* + e*a

(4. 7*) 25( î̂  + ie*) = - tVi* + ieflωii*

(4 8*)

(4. 9*)
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(4.10*) D(en+i* + iea+<*) =--ψ- (en+1

Therefore using (4.12) and putting

(4.16) f = «i* + &ι , V = en+1* + ien+i*, ξ = en+* + ien+i*,

we have the Frenet formula of W2 in the isothermal coordinate z as follows

(4.17) Dξ = -j - zd2)

- zdz)

ηd^z ,

Λ/6 ^J^

Sf = -

where A =

5. Solutions in Case ϋfn+4 = J?n+4. In this section, we shall find Mn in
Euclidean space JE"+4 as in Theorem 2, by solving the Frenet formula (4.17) of W2.

In this case, by (4.5) we have

(5.1) />

From the last equation of (4.17), we have

Hence we can put

(5.2)

where F(z) is a complex holomorphic vector field. Substituting (5.2) into the 5th
of (4.17), we have

3SE
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)ζ 32 τ*ι \ . 1 rv/ \ \/6 . 32 o

385

hence

(5.3)

From (5.3) and (5.2), we have

and

Λ/6 p _ 2z ; ZZ 2z
/6 Λ3

,7^/1 3z2 2z

hence

A b Ar-1?.

From the 4th of (4.17), we have

? TV i . V6"2 25
/6 Λs

hence

(5.4)

A fcτ A

> Vis:

VIP > , 2V6 S*
A f + A*

Zh*
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From (5. 4) and (5.3), we have

2*2

and

Vis

hence

dξ y io z
—— — : _ ηη

From the 3rd of (4.17), (5.3) and (5.4), we have

Bξ __ 3V15 5V15

~ h ^ h

Hence we have

ΛΛ.5 :

(5. 5) ,3 = - - ^ ^ - W +

2V15

2V6

+

from which we have
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If £3 is real, then we have also

Hence, if we choose F(z) so that e3 is real, then £3, ξ, 77, ξ* given by (5.5),
(5. 4), (5. 3), (5. 2), satisfy the equations (4.17) respectively except the first one.

From now we search for F(z) such that es is real. Since h = l + z2 is real,
it is equivalent to determine so that

(5.6) - 12VΪ0" h% = 120 zΨ(z) - 60hz2F{z)

is real. G(z, 2) is a polynomial in 2 of order at most 3, hence it is also so in z

by means of G(z,z) = G(s>2).

Now, we have easily from (5.6)

6G(«, z) = [120F(z) -

- 8^F'(^) + z*F"(z)}z2

/(^) - zF"(z)}i - F"{z).

Since G(z>z) is a vector valued polynomial in z and 5, we see from the above
relation that F"'(z) is a polynomial in z. Therefore, we may put

(5.7) F(z) = Λ + Λ * + + Λm^m ,

where Λ0,Ai, •• ,Awι are constant vectors in C4. Then, by simple calculation,
we have



388 T. OTSUKI

120F(«) - 60zF(z) + l2z*F'(z) - zΨ"(z) = 120A0 + 60A l 2 + 24A2z
2

+ 6A3z
3 + + (4 - TO) (5 - TO) (6 - m)Amzm ,

20F{z) -8zF'(z) + z2F"'(z) = 20A, + 24A,z + 18A3z
2

+ + m[5 - TO) (6 - m)Amzm-1,

4F"(z) - zF"(z) = 8A2 + 18A3z+ +TO(TO -1)(6 - m)Amzm-2,

hence we have

6G{z,z) = {120A0+60A ι Z+24A22
2+6A3z

3+. +(4-TO)(5-w)(6-TO)Am2:ro}23

- 3{20A, + 24A2z + I8A3Z2 + + TO(5 - TO)(6 - m)Amzm-1}z2

+ 3 f8Aj + 18A3z + + m{m -1)(6 - TO)Amzm"2}2

- {6A3 + 24A4z + + TO(TO -1)(TO - 2)Amzm-3}.

Noticing that the polynomial inside of the first brace lacks the terms of order 4,5
and 6 in z, we may suppose that w = 6. Then, we have

(5.8) G(z, z) = (20A0 + lOΛz + 4A2z
2 + A-js^z*

- (lOAx + 12A22; +9A 3z 2 + 4AiZ

3)z2

+ (4A2 + 9A3z + 12A4z
2 + 10A5z')2

- (A3 + 4A4z + lOAjz2 + 20Aβz:3).

Hence, it must be

z7¥) = ( - 20Aβ + 10A52 -

- (10A5 - 12A4z

+ ( - 4A4 + 9A3z - 12A2z
2 + 10AιZ

3)z

- (A3 - 4A2z + lOAjz2 - 20A0z
3).

Comparing this with (5. 8), G{z, z) = G{z, 2) is satisfied if and only if

(5.9) A3 = A3, A4 = — A2, A5 = A t, A,) = — A o .

Making use of (5.9), G(z, z) can be written as
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G{z, 2) = (20A0 + 10AlZ + 4A2z
2 + A3z

3)Έ3

- (10A, + 12A2z + 9A3z
2 - 4A2z

3)22

+ (4A2 + 9A3z - 12A2z
2 + 10A,z3)z

- {A, - AAiZ + 10Λ*2 - 2θAoz
3)

= - A} + 4{A2z + A2z) + 9A3zS -

- 12(AiZ + A2z)zΈ + 20{A()z
3 +

+ 10(AιZ

2 + A^)zz - 9A3{zz)2

+ A(AiZ + A^izz)2 + A3(zz)3

= - A, {1 - 9zΈ + 9{zz)2 - {zz)3}

A + AiZ) [1 - 3zz + {zz)2}

+ 20{A0z
3

Substituting this into (5.6), we have

(5.10) e3 = 2 ^ h 3 {A3(l-9zz+9z2z2-z3Έ3)

- 4(AiZ + A22) (1 - 3zz + z2z>)

2 + A&)(1 - zz) - 20(Aaz
3

Analogously from (5.2), we have

(5.11) ξ = -yr {z3A3 + (z2A2 - z*A2) + (zAι + z*Ax) + Ao

On the other hand, (5.3) and (5.4) can be written as

n == ίfi?FM - ί l + r^FΊz)}

and
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ξ = ̂ 7 = ^ Γ {^zΨ(z) - 5(1 + zz)HF(z) + - |-(1 + z2)*F"(z)} .

Since we have

62F(z)-(l+zΈ)F{z) =

- (1 +x2) (3z2A3+2zA2 - 4z3 A2+A,+5z4 A - 6z5 A)

= - 3(1 - s2)x?At+2( - 1 + 2z2)zAi+2(2 - zz)z3At

λ 0 + 6 z 5 A 0 ,

15zΨ(z) - 5(1 + zz)zF(z) + -\-

A3 + z2A2 - z*A2 + zAx + z5A, +A0- z«A0)

- 5(1 + *2)5(3sf A8 + 2zA2 - 4z3A2 + Ax + 5«4Λ - 6z5A0)

+ (1 + 2^S + Λ 2 ) ( 3 M 3 + A2 - 6z2Λ2 + lOz'A, - 15^4A0)

= 3(1 - 3*S + 2;2^2)2;A3 + (1 - 82S + 6z222)A2

- (6 - 8zS + z2ΪS2)z2A2 + 5( - 1 + 2zz)iAι + 5(2 - zz)z*Ax

+ 1552A0 -

η and £ can be written as:

(5.12) v = /£ hs ί- 3(1 - 2̂ )2;2A3 + 2 ( - l + 2^)zA2 + 2(2 - zz)z3A2

+ ( - 1 + 5^)Ax + ( - 5 + zzjz*A + 6SA0 + 6^5A0}

and

(5.13) ξ = vjjj-Λs (3(1 - 3zS + z2z2)zAz + (1

- (6 - 8*5 + z*22)z2A2 + 5( - 1 + 2^)ίAχ + 5(2 - zz)zzAx

Now, we must find the conditions such that ξ, η, ξ, e3 make an orthonormal
frame. In the case of this section, (4.17) are
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= —jj- f (zdz- zdz) + rjdz,

dη=

dη =

dξ =

- zdz) ^γ-

--j-ηiΈdz- zdz) + ̂ ψ- ξdz,

— ĵ— vdz + —j--ξ(zdz — zdz)

In the following calculation, " = " denotes the equality modulus the quantities

€}•!;> e% η, e3 ξ, eg, e3 η, e} ξ,

ξ ξ,ξ η,ξ'ξ,ξ n,ξ ξ>

?•?, ?"?> ? e, i v> ϊ ξ,

η-η, η>ξ, η ξ, η η, η 'ξ, η ξ, ξ'ξ, ξ ξ.

Then, making use of the above ralations, we have easily the relations:

d{e% e3) = 0 ,

= d(ξ ξ) = d(ξ>η) = d(ξ ζ) =
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from which we see that if we can choose Ao, A19 A2, Az so that all the above
quantities 10 lines before and

*s. *β-l» f f - 2 , vv-2, ζ-ξ-2

are zero at z = 0, then these are identically zero.
By means of (5.10), (5.11), (5.12), (5.13), when z = 0, we have

Thus, the conditions for Ao, A19 A2, A3 are

(5.14)

A3 = A3,

A2-A2 = AιΆ1 = AQ AQ = 0,

A3 A3 = 40, A2-A2 = 30, AιΆι = 12, A0-AQ = 2,

A3 A2 = Λ3 A 1 =Λ 3 Ao = 0,

A2 Λ! = Aa Λ = A2 A0 = A2 A0 = 0,

Λ A = Ai Ao = 0.

Now, we give the equation of W2 by means of the above result. First of all,
we choose four constant vectors Ao, Al9 A2, A3 in C4 which satisfy the condition
(514) and determine e3 given by (5.10) which is real and a unit vector field in
E8^CA. On the other hand, we may consider as

_1_

p

by (4.17). Hence we have a general solution of W2 as follows:

(5.15)

4(1 - 2) - 10(1 -

If we put
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A2 =

A1= -

Ao = d/dx5 + i

x1 + id/dx2) >

then we can write (5.15) in the canonical coordinates xt, x2, ,xΊ as follows

(5.16)

χ\ = {1+zzY

(l+zz)3

z),

(z-z),

Finally, we show how ts construct Mn in En+i as in Theorem 2. First of all, we
consider as

= Rn-i χ £ 8 >

and construct a surface W2 given by (5.15) in C4. This surface is clearly of
geodesic codimension 5 in R*. Hence, we may consider as

W2(zR7 and C4 = R x R7.

For any point y £ W2, we denote a linear subspace Ln~2(y) through y such that

* x Λ and L
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Then, the locus of points on the moving Ln 2(y) makes an ̂ -dimensional submanifold
Mn in En+i which is minimal and of M-index 2 everywhere and satisfies the
conditions in Theorem 2.

Remark. As is well known, the Veronese surface is given by

x — A/3 U2U3, X2 = , x3 = Λ / 3 UXU2,

7θ"~

= —7Γ- — U2U2), X6 = — (3WiWi + 3u2U2 — 2) ,

where uxux + u2u2 + u3u3 = 1. Through the stereographic projection, we put

z+z . z—z
1 1+zz ' 1+zz

and substituting these into the above equations we have

(5.17)

1 — j
3

V ^

(l+zz)2

Comparing (5.16) multiplied by Λ/6 with (5.17), we see that W2 may be considered
as a generalization of the Veronese surface. It is minimal in a 6-dimensional sphere
as the Veronese surface is minimal in the 4-dimensional unit sphere. Both of them
are isometric imbeddings of the projective plane with a canonical metric of constant
curvature.

6. Solutions in Case Mn+i = Sn+4(R). In this section, we shall find Mn in
{n+4) -dimensional sphere as in Theorem 2.

In this case, we regard as M n + 4 = Sn+*{R)(lEn+5, where - ^ = c. Putting
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X
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R •= en+5

we have

dx = Rden+5 = ex*

Hence, denoting the ordinary differential operator in En+5 by d, we have easily

(6. 2) de3 = De3 = •

and

l. e.

dξ = -j-ξ(~dz - zdz)(6.3) j

by (4.17) and (4.12).

On the other hand, we have

(6.4) p = COt V = ΊΓ
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Since the point

x + —ez = R[en+δ+e3

is a fixed point, the unit vector

eQ = en+5 cos-^- + e3 sin-^-

is fixed on W2. Hence W 2 lies on the linear space E?+i which is orthogonal to e0

passes through

Now, we have

and passes through the point Ox — e0Rcos-^~.
XV

Oxx — — ez* R sin-β-

where

(6.5) e3* = e3 cos-^--* n

Since we have

g ^n + 5 ~" jfj 3 *^ L R R n 4

R sin v
^ 3

R

and

by (4. 5), (6. 3) can be written as

(6. 6) dξ = ^-ξ(zdz - zdz) + ^ - e * dz+ •s^-η dz.
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Next, we compute dez* on W2. By means of (6.1), (6. 2) and (6. 5), we have

V

and

p v

-T^ΊΓ Rh sin-5-
XV

V6
~ h

hence

(6.7)

Therefore, the Frenet formula (4.17) of W2 in Sπ+i(R) becomes the follow-
ing one in £ " + 4 :

(6.8)

de* =

dξ =

dη =

dξ =

Λ/6

-γξ(zdz-zdz) +

, 2
Zdz) +^~

^γ- -γζ(zdz-zdz).

which is completely identical with the system of equations in Case Mn+i — En+i.

We can construct a minimal submanifold Mn with Λf-index 2 of geodesic
codimension 4 in the sphere Sn+i[R) by means of the results of the previous sections.

7. Solutions in Case Mn+i =Hn+i(c). In this section, we shall find M " in

(«+4)-dimensional hyperbolic space Hn+i(c) of curvature c as in Theorem 2.

In this case, (4.5) and (1.14) imply
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c = 6 - p2 = 6+c coth2 V 1 1 ^ v,

i. e.

(7.1) - c = 6 s i n h V - ^ v.

We use the Poincare representation of Hn+*(c) in the unit disk in £ w + 4 with
the canonical coordinates x19 x2> ,xn+i. Its line element, as is well known, is
given by

in o\ JΛ 4 R2 dx-dx Ώ

(7.2) ds = (1_χmχγ > R=>

Since the components of the Riemannian metric are

4R2 L2

9ii = jfj. δ^, ^ i J = ^ 2 8ti>

where

L = 1 — x x,

we have its components of the connection:

(7. 3) T% = 2(Sfx, + h)x{ - h0xk)/L .

For any two tangent vectors X and Y, we have

where < X , Y > and X Y denote the inner products of X and Y in Hn^(c) and £ n + 4 ,
respectively. Hence, if (x,eu •• ,£n + 4) is an orthonormal frame in JF/n+4(c), then

x, j ely , T en+Λ is the one in En+i.

n+i

Now, for any tangent vector field X = ]>j Xjd/dxj

9 by means of (7.3) we
, 7 = 1

have easily

(7.4)
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Putting

(7.5) *3* = ̂ s > £* = ~ f > V* = ~ψv> f = -χ-f

we rewrite the formula (4.17) in these terms. First of all, we have

(7.6) dx = ^-(f

From the 2nd of (4.17) and (7. 4),

de* + -£-{(*• e3*)ίίx - x(e*

By (7. 6) and (e3* <far) = 0, the above equation becomes

de* = - {/> + -^ (x e3*

Now, from the third of (4.17), we have analogously

' dx)} = -j-ξ*(zdz - zdz)

Since we have

the abore equation becomes

(7.7) dξ* = -γξ*{zdz -zdΈ)+^- Ipe*
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Next, from the fourth of (4.17), we have

2
dη* + -γ- {{x ψ)dx — x(η* dx)}

Since η* dx = 0, the above relation becomes

(7. 8) dη* = - ^-ξ*dz + -γη*(2dz - zdz) + -η^

Last of all, we have from the fifth of (4.17) and (7. 4)

{(* £*)^c Λ:(f* fcc)} ^ ^J + ~γζ*(zdz - zdz)

that is

(7. 9)

On the other hand, any geodesic starting from the origin O = (0, , 0) in
Hn+i[c) is a Euclidean straight line segment in the unit disk. The arc lengths v
and r in Hn+i(c) and En+4: have the relations as follows:

= R l o g y ^ r , r = t a h

Since any W2 is congruent to others under the hyperbolic motions, we may suppose
the forcal point z0 in Theorem C is the origin O. Then, we have

x = — e** r = — e3tanh
2R '

and hence
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X ξ* = X η* = X ζ* = 0,

L = 1 - r r = 1 - r 2 = 1 -tanh 2 V

ΊΪR cosh2

2R

and

1 ,
R {X'e' . ) P R Rco

1
R sinh-^-

xv

u v

R

s/6

1
R t a J 2R

by (1.14) and (7.1).
Making use of these relations, (7. 6)~(7. 9) can be written as

dx =

(7.10)

(ooβh-f +lJΛ Λ '

de* - -

dξ* = ~ξ*(zdz - zdz) + 2ψ-

dη* = - ^γ~ ξ*dz + -~- n*{zdz - zdz) + •*£• ξ*dz,

+ ^ζ*(zdz - zdz),

which is completely identical with the system of equations for W* in Case Mn+i

=En+i except the first one.
Therefore, we can construct W2 in Hn+i(c) by the formula (5.10) and

(7.11) X = —

Then, we can construct a minimal submanifold Mn with Άf-index 2 of geodesic
condimension 4, taking W2 as the base surface, according to Theorem C.
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