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ON A SATURATION THEOREM OF TURECKII
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1. Introduction. Let C*[—τc,π] denote the space of 2τr—periodic continuous
functions and || || the supremum norm on [—7t,τr]. Many of the classical linear
methods of approximating functions in C*[—π,π] are given by a sequence (Ln) of
positive convolution operators. That is, Ln has the form

( 1 . 1 ) Ln(f, X) = (f*dμn)(x) = ~ff(x+t)dμn(t)

l Γ
where dμn is a non-negative, even Borel measure on [—π, π]> with I dμn(t) = 1.

n J-*
An important concept in the study of the approximation properties of such

operators is that of saturation. We say that the sequence (Ln) is saturated if there
is a positive sequence of real numbers (φ(n)) which tend to 0, (n—>oo), such that

i. \\f—Ln(f)\\ = o(φ(n)), (n—>oo), if and only if/ is constant,

and

ii. there is a non-constant function f0 in C*[—π, π] such that ||/0—L»(/o)||
= O(φ(n))> (*->oo).

The sequence (φ{n)) is then called the saturation order of (Ln) and the set S(Ln) of
those functions in C*[— TΓ, n~\ which satisfy ii, is called the saturation class of (Ln).
For a general discussion of saturation in Fourier Analysis, we refer the reader to
the book o fP.L. Butzer and R.J. Nessel [ 2 ] or the expository article of P.L. Butzer
and E. Gorlich [1].

In this paper, we are interested in examining when the second moments
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determine the saturation of (LJ. If/ is in C*[—τt,π] we let

ff()^ dt * = 0,±l,.-.

and for a Borel measure dμ

Of course when dμ is even pk = — I cos kt dμ(t)0, k = 0, ± 1 , ±2,
n J_π

A.H.Tureckii [7] , [8] has established the following sufficient condition for
the first Fourier coefficients to determine the saturation of (Ln).

THEOREM (Tureckii). If (Ln) is a sequence of linear operators of the form
(1.1) and if

(1.2) lim ]~P* * = k\ * = ± 1 , ± 2 ,

then (Ln) is saturated with order (1 — pγ n) and saturation class S(Ln)
= {/ : / '€ Lip 1}.

The condition (1.2) has many equivalent formulations. A general accounting of
these can be found in the papers of E. Gorlich and E.L. Stark [4,5]. In particular
the condition (1.2) is equivalent to

(1. 3) f t*dμn(t) = off t*dμn(t)\ (n-*oo) .

The condition (1.3) indicates more clearly the behavior of the measures dμn

which is used in the proof of Tureckii's Theorem. Indeed, what is needed is that
for each £>0

(1. 4) ( dμn(t) = ol Γ sin2 -^dμn(t)\ (n->oo) .

In other words, the integrals of the measures dμn outside each neighborhood of 0
must be negligible in comparison with the saturation order.
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The object of this paper is to extend the Theorem of Tureckii by replacing
the conditions (1.2) and (1.4) by the following weaker conditions.

A. There exists a constant CA>0, such that for each integer h there is an N(k)9

for which

} pk'n ^ CAk> when n ^ N(k)

B. There exists a constant CB>0, such that for each £>0, there is an N(S), for
which

j sin2 -y dμn(t) ^CsJ sin2 ~dμn(t) when n^

These two conditions are equivalent and this is shown in Section 2. In Section 3
we shall prove the following extension of Tureckii's Theorem

THEOREM 1. If (Ln) is a sequence of operators of the form (1.1) and if
either condition A or condition B is satisfied then (Ln) is saturated with order
(l—pi,n) and saturation class S(Ln) = {f: f € Lip 1}.

Although Tureckii's Theorem determines the saturation properties of many
classical methods of approximation (e.g. the Jackson and Korovkin operator (see
[l,p.375]), it is easy to construct sequences of operators for which B holds but
(1.4) is not satisfied. Indeed, if (dμn) is a sequence of measures for which (1.4)
holds then each measure dμn can be altered slightly so that (1.4) is no longer
true while B still is satisfied. We will now illustrate this point with the following
example. Let Kn demote the Jackson kernel of degree 2#—2 [6]

with Cn the normalizing constant. The trigonometric polynomials

n(t -„) + Kn(t + n))

generate by convolution a sequence of operators [Ln(f) =/*Λn), which satisfy
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condition B but do not satisfy (1.4). It is well known [1] that for each £ > 0

lim rc2 f sin2 ~4rKn{t)dt = ~
n-*oo J_ Z 4

so that B is satisfied for (Λj. However

— I Kn{t - π)dt-+l (n -> oo)

and thus (1.4) does not hold.
This example also answers a question of Gorlich and Stark [ 4 ] , who asked

whether every sequence (Tn) of non-negative even trigonometric polynomials, with Tn

of degree fg n and / Tn{t)dt = 1, which satisfy
7t J_π

(1.5) f sin*-±-Tn(t)dt = θlj~\

must also satisfy (1.3). The above example shows that this is not true. However,
it can be shown that each such sequence must satisfy A and B (see [3]). Thus the
saturation properties of operators generated by convolution with the polynomials Tn

are determined by Theorem 1. A more general treatment of saturation of
trigonometric convolution operators is given in [ 3 ]. This paper also contains most
of the techniques which will be used here.

2. LEMMA 1. The conditions A and B are equivalent.

PROOF. We first show that B implies A. Let k be a non-zero integer and
choose 0<e<τt/\k\. Then

kt ( 2 V t
sin2 -77-= k2s'm2~7z~ on ( — £, £), and so, if we let N(β) be as given in

Δ y 7t J Δ

B we have

sin2 ̂ dμn(t) ^f sin2 ψdμn(t) ^ {^j k>f sin2 -γdμn(t)

t ) k C s I sk l Ts k l 2 T " d μ > n ^ f o r n -
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Therefore, A holds vήύιN(k)=N(€), andCA= (~A CB.

We will now show that A implies B with CB = CA/4. Suppose B does not
hold with CB = Ci /4 . Then there is an £0 > 0 and a sequence (tij) such that

(2.1) f sin2 -γdμnj(t) rg iff sin2 -γdμn){t\ j = 1,2, .

/
£ 1

sin2 ~w~dμn(t) and consider the measures dvnj which are —-.—rdμnj

on [-*,*r]\(-So>So), and 0on(-^ 0^o) ? 7 = 1,2,-. Then f Λn,W ^ r = - ^ - ^ τ τ
^_ j r s m c 0 / 2 φ[Πj)

Γ t 1
/ sin2 -7Γ-dμnj(t) = -Γ-TΓ—. Thus the sequence of measures (dvnj) lies in a compact

J _π Z sm co/2
subset of the dual space of C*[—7t,π] with the weak* topology. Hence, there is a
subsequence (n\) c (ŵ ) and a measure 6?i/ such that dvn] converges weak^ to dv.

In particular for eack k

(2.2) lim Γ sin2 ^rdv^t) = Γ sin2 -^-Λ ^ Γ dv .

Now, choose ^ 0 so large that

(2.3) 2~-J d v

Then by virtue of (2.3), we have that for n'} sufficiently large, sayΞ>iV

WJ Γsin2 -T- ^ - ' W = w

Thus, using condition A we have for w ^ m a x (N,N(k0))
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f sin2 ̂ fdμnΊ(t) ^-^f sin2 -γdμnΊ(t).
- e 0

Finally, since sin2—^—^ k\ sin2 — , we have that

f sin2 -^dμnΊ{t)^±r[ sin2 ̂ fdμ^t) ^ψf sin2 -γdμn,,(t)

which is the desired contradiction to (2.1) and the Lemma is proved.

3. PROOF OF THEOREM 1. Suppose (Ln) is a sequence of positive linear
operators of the form (1.1) which satisfy either A or B. By virtue of Lemma 1,
both A and B are satisfied, and we will use them interchangeably. We first wish
to show that (Ln) is saturated with order (1 — pUn). Suppose fe C*[—7t,π] and

\\j-Ln(f)\\ =o(l-Pun) (n-oo),

then/(A)7/(A)ft in = o(l-p l f l l) (Λ-OO). Since l- f t i »^C^ 1 ( l-/> l i , ι ) n^N(k)
we have f(k) = 0, k — ± 1 , ±2, . Therefore, f is a constant function. The

function fo(t) = sin2 —^- is clearly a non-constant function for which

Thus, (Ln) is saturated with order (1 — ρlt7l).
We now wish to characterize the saturation class S{Ln). A function/^ C*[—τr,7r]

is in S(Ln) if and only if

= O(l-Phn) (n->oo)

where we have used the fact that each dμn is even. Equivalently, fz S(Ln) if and
only if

sirr
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where dψn(t) = — (1-ft.,)"1 sW~dμn{t).
7t Δ

359

7t

Since I dψn(t) = 1/2, τz=l,2, , it is clear that if / ' € Lip 1, then / is in 5(Ln).

We need to show that if fe S(Ln) then/ ' € Lip 1. We shall first show that
if f is twice continuously differentiable and

\\f-LJf)\\ ^ M(l-Pun) (n-oo)(3.1)

then

(3.2)

where C is a constant independent of / .

Since each measure dψn has norm 1/2 there is a subsequence (n}) and a
measure ί/ψ' such that (dψnj) converges weak^ to dψ. Using Condition B and
the weak* convergence we have for each S>0

(3.3)

Choose θ0 so small that

(3.4)

ί dψ ^ lim f dψnj ^ C5 .

Now, if / is twice continuously differentiable and satisfies (3.1), then

sm'

sm

Thus, we have

(3.5) t)+f(x-t)-2f(x)

sin'
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f(x + t)+f(x-t)-2f(x)
dψ(t)

[-«,*] \(so,«o)

sin"

Since •/V" + *) + /fc /)—UiΞL h a s t h e v a l u e 4 f ^ Άtt=0, we have from (3. 3)

that

(3.6)
Γ" f(x + t)+f(x-t)-2f(x)

J . 2 t

sin2

Since f(x + t)+f(x-t)-2f(x)
t

sin
^ ^ I I / Ί I . ί > α

sinz

we have from (3.6) and (3.4) that

(3.7)
Γ f(x + t)+f{x-t)-2f(x)

• . t

Using (3.7) with (3.5) gives

sin .A.

which establishes (3.2).
Finally let f be any function in S(Ln), such that
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If- Ln(f)\\ ^ MX ~ Pun) n = 1,2, .

Consider the twice continuously differentiable function fm =f*Km where Km is the
Jackson kernel of degree 2m—2. Then for/m, we have

\\fm-Ln(fn)\\ = \\f*Km-f*Km*dμn\\ = Uf-f*dμn)*KJ

^ \\f-f*dμj -±-j KJt)dt ^ M(l - Pun) n = 1,2, .

(3.8)

Thus, from (3.2) and the fact t h a t | | / J | ^ | |/ | | , m=l, 2, •••, we have

ll/.il ^C(M+||/m | |)^C(M+||/||).

If \t\ >0, xz [-τr,π]

(^ + t) +fjx - ή - 2fm(x)

Taking a limit as (m—>oo) in (3.8) shows that

which is equivalent to / ' € Lip 1.
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