NOTE ON STOPPED AVERAGES OF MARTINGALES

MOTOHIRO YAMASAKI

(Received July 9, 1971)

Let $\{f_n, F_n; n \ge 1\}$ be a martingale. Kazamaki and Tsuchikura ([2] Th. 1) showed that the two conditions

(1)
$$\sup_{n} E |f_{n}| < \infty$$

and

$$\sup E |u_n| < \infty$$

are equivalent to each other, where

$$u_n=\frac{f_1+f_2+\cdots+f_n}{n}.$$

Let ST be the class of all stopping times with respect to $\{F_n\}$. It is well known ([1] p. 300), that the condition

$$(3) \qquad \qquad \sup_{\tau \in ST} E |f_{\tau}| < \infty$$

is equivalent to (1). Here $E |f_{\tau}|$ is defined by $\int_{(\tau < \infty)} f_{\tau} | dP$.

In this note, we show that there is not always an equivalent relation between the two inequalities (3) and $\sup_{\tau \in ST} E |u_{\tau}| < \infty$.

LEMMA. Let $\{a_n\}$ be a positive, non-increasing sequence, which converges to 0, and $\{b_n\}$ be a non-negative non-increasing sequence. Then

$$\sum_{n=2}^{\infty} rac{a_{n-1}-a_n}{n} \sum_{j=1}^{n-1} rac{b_j}{a_j} \geq rac{1}{4} \sum_{n=1}^{\infty} rac{a_{2^n}-a_{2^{n+1}}}{a_{2^n}} b_{2^n} \ .$$

PROOF. We put $\alpha_n = a_n - a_{n+1}$ $(n = 1, 2, \dots)$, then

$$\sum_{n=2}^{\infty} \frac{a_{n-1}-a_n}{n} \sum_{j=1}^{n-1} \frac{b_j}{a_j} = \sum_{n=2}^{\infty} \frac{\alpha_{n-1}}{n} \sum_{j=1}^{n-1} \frac{b_j}{\sum_{k=j}^{\infty} \alpha_k} = \sum_{j=1}^{\infty} \frac{\sum_{n=j}^{\infty} \frac{\alpha_n}{n+1}}{\sum_{k=j}^{\infty} \alpha_k} b_j .$$

It is easily verified, that $\sum_{n=j}^{\infty} (\alpha_n/n+1) / \sum_{n=j}^{\infty} \alpha_n$ is non-increasing as j increases. This, with non-increasingness of the sequence $\{b_n\}$, gives

M. YAMASAKI

$$\sum_{j=1}^{\infty} \frac{\sum_{k=j}^{\infty} \frac{\alpha_{n}}{n+1}}{\sum_{k=j}^{\infty} \alpha_{k}} \ b_{j} \ge \sum_{i=0}^{\infty} \sum_{n=2^{i}}^{2^{i+1-1}} \left\{ \frac{\sum_{k=2^{i+1}}^{\infty} \frac{\alpha_{k}}{k+1}}{\sum_{k=2^{i+1}}^{\infty} \alpha_{k}} \right\} b_{2^{i+1}}$$

$$\ge \sum_{i=0}^{\infty} 2^{i} \frac{b_{2^{i+1}}}{a_{2^{i+1}}} \sum_{k=2^{i+1}}^{2^{i+2-1}} \frac{\alpha_{k}}{k+1}$$

$$\ge \sum_{i=0}^{\infty} 2^{i} \frac{b_{2^{i+1}}}{a_{2^{i+1}}} \sum_{k=2^{i+1}}^{2^{i+2-1}} \alpha_{k} \frac{1}{2^{i+2}}$$

$$= \frac{1}{4} \sum_{i=1}^{\infty} \frac{a_{2^{i}}}{a_{2^{i}}} b_{2^{i}} . \qquad \text{q.e.d.}$$

THEOREM. For any positive integer valued random variable τ , which is not essentially bounded and such that $P(\tau < \infty) = 1$, there exists a martingale $\{f_n, F_n; n \ge 1\}$ such that

- (a) τ is a stopping time with respect to $\{F_n\}$.
- (b) $\{f_n, F_n; n \ge 1\}$ is uniformly integrable,

and

(c) $E |u_{\tau}| = \infty$.

PROOF. Note that from the assumptions on τ we have

(4)
$$P(\tau > n) > 0 \ (n = 1, 2, \cdots) \text{ and } P(\tau > n) \downarrow 0 \ (n \to \infty)$$
.

We construct a counter example of a martingale $\{f_n, F_n; n \ge 1\}$. Let F_n be the σ -field generated by the sets $(\tau = 1), (\tau = 2), \dots$, and $(\tau = n)$; clearly τ is a stopping time with respect to $\{F_n\}$. We denote by $\{b_n\}$ a positive non-increasing sequence whose additional restrictions will be given step by step.

First we assume that

$$rac{b_{n-1}-b_n}{P(au=n)}=0 ~~{
m and} ~~b_{n-1}-b_n=0$$

if $P(\tau = n) = 0$. Put

$$f_n = \sum_{k=1}^n \frac{b_{k-1} - b_k}{P(\tau = k)} I_{(\tau=k)} + \frac{b_n}{P(\tau > n)} I_{(\tau>n)}$$
 ,

where $I_{(.)}$ is the indicator function of the set (.). Then $\{f_n, F_n; n \ge 1\}$ is a non-negative martingale, because

$$\int_{(\tau=k)} (f_n - f_{n-1}) dP = 0 \qquad (k = 1, 2, \dots, n-1)$$
$$\int_{(\tau>n-1)} (f_n - f_{n-1}) dP = (b_{n-1} - b_n) + b_n - b_{n-1} = 0$$

and the sets $(\tau = 1)$, $(\tau = 2)$, \cdots , $(\tau = n - 1)$ and $(\tau > n - 1)$ are atoms of F_{n-1} . Furthermore,

$$E(f_n) = b_0 \ (n = 1, 2, \cdots) \quad \text{and} \quad E(f_\infty) = \lim_{n \to \infty} (b_0 - b_n) \ .$$

So $\{f_n\}$ is uniformly integrable, if and only if $\{b_n\}$ converges to 0 (c.f. [1] p. 319 Th. 4.1 (ii)). Now,

$$u_{ au} \ge rac{1}{ au} \sum_{k=1}^{ au-1} f_k = rac{1}{ au} \sum_{k=1}^{ au-1} rac{b_k}{P(au > k)} I_{(au > k)} \ge 0$$
 ,

and

$$egin{aligned} E(u_{ au}) &\geq \sum\limits_{n=2}^{\infty} \int_{(au=n)} rac{1}{n} \sum\limits_{k=1}^{n-1} rac{b_k}{P(au>k)} I_{(au>k)} dP \ &= \sum\limits_{n=2}^{\infty} rac{P(au=n)}{n} \sum\limits_{k=1}^{n-1} rac{b_k}{P(au>k)} \ &= \sum\limits_{n=2}^{\infty} rac{P(au>n-1) - P(au>n)}{n} \sum\limits_{k=1}^{n-1} rac{b_k}{P(au>k)} \ . \end{aligned}$$

Note that the sequences $\{a_n\}$ $(a_n = P(\tau > n))$ and $\{b_n\}$ satisfy the assumptions of Lemma from (4). So,

(5)
$$E(u_{\tau}) \geq \frac{1}{4} \sum_{n=1}^{\infty} \frac{P(\tau > 2^{n}) - P(\tau > 2^{n+1})}{P(\tau > 2^{n})} b_{2^{n}}.$$

Let N be an integer such that

$$P(\tau > 2^{N}) - P(\tau > 2^{N+1}) > 0$$

(such an integer always exists), and define

$$b_{2^{n}} = \left\{\sum_{k=N}^{n-1} rac{P(\tau > 2^{k}) - P(\tau > 2^{k+1})}{P(\tau > 2^{k})}
ight\}^{-1}$$
, $(n = N + 1, N + 2, \cdots)$.

From (4), $\prod_{k=N}^{n} P(\tau > 2^{k+1})/P(\tau > 2^{k}) = P(\tau > 2^{n+1})/P(\tau > 2^{N})$ diverges to 0 as $n \to \infty$, so $b_{2^{n}}^{-1} \uparrow \infty$ and $b_{2^{n}} \downarrow 0 \ (n \to \infty)$. And we define the remaining terms $b_{n}(n \neq 2^{N+1}, 2^{N+2}, \cdots)$, such that all the assumptions imposed on $\{b_{n}\}$ in this proof are satisfied. The martingale with this $\{b_{n}\}$ satisfies (b), and it remains only to show that $E \mid u_{\tau} \mid = \infty$. From (5), it follows that

$$egin{aligned} E &| \ u_{ au} \ | \geq rac{1}{4} \ \sum \limits_{n=N+1}^{\infty} rac{P(au > 2^n) - P(au > 2^{n+1})}{P(au > 2^n)} \ b_2^n \ &= rac{1}{4} \ \sum \limits_{n=N+1}^{\infty} \Bigl(rac{1}{b_2^{n+1}} - rac{1}{b_2^n} \Bigr) b_2^n = rac{1}{4} \ \sum \limits_{n=N+1}^{\infty} \Bigl(rac{b_2^n}{b_2^{n+1}} - 1 \Bigr) \ . \end{aligned}$$

But from the fact that

$$\prod_{k=N+1}^{n} \frac{b_{2^{k}}}{b_{2^{k+1}}} = \frac{b_{2^{N+1}}}{b_{2^{n+1}}}$$

diverges as $n \to \infty$,

$$\sum_{n=N+1}^{\infty} \left(\frac{b_2^n}{b_2^{n+1}}-1\right) = \infty \quad \text{q.e.d.}$$

It is easily checked, if we put

$$P(\tau = n) = rac{1}{2^n} \quad ext{and} \quad b_n = rac{1}{n+1}$$

then the martingale $\{f_n, F_n; n \ge 1\}$ defined as in the proof gives an example such that

$$\sup_{\tau \in ST} E |u_{\tau}| < \infty$$
 and $E [\sup_{n} |f_{n}|] = \infty$.

References

- [1] J. L. DOOB, Stochastic Processes, Wiley, New York, 1953.
- [2] N. KAZAMAKI AND T. TSUCHIKURA, Weighted averages of submartingales, Tôhoku Math. J., 19 (1967), 297-302.

Faculty of Engineering Shinshu University Nagano, Japan