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Let D be the open unit disk and K be the unit circle in the complex
plane. We denote the Riemann sphere by 2, and the chordal distance
between points a and b on 2 by d(a, b). Suppose that f(z) is a function
defined on D whose values belong to 2. As is customary in cluster-set
theory (see, e.g., [10]), if (€ K, we denote the cluster set and the range
of f at C relative to D by C(f, ), R(f, (), respectively; and if 4 is an
arc at {, then C,(f, ) represents the cluster set of f at { relative to
A. The principal cluster set of f at { is the set

T(f, 8 = NCASF, O,

where /A ranges over all arcs at {; the chordal principal cluster set of f
at { is the set

Hl(fyc) = QCX(f7C))
where X ranges over all chords of the unit circle at {. Evidently

IT (£, &1L (f, D EC, O -

A point { e K is called an ambiguous point of f, provided that there
exist two ares, 4,, 4,, at { such that

(1) Ci(f, O NCLS,0 =2 .

If one of the two arcs satisfying (1) can be taken to be the radius at £,
then we shall say that { is a radioambiguous point of f. If there exist
two chords, 4, 4,, at { satisfying (1), then we call { a chordally ambig-
uous point of f.

I have shown [1, p.380, Theorem 2] that an arbitrary function in D
has at most enumerably many ambiguous points. In view of this, it is
reasonable to say that a function has a maximal set of ambiguous points,
if its set of ambiguous points is everywhere dense on K. I recently
obtained, in an incidental way, the following sufficient condition for a
function to have a maximal set of ambiguous points [4, Corollary]:

(I) If f(z) is a nonconstant holomorphic function in D, and if @
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is a finite complex number such that T1,(f, ) = {®} for every {c K, then
f has a maximal set of ambiguous points.

MecMillan [8, p.10, Theorem 4] has shown that if f(z) is holomorphic
in D, and if f has no ambiguous points on an open subarec of K, then the
set of points {e K for which ] (f,{) # @ is residual on that arc. This
can be reformulated as follows:

(II) If f(2) is holomorphic in D, and if the set of points L€ K for
which TI (f, ) = @ s everywhere of second category, then f has a maximal
set of ambiguous points.

We shall now prove a theorem which provides sufficient conditions for
a meromorphic function in D to have a maximal set of ambiguous points.
This theorem contains (I) as a special case, and it does not impose the
stringent requirement on ] (f, {) of being empty, as (II) does.

When we say that [ (f, {) is uniformly bounded away from a value
we Q for almost every { belonging to some subarc K* of K, we mean
that there exists a number b > 0 such that, for all {e€ K* except for a
set of points of measure zero, either [[ (f,{) = @ or else [ (f,{) # @
and d(I] (f, 0), w) = b.

THEOREM. Let f(z) be a meromorphic function in D. If there exists
a value we 2 such that
(i) for an everywhere dense set of points L€ K,

(2) wel2 — R(f,OINC, 0 ;
(ii) the set of points L€ K for which
(3) well (f, 0

18 nowhere dense;

(iii) every arc of K contains an open subarc on which TI (f, ) s
uniformly bounded away from @ for almost every ;
then f has a maximal set of ambiguous points.

PrOOF. Our proof is based on a theorem of McMillan’s [8, p. 4, Theorem
1]. We aim to show that every open subarc K, of K contains an ambig-
uous point of f.

According to (ii), there exists an open subarc K, of K, such that (3)
holds for no point (e K..

There is no Koebe arc of f whatever for the value w, because every
interior point { of such an arc would satisfy (3), whereas by (ii) the set
of points satisfying (3) is nowhere dense on that arc.
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Then if f has the asymptotic value @ in the arc K,, f must have the
asymptotic value w at some point {, € K,. If ] (f, &) # @, then w e [[(f, &),
which is incompatible with our choice of K,. Hence I] (f, {) = @, which
implies the existence of an arc 4, at {, such that w¢ C,(f, (), and ¢, is
thus an ambiguous point of f on the arc K,.

If, however, f does not have the asymptotic value w in the arc K,

then according to (iii), K, contains an open subarc K, such that, for almost
every (e K,

either T[T (f,0) = @
or else I (f, &) + @ and d(I] (f,{),®w) =b>0.

In view of (i), K, contains a point { satisfying (2). Then by McMillan’s
theorem, the set of points (e K, at which f has an asymptotic value )\,
satisfying

(5) 0 < d(w, ) <b

is of positive measure, and consequently there exists such a point ¢, ¢ K,
which satisfies both (4) and (5) (for { =¢). If T[(f, &) # @, then
N, € II (f, £, which is impossible because of (4) and (5). Hence [] (f, ) =
@, and this again implies that {;, is an ambiguous point of f on the arc
K,, and the proof of the theorem is complete.

(4)

COROLLARY. If f(z) is a mormal meromorphic function in D satisfying
conditions (i), (i), and (iii), then f has a maximal set of radioambiguous
points.

For, the proof of the Theorem has produced on every open subarc of
K an ambiguous point of f such that, on one of the arcs of ambiguity in
question, f actually has an asymptotic value which is not a cluster value
of f on the other arc of ambiguity. But, according to Lehto and Virtanen
[7, p. 53, Theorem 2], if a normal meromorphic function has an asymptotic
value « at a point { € K, then the function has a as a radial asymptotic
value at {, and the Corollary follows.

REMARK 1. It would be interesting to find weaker conditions than
those given in the Theorem for the existence of a maximal set of ambig-
uous points. That there must be weaker conditions is evident from the
fact that, as already mentioned, the Theorem actually provides for the
existence of ambiguous points at which one of the pair of arcs of ambig-
uity is an asymptotic path for the function, whereas there exists [3, p. 14,
Theorem 3] a bounded holomorphic function in D having a maximal set
of chordally ambiguous points. Conditions guaranteeing the existence of
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a maximal set of chordally ambiguous points would also be of interest.

REMARK 2. Let f(2) be the elliptic modular function in D, and take
® = . Then (i) is satisfied, as is well known; and (ii) and (iii) are
satisfied, because [5, p. 30, Theorem 3] I (f,{) = @ for every (e K ((iii)
is satisfied also because (cf. [2, p. 404, Theorem 7]) to every {e€ K there
corresponds an arc at { on which |f(2)| < 2). Thus f(z) provides an
example of a function to which the Corollary applies.

REMARK 3. In connection with the Corollary, we note that Lappan
[6, p.185, Theorem 5] asserts that if f(z) is a normal holomorphic function
in D, then f automatically satisfies our condition (ii) with @ = <. This,
however, is false, because, as McMillan has noted [9, p. 196, Example 2
and p. 188, Corollary 3], there exists a univalent holomorphic function
f() in D for which the set of points { e K satisfying (8) with w = « is
a residual subset of K. (The error occurs in the first sentence of Lappan’s
proof.)
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