Tôhoku Math. Journ. 24 (1972), 463-468.

ON THE EXISTENCE OF SOLUTIONS OF MARTINGALE INTEGRAL EQUATIONS

Norihiko Kazamaki

(Received Feb. 17, 1972)

1. In the present paper we shall consider the following stochastic integral equation:

$$(1) X_t = x + \int_0^t f(X_{u-}) dM_u + \int_0^t g(X_{u-}) dA_u$$
 , $X_0 = x \in R$

where (M_t) is a local martingale and (A_t) is an increasing process. This is a continuation of [1] in which we assumed the square integrability of each M_t and the continuity of the process (A_t) .

2. Let (Ω, F, P) be a complete probability space, given an increasing right continuous family (F_t) of sub σ -fields of F. We assume as usual that F_0 contains all the negligible sets. In addition, suppose the family (F_t) is quasi-left continuous; namely, for every stopping time T and every sequence (T_n) of stopping times such that $T_n \uparrow T$, the σ -field F_T is generated by the field $\bigcup_{n=1}^{\infty} F_{T_n}$. A notation such that "let $M = (M_t, F_t)$ be martingale" means that the martingale property is relative to the family (F_t) . All martingales below are assumed to be right continuous.

By a normal change of time $C = (F_t, c_t)$ we mean a family of stopping times of the family (F_t) , finite valued, such that for a $\cdot e \omega$ the sample function $c \cdot (\omega)$ is strictly increasing,

$$c_{\scriptscriptstyle 0}(\omega) = 0, \, c_{\scriptscriptstyle \infty}(\omega) = \lim_{t o \infty} c_t(\omega) = \infty$$

and continuous.

As usual, we do not distinguish two processes X and Y such that for a.e $\omega X.(\omega) = Y.(\omega)$. This is important for the understanding of uniqueness statements below.

DEFINITION. A right continuous process $M = (M_t, F_t)$ is a local martingale if there exists a sequence of stopping times $T_n \uparrow \infty$ such that for every *n* the process $M_{t \wedge T_n}$ on the set $\{T_n > 0\}$ is a uniformly integrable martingale.

We assume in this paper that $M_0 = 0$.

N. KAZAMAKI

3. We are now in a position to state our result.

THEOREM. Let f and g be real valued bounded functions such that for all $x, y \in R$

(2)
$$Max(|f(x) - f(y)|, |g(x) - g(y)|) \le \alpha |x - y|$$

where α is some constant. Then the equation (1) has a unique solution.

The key to the proof of this theorem is the following lemma which is closed to the Gundy decomposition of martingales. Since it is proved in [2], we omit the proof.

LEMMA. Let M be a local martingale. Then there exist stopping times $R_n \uparrow \infty$ such that the process $M_{t \wedge R_m}$ can be written as

$$(3) M_{t \wedge R_n} = H_t + V_t, V_t = M_{R_n} I_{\{t \ge R_n\}} + B_t^{(1)} - B_t^{(2)}$$

where (H_t) is an L²-bounded martingale stopped at R_n and each $(B_t^{(i)})$, i = 1, 2, is a natural increasing process.

Of course, H and $B^{(i)}$ depend on R_n . Note that if the family (F_t) is quasi-left continuous, then any natural increasing process is continuous; so $B^{(i)}$ is continuous. This fact is important in the following.

PROOF OF THEOREM. Let us keep the notations used in the lemma. As is well known, there exists a unique continuous increasing process \tilde{A}_t such that the process $A_t^* = A_t - \tilde{A}_t$ is a martingale. Then we can rewrite the equation (1) in the form

(4)
$$X_t = x + \int_0^t f(X_{u-}) dM_u + \int_0^t g(X_{u-}) dA_u^* + \int_0^t g(X_{u-}) d\widetilde{A}_u$$

Therefore, there is no loss of generality in assuming that the process A is continuous, as we now do.

First, we shall treat the equation (1) on the stochastic interval [0, R[, where R is one of the stopping times (R_n) in the lemma. On this interval we have

$$(5) \quad X_{t} = x + \int_{0}^{t} f(X_{u-}) dH_{u} + \int_{0}^{t} f(X_{u-}) dB_{u}^{(1)} - \int_{0}^{t} f(X_{u-}) dB_{u}^{(2)} + \int_{0}^{t} g(X_{u-}) dA_{u}.$$

As is well known, there exists a unique continuous increasing process $\langle H \rangle$ such that $H^2 - \langle H \rangle$ is a martingale.

Define now:

$$(6) \qquad \lambda_t = t + \langle H \rangle_t + B_t^{(1)} + B_t^{(2)} + A_t , \qquad \theta_t = \inf \left\{ u: \lambda_u > t \right\}.$$

Clearly (λ_t) is a continuous increasing process with $P(\lambda_0 = 0, \lambda_{\infty} = +\infty) = 1$.

464

Then an easy computation shows that $\theta = (F_t, \theta_t)$ and $\Lambda = (F_{\theta_t}, \lambda_t)$ are normal change of time. It is obvious that λ_R is a stopping time with respect to the Family (F_{θ_t}) and the process $(t - \langle H \rangle_{\theta_t} - B_{\theta_t}^{(1)} - B_{\theta_t}^{(2)} - A_{\theta_t}, F_{\theta_t})$ is increasing. As $\theta_t < R$ on the set $\{t < \lambda_R\}$, we get from (5)

$$egin{aligned} (7) \ X_{ heta_t} &= x + \int_{0}^{t} f(X_{ heta_{u-}}) dM_{ heta_u} + \int_{0}^{t} g(X_{ heta_{u-}}) dA_{ heta_u} \ &= x + \int_{0}^{t} f(X_{ heta_{u-}}) dH_{ heta_u} + \int_{0}^{t} f(X_{ heta_{u-}}) dB_{ heta_u}^{(1)} - \int_{0}^{t} f(X_{ heta_{u-}}) dB_{ heta_u}^{(2)} + \int_{0}^{t} g(X_{ heta_{u-}}) dA_{ heta_u} \end{aligned}$$

on the stochastic interval [0, λ_R] relative to the family (F_{θ_t}) .

Therefore, in order to show the existence of a unique solution of the equation (1) on the interval [0, R], it suffices to consider the equation (7) in stead of (1). Namely, there is no loss of generality in assuming that the process $(t - \langle H \rangle_t - B_t^{(1)} - B_t^{(2)} - A_t, F_t)$ is increasing, as we now do. For simplicity, the proof is spelled out for $0 \leq t \leq 1$ only.

Define in succession:

(8)
$$X_t^0 = x$$

 $X_t^{n+1} = x + \int_0^t f(X_{u-}^n) dM_u + \int_0^t g(X_{u-}^n) dA_u$, $n = 1, 2, \cdots$.

Clearly the processes $(f(X_t^n))$ and $(g(X_t^n))$ are right continuous.

Put now: $c_t^n = f(X_t^n) - f(X_t^{n-1})$, $d_t^n = g(X_t^n) - g(X_t^{n-1})$. For simplicity, we assume that $\alpha \leq 1/4$. Then, by using the Schwarz inequality, we have

$$\begin{split} D_n(t) &= E[(X_t^{n+1} - X_t^n)^2 I_{\{t < R\}}] \\ &= E\Big[\Big(\int_0^t c_u^n dM_u + \int_0^t c_u^n dB_u^{(1)} - \int_0^t c_u^n dB_u^{(2)} + \int d_u^n dA_u\Big)^2 I_{\{t < R\}}\Big] \\ &\leq 4E\Big[\int_0^t (c_u^n)^2 I_{\{u < R\}} d\langle H \rangle_u + B_t^{(1)} \int_0^t (c_u^n)^2 I_{\{u < R\}} dB_u^{(1)} \\ &+ B_t^{(2)} \int_0^t (c_u^n)^2 I_{\{u < R\}} dB_u^{(2)} + A_t \int_0^t (d_u^n)^2 I_{\{u < R\}} dA_u\Big] \\ &\leq (4\alpha)^2 \int_0^t E[(X_u^n - X_u^{n-1})^2 I_{\{u < R\}}] du \\ &\leq \int_0^t D_{n-1}(u) du; D_0(t) \leq (4K)^2 t, \text{ where } K = Max \, (||f||_{\infty}, ||g||_{\infty}) \end{split}$$

As $\sup_{0 \le t \le 1} D_0(t) \le (4K)^2$, we derive the estimate

(9)
$$D_n(t) \leq (4K)^2 \frac{t^{n+1}}{(n+1)!}$$

Since the process $\left(\int_{0}^{t} c_{u-}^{n} dH_{u}, F_{t}\right)$ is an L²-bounded martingale, the extension

of Kolmogorov's inequality to martingales shows that for any $\varepsilon > 0$

$$P\left(\sup_{0\leq t\leq 1}\left|\int_{0}^{t} c_{u-}^{n} dH_{u}\right| \geq \varepsilon\right) \leq \varepsilon^{-2} E\left[\int_{0}^{t} (c_{u}^{n})^{2} d\langle H\rangle_{u}\right]$$

$$(10) \qquad \leq \varepsilon^{-2} E\left[\int_{0}^{t} (c_{u}^{n})^{2} I_{\{u< R\}} d\langle H\rangle_{u}\right] \qquad (\because H_{t} = H_{t\wedge R})$$

$$\leq \alpha^{2} \varepsilon^{-2} \int_{0}^{1} D_{n-1}(u) du .$$

Next, we get by using the Schwarz inequality

$$P\left(\sup_{0\leq t\leq 1}\left|\int_{0}^{t} c_{u-}^{n} dB_{u}^{(i)}\right| \geq \varepsilon\right) = P\left(\sup_{0\leq t\leq 1} \left(\int_{0}^{t} c_{u-}^{n} dB_{u}^{(i)}\right)^{2} \geq \varepsilon^{2}\right)$$

$$\leq P\left(\sup_{0\leq t\leq 1} B_{t}^{(i)} \int_{0}^{t} (c_{u-}^{n})^{2} dB_{u}^{(i)} \geq \varepsilon^{2}\right)$$

$$\leq P\left(\int_{0}^{1} (c_{u-}^{n})^{2} I_{\{u< R\}} du \geq \varepsilon^{2}\right) \quad (\because B_{t}^{(i)} = B_{t\wedge R}^{(i)})$$

$$\leq \alpha^{2} \varepsilon^{-2} \int_{0}^{1} D_{n-1}(u) du .$$

Similarly we obtain

(12)
$$P\left(\sup_{0\leq t\leq 1}\left|\int_{0}^{t} d_{u-t}^{n} dA_{u\wedge R}\right| \geq \varepsilon\right) \leq \alpha^{2} \varepsilon^{-2} \int_{0}^{1} D_{n-1}(u) du .$$

Thus $P(\sup_{0 \le t \le 1} | X_t^{n+1} - X_t^n | I_{\{t < R\}} \ge 4\varepsilon) \le \text{Const.} \times \varepsilon^{-2}/(n+1)!$. Pick $\varepsilon^{-2} = (n-1)!$. Then $\varepsilon^{-2}/(n+1)!$ is the general term of a convergent sum, and so the Borel-Cantelli lemma shows that the processes $(X_t^n I_{\{t < R\}})$ converge uniformly almost surely for $0 \le t \le 1$ to some right continuous process $X^R = (X_t^R, F_t)$. Furthermore by using the extension of Kolmogorov's inequality to martingales we have

$$egin{aligned} &P\Bigl(\sup_{0\leq t\leq 1}\left|\int_{0}^{t}f(X_{u-}^{n})dH_{u}\,-\,\int_{0}^{t}f(X_{u-}^{R})dH_{u}\,
ight|&\geq arepsilon
ight)\ &\leq arepsilon^{-2}E\Bigl[\int_{0}^{1}\!\{f(X_{u}^{n})\,-\,f(X_{u}^{R})\}^{2}I_{\{u< R\}}d\langle H
angle_{u}\Bigr]\,. \end{aligned}$$

According to the bounded convergence theorem, the right hand side of this inequality converges to 0 as $n \to \infty$. Thus the processes $\left(\int_{0}^{t} f(X_{u-}^{n}) dH_{u}\right)$ converge uniformly almost surely to the process $\left(\int_{0}^{t} f(X_{u-}^{n}) dH_{u}\right)$ for some subsequence (n_{k}) . It is not difficult to see that $\left(\int_{0}^{t} f(X_{u-}^{n}) dB_{u}^{(i)}\right)$ and $\left(\int_{0}^{t} g(X_{u-}^{n}) dA_{u \wedge R}\right)$ converge uniformly almost surely to $\left(\int_{0}^{t} f(X_{u-}^{n}) dB_{u}^{(i)}\right)$ and $\left(\int_{0}^{t} g(X_{u-}^{n}) dA_{u \wedge R}\right)$ respectively. Consequently the process X^{R} satisfies the following equality:

466

SOLUTIONS OF MARTINGALE INTEGRAL EQUATIONS

(13)
$$X_t^R = x + \int_0^t f(X_{u-}^R) dH_u + \int_0^t f(X_{u-}^R) dB_u^{(1)} - \int_0^t f(X_{u-}^R) dB_u^{(i)} + \int_0^t g(X_{u-}^R) dA_u$$

on [0, R].

That is, X^{R} satisfies the equation (1) on the interval [0, R[.

Now let X and Y be two solutions of the equation (1) on [0, R[. Then we can obtain as in the proof of (9)

(14)
$$D(t) \equiv E[(X_t - Y_t)I_{(t < R)}] \leq \int_0^t D(u) du , \qquad \sup_{0 \leq t \leq 1} D(t) \leq 32K^2$$

from which D(t) = 0. This implies that X = Y on [0, R[.

Next, for each *n*, let $X^{R_n} = (X_t^{R_n}, F_t)$ be a solution of the equation (1) on the stochastic interval $[0, R_n[$. $X^{R_{n+1}}$ being also a solution of (1) on $[0, R_n[$, we get $X^{R_n} = X^{R_{n+1}}$ on $[0, R_n[$. This relation therefore defines a right continuous process X such that

(15)
$$X = X^{R_n}$$
 on [0, R_n], $n = 1, 2, \dots$

Furthermore, for each n,

$$E\left[\left\{\int_{0}^{t} (fX_{u-}^{R_{n}}) - f(X_{u-}))dH_{u}\right\}^{2}\right] = E\left[\int_{0}^{t} \{f(X_{u-}^{R_{n}}) - f(X_{u-})\}^{2}I_{\{u < R_{n}\}}d\langle H \rangle_{u}\right] = 0,$$

from which $\int_0^{\cdot} f(X_{u-}) dH_u = \int_0^{\cdot} f(X_{u-}^R) dH_u$ on $[0, R_n]$.

Obviously we have on the interval $[0, R_n]$

$$\int_{0}^{t} f(X_{u-}) dB_{u}^{(i)} = \int_{0}^{t} f(X_{u-}^{R_{n}}) dB_{u}^{(i)} \text{ and } \int_{0}^{t} g(X_{u-}) dA_{u} = \int_{0}^{t} g(X_{u-}^{R_{n}}) dA_{u}$$

Thus, the process X satisfies the equation (1) on each [0, R_n [. As $R_n \uparrow \infty$, X is a solution of (1).

Finally, we are going to show its uniqueness. If X and Y are two solutions of (1), then these processes satisfy the equation (1) on each interval $[0, R_n[$. Therefore X = Y on $[0, R_n[$ for each n. Hence X = Y. This completes the proof.

4. In the following, instead of the quasi-left continuity of the family (F_t) , we assume that the local martingale M and the increasing process A are continuous.

PROPOSITION. Let ρ and κ be positive increasing function defined on $(0, \infty)$. Suppose that

(16)
$$\int_{0+} \rho^{-2}(u) du = + \infty, \quad \int_{0+} \kappa^{-1}(u) du = + \infty$$
$$|f(x) - f(y)| \le \rho(|x - y|), \quad |g(x) - g(y)| \le \kappa(|x - y|), \quad \forall x, y \in R$$

N. KAZAMAKI

and κ is concave.

Then the uniqueness holds for the equation (1).

By using a normal change of time, this proposition can be proved in the same way as Theorem 1 of [3].

References

- [1] N. KAZAMAKI, Note on a stochastic integral equation, Univesité de Strasbourg, Lecture Notes in Mathematics, Springer, Heidelberg. (to appear)
- [2] C. DOLÉANS-DADE AND P. A. MEYER, Intégrales stochastiques par rapport aux martingales locales, Université de Strasbourg, Lecture Notes in Mathematics, vol. 124, Springer, Heidelberg (1970), 77-107.
- [3] T. YAMADA AND S. WATANABE, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ. II-1 (1971), 155-167.

Mathematical Institute Tohoku university Sendai, Japan

468