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1. Introduction. Let Gw be the Wiener space consisting of continuous
real valued functions x{t) on [0,1] with x(0) = 0. It is the purpose of
this paper to investigate the transformation of the generalized Wiener
measure on Cw corresponding to the generalized Brownian motion process
(i.e. Brownian motion process with nonstationary increments) when the
elements of Cw are transformed by a Volterra integral equation of the
second kind.

For 0 = ίo < tt < < tn ^ 1, let S ί r.. ί n be the σ-field of subsets of
Cw of the type

(1.1) E = {xeCw; [x(td, •••, x(tn)]eB},

where 33n is the σ-field of Borel sets in the ^-dimensional Euclidean space
Rn. Let b(t) be a strictly increasing continuous function on [0, 1]. It is
well known that if we define a set function m on δ ί r . . ί n by

(1.2) m(E) = - ^ -

{(arJ gίδίW-δίί^]1} J

I 2 ί-i b(ti) — 6(ίί_i)

with ξQ = 0, then m is well defined on the σ-field g generated by the field
g0 which is the union of all the σ-fields %tl ~tn

 a ϊ*d is in fact a probability
measure on (Cw, g). (See for instance K. Itδ [4] and P. Levy [6].) Let
g* be the Caratheodory extension of g0 relative to m. Then (Cm %*, m)
is a complete probability measure space. We shall refer to g*-measura-
bility as Wiener measurability, and to m as the generalized Wiener
measure corresponding to 6.

The real valued function X(t, x) = x(t), xeCw,te [0,1] is then a stochastic
process with independent increments on the probability space (Cv, g*, m).
In fact X(0, x) = 0 for every x e Cw, and the increment X{t", x) — X{t\ x)
is distributed according to JV(O, 6(ί") - b{t')), i.e. the probability distribu-
tion Φ of the above increment is a normal distribution with density
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function

( L 3 ) "<*=

Furthermore the space of sample functions X( ,x), xeCw, coincides with
the sample space Cw.

Throughout this paper the topology of Cw will be the metric topology-
defined by the uniform norm |||α?||| = sup[0,i] \x{t)\, #£ Cv. In this topology
Cw is a separable Banach space, an open subset of Cw is always g-measur-
able and so is every continuous real valued functional F[x], xeCw.

Our main results are the following theorems:

THEOREM 1. Consider the probability space (Cw, %*, m) where b(t) has
a positive and continuous derivative b'(t) on [0, 1]. Let F[y], yeCw, be a
bounded and continuous real valued functional on Cw which vanishes outside
of a bounded subset of Cw. Let K{t) be a continuous real valued function
on [0, 1] and define a transformation T of Cw into Cw by

(1.4) (Tx)(t) = x(t) + [b'(s)K(s)x(s)ds , for xeCV) .
Jo

Then

(1.5) ( F[y]m(dy) = \ F[Tx]J[x]m(dx)
J Cw J Cw

with the "Jacobian" J[x] given by

(1.6) J[x] - exp { - [κ(t)X(t, x)dX(t, x)\ exp i-^br{t)K\t)x\t)dt\

where the integral in the first exponential factor is the stochastic integral
of the process K(t)X(t, x) with respect to the process X(t, x) = x(t).

THEOREM 2. For the linear operator T defined by (1.4) which maps
Cw one-to-one onto Cw and is continuous with a continuous inverse 27"1

we have T~ιΓ, TΓe%* for every Γ e g * and

(1.7) m(Γ) = \ J[x]m(dx) .
Jr-ir

Moreover if F[y], y e Cw, is a Wiener measurable real valued functional
then

(1.8) ( F[y]m(dy) = [ F[Tx]J[x]m(dx)

in the sense that the existence of one side implies that of the other and
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the equality of the two. Similarly

(1.7') m{TΓ)= \j[x]m(dx)

(1.8') ( F[y)m(dy) = \F[Tx]J[x]m(dx) .

We remark that according to the Volterra integral equation theory
(see for instance pp. 145-149, K. Yosida [7])

and

The transformation of the standard Wiener measure (i.e. when b(t) = t
on [0, 1]) under transformations of the elements of Cw by Fredholm integral
equations of the second kind has been investigated by R. H. Cameron and
W. T. Martin [1]. The results, specialized to transformations by Volterra
integral equations of the second kind with kernels depending on one variable
only, were applied to evaluate various Wiener integrals by means of Sturm-
Liouville differential equations in [2]. Aside from the fact that the measure
is the generalized Wiener measure in our case the proofs of our results
are considerably different from those of the theorems in [1]. The proofs
of Theorem 1 and Theorem 2 are given in §3. In §2 we prove some lemmas
for Theorem 1.

2. Lemmas for Theorem 1. Suppose that δ(ί) has a positive and
continuous derivative b'(t) on [0, 1]. For every positive integer n let ί< =
i/n, i = 0, 1, 2, , n and let r< e {t^u t%) be such that δ(ί<) - 6(^-0 =
b'(Ti)/n for i = 1, 2, •••, n. With τi fixed, let βi = δ'fo). Similarly for
a real valued continuous function K(t) on [0, 1] let Kt = K(U).

Consider the trasformation Tn of Cw defined by

(2.1) (Tnx)(t) = x(t) + - Σ f t M U + ±/3[nt]+1KMx(tM)(nt - [nt])
n d=ί n

with the convention that βn+1 = βn. For t = ί< we have [nt] = i = nt so
that

(2.2) \{Tnx){t%) - χ(U) = - Σ βj+1KMti) , i = 1, 2, ,n

((Tnx)(t0) - x(t0) - 0 .

Thus (Tnx)(t) — x{t) is a polygonal function with n equal steps, [t^l9 ί j , i =
1, 2, •••, n, whose values at U are given by (2.2). The function (Tnx)(t)
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is a polygonal function with n equal steps if and only if x(t) is.
For later reference we remark at this point that since x(t), t e [0,1],

x e Cw is a stochastic process on the probabity space {Cw, f$*, m) with m
given by (1, 2), we have for every real valued ^-measurable function
/[ft, •••,£.] on Rn

(2 3)

x exp {-|- Σ

in the sense that the existence of one side implies that of the other and
the equality of the two.

LEMMA 1. Let H{ηu , ηn\ be a real valued, bounded and continuous
function on Rn and let G[y], y e Cw, be defined by

(2.4)

then

(2.5) ί G[y]m(dy) = ί G[Tnx] exp { - Σ K^xiU-dMQ -
jcw jcw L i=i

x

PROOF. According to (2.3),

(2.6) ( G[y]m{dy) = j n\ \Ύ (n)

x e x p - ^ - Σ V A ~ A-'

where the integrals exist from the boundedness of H. Consider the

transformation Sn of ξ = [ζί9 , ξn] e Rn into η = [ηu *-yηn]eRn defined

by

(2.7) y = Snξ; Vi - ft + — Σ βd+iK&f i = 1,2, -*,n .

The Jacobian of this transformation is equal to 1. Applying (2.7) to the
right side of (2.6) we obtain
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(2.8) ί G[y]m(dy)
JCW

I ^n \l/2foo Λoo r -i n-l

2 L _ ) (n)\ H\ζ1,' ',L + -Σ1

<2*) Π A ) J - J~" L nj=ι

- ^ Σ βiKU8-ι - £ Σ ( f t " " & " l

On the other hand in the right side of (2.5) we have by (2.4), (2.2)

If we apply (2.3) to the right side of (2.5) the result is precisely the right
side of (2.8). This proves (2.5).

LEMMA 2. Let Xbe a random variable on a probability space (Ω, S3, P)
which is distributed normally with mean 0 and variance v. Let Y be a
random variable on (Ω, 33, P) which is measurable with respect to a σ-field
21 c S3. If the σ-field σ(X) c 33 generated by X and the σ-field SI are
independent then

(2.9) #{exp ίxY - —v Y2\ I a} = 1 .

The proof will appear in [3].

LEMMA 3. Let X(t, x) be the stochastic process on the probability space
(Cw, ?$*, m) and the domain of definition D = [0, 1] defined by X(t, x) = x(t)
for xeCw and te D. Let g(t) be a real valued function on D and let
fn{t, x) be an a stochastic process on {Cwy %*, m) and D defined by

(2.10) fn(t, x) = flr(l2*L)js:(J25*l, x) , for xeCw and te D .
\ n J \ n /

Then the stochastic integral /(/»)(*, x) of the process fn(t, x) with respect to
the Brownian motion process with nonstationary increments X(t, x) stisfies

(2.11)

for i = 1, 2, •••, n .

Proof. Since fn is a stochastic step function
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(A *) = ±fJLz±){xU, x) - x(i^±, χ)\
\n I 3=1 V n /I \n 1 \ n /J

Let

2 n \ n

Observe that

£
n \ n

= 2 p i i ~ 1 , x)\b(tj) - b{t^)\ = \ fl(t, x)db(t) .

Let

Z<(x) - exp{g

In terms of Z4, (2.11) becomes E{Z{) = 1 for i = 1, 2, . , n.

Let a 4 = σ{X(3/Λ, •), i = 0 , 1, 2, , i} for i = 0, 1, 2, . . , n. Then /,(ί, .)
is SlΓmeasurable for te [0, (i + l)/n] so that in particular fn((i — ΐ)/nf •)
is Sti-i-measurable for i = 1, 2, •••, ̂ . The random variable X(i/n, •) —
X((ί — ΐ)/n, •) is normally distributed with mean 0 and variance 6(ί<) —
6(i i e l) = /Si/n. Also the σ-field σ{X(i/n, •)} and the σ-field 2tί_1 are inde-
pendent. Thus by Lemma 2

(2.12) #[exp {ΓJISti-J = 1 for i = 1, 2, , n .

We proceed to show that E{Z%) = 1 for i = 1, 2, , n by induction.
First of all, /Λ(0, a?) = 0, Yi(aj) - 0, Z,(x) = 1 ΐoτ xeCw so that ^(ZJ = 1.
Now suppose E(Zi) = 1. Then

Since Yi, , Yi are all SIΓmeasurable so is Z{ and consequently

Thus ^(Z<+1) = E(Zt) = 1. This completes the proof for ^(Z«) = 1 by
induction.

Let Ln be the linear transformation of Cw into Cw defined by

(2.13) (Lnx)(t) = x(t^) + x{ti) ~ x{*^ (t - t<-d

for t e [ίi_!, U], x e Cw, and i = 1, 2, , ̂  .
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Clearly

(2.14) \\\Lnx\\\ = max
i=l, ,n

x[-)\ £\\\x\\\ and
n

(2.15) lim|||LΛa? - x\\\ = 0 .

Also for Γ and Γn defined by (1 4) and (2.1) respectively, we have

(2.16) lim \\\LnTnx - Tx\\\ = 0 .
w->0

This follows from

\\\LnTnx - Tx\\\ £ \\\LnTnx - LnTx\\\ + \\\LnTx - Tx\\\ .

where

\\\LnTnx-LnTx\\\^\\\Tnx- Γs|||

by (2.14), l i m ^ \\\Tnx - Tx\\\ = 0 from the uniform continuity of V{t)K(t)
on [0, 1], and l i m ^ \\\LnTx - Tx\\\ - 0 by (2.15).

LEMMA 4. Let X(t, x), g(t) and fn(t, x) be as defined in Lemma 3.
Then the random variables Zn(x), on (Cw, §*, m) defined by

(2.17) Zn(x) = exp |j(Λ)(l, x) - j/ i( ί , »)*(«)} n = 1, 2 .

are uniformly integrable on Cw. If g(t) is bounded on D then for every
B ^ 0 the random variables Yn(x), n = 1, 2, , defined by

(2.18) r.(&) = χ [ 0,β J( | | |L^| | |) exp {I(/.)(l, a?)}

are uniformly integrable on Cw.

PROOF. For a ^ 0 let

To show the uniform integrability of Zn, n = 1, 2, , we show that for
every ε > 0 there exists A ^ 0 such that

[ ZJx)m(dx) < e , for w = 1, 2 .

For each w define a function Jw(α, a?) on [0, oo) x Cw by

In(a,x) = \1 w h e n « < ^ ( « )
(0 when a ^ Zn(a?) .

Then Zn(x) = \ In(a, x)da for every xeCw. Thus for an arbitrary A ^ 0,
J[0,oo)

by Tonelli's Theorem
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1 Zn(x)m(dx) = \ \\ In(a, x)m{dx)\da
JΓA,n J[0,oo) ljrA,n >

= [ m({x; Zn(x) > A}f] {x; Zn(x) > a))da
J[0,oo)

= ( m({x; Zn{x) > A})da + \ m({x; Zn(x) > a})da

= Am(ΓAJ + \ m{Γa,n)da .

Now for a > 0

= -1-j^ exp{2[j(Λ)(l, «) - j>.(ί, »)ίδ(ί)]}m(cte) = -1-

since the last integral is equal to 1 according to Lemma 3 applied to 2fn.
Then for A > 2/e

\ Zu(x)m(dx)£A-^+\ Λτda = 2-<ε for w = l,2,
J^,» A2 Ju,»)A2' A

proving the uniform integrability of Zn9 n = 1, 2, .

Finally consider the case where g(t) is bounded on D. Now

max
teD

Thus xeCw, \\\Lκx\\\ g β a n d ΰ ^ O imply |/.(ί,*)| ^ |||flr|||5 and

Then with

we have

YΛx) = Xιo.BMLnx\\\)Zn(x)exp{\lπ(t, x)db(t)} £ ΊZ%{X) .

Therefore when a ^ ΊA

\ Yn(x)m(dx) ̂  71 Zn(x)m(dx) < ΎS for n = 1, 2,
J{»;FΛ(β)>α} J{a;;Zίl(a;)>α/r}

proving the uniform integrability of Y"Λ, n — 1, 2, .

LEMMA 5. If xeCw and for some M Ξ> 0
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\\\Lnx\\\>Mexv{\\\b'K\\\}

then

\\\LnTnx\\\>M.

PROOF. AS in the Volterra integral equation theory one can show
that Tn defined by (2.1) transforms Cw one-to-one onto Cw, Tn and T~γ are
bounded linear operators and

Now for an arbitrary xeCw which satisfies |||α?||| > ilf exp{|||δ'JSΠI|} for
some M> 0 we have | | |g | | | > M\\T~ι\\. Then |||Γwa?||| > M for otherwise
we would have ||| Tnx\\\ ̂  M and consequently

M i l T " 1 II < " * I l l r i l l — I I I T ~ ι T r i l l < II T ~ ι I I I I I I T r I I I < II T ~ ι II M
iyi\\ J-n 1 1 ^ l l l ^ l l l — I I I - * * -* w " 111 = ^ 11 • * » I I I 111 -̂  n v 111 = 11 -̂  n \\1V1 i

a contradiction. Since the above xe Cw is arbitrary, in particular || |Lna?|| | >
ilίexp{||iδ'ίΓ|||} implies | | | T W L ^ | | | > M. But by (2.1) and (2.13), TnLnx =
LnTnx. Thus \\\LnTnx\\\>M.

3. Proof of Theorem 1. From the natural one-to-one correspondence
between the polygonal functions on [0,1] which have n equal steps and
vanish at t = 0 and the elements of Rn there exists for the real valued
functional F[y], yeCw, a real valued function H[ηl9 * , ^ J on Rn such
that F[Lny] = H[y(l/n), * ,y(n/n)] = G[y] for yeCw. The boundedness
and continuity of F on Cw imply the same for H on Rn with respect to
the uniform topology of Rn. Now for Tn defined by (2.1) we have

G[Tnx] = H\(Tnx)(±-\ , (Tnx)(2-]\ = F[LnTnx], for xeCw

so that according to Lemma 1

(3.1) ( F[Lny]m(dy) - ( F[LnTnx]Jn[x]m(dx)

where

(3.2) Ju[x] = exp { - Σ Ki-MU-ύMU) - x(tt-d]\Σ
x

We obtain (1.5) by letting n-+ oo in (3.1). This is done as follows.
On the left side of (3.1) since F is bounded on Cw, by applying the

Bounded Convergence Theorem and then by (2.15) and the continuity of
F we obtain
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(3.3) Km ( F[L«y]m(dy) = ( F[y]m{dy) .

On the right side of (3.1) let M^ 0 be such that F[x] = 0 for |||a;||| ^ M.
By Lemma 5, |||L.aj||| > B with B = Jkfexp{|||6'ίΓ|||} implies |||Ir.Γ.aj||| >
M. Then

(3.4) f F[LnTnx]Jn[%]m(dx) = \ χιtM(\\\L.x\\\)F[L,T.xU%[x]m(dx) .

By Lemma 4 the functionals on Cw

±K^Mti^)Mti) - x(U-d]}, n = 1, 2, . . .

are uniformly integrable on Cw. Then since F is bounded on Cw and

exp j - A- Σ ^ ί Γ ί - ^ ί ί ^ } ^ 1 for a? e Cw, n = 1, 2, ,
I 2 π ί=i J

the functionals on Cw

(3.5) χί0,B1(\\\Lnx\\\)F[LnTnx]Jn[x] , w = 1, 2, . . .

are uniformly integrable on Cw.

According to (2,16) and the continuity of F
limF[LnTnx] = F[Tx] xeCw .

Also

l imexpj-^-Σ^ϋ:^ 2^-!)} = exp j-—[b'(t)K2(t)x2(t)dt\ xeCw .
n-+oo L 2n ί=i ) I 2 Jo J

Let fn(t, x) = K([nt]/n)X([nt]/n), n = 1, 2, -, and /(ί, a?) = K(t)X(t, x), for
x e C w , ί e [0,1]. For each x e Cw, lim^^ fn(t, x) = /(ί, x) uniformly on [0,1]
so that

lim \\fn(t, x) - f(t, x)fdb{t) = 0
n-+oo J o

and this implies (see for instance pp. 185-186, Itδ [5]) that /(/n)(l, x)
converges to I(f)(l,x) in the m measure. Thus the sequence of functionals
on Cw given by (3.5) converges in m measure to

Since the functionals given by (3.5) are integrable and uniformly integrable
on Cw the above convergence in measure justifies passing to the limit
under the integral in (3.4) and have
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(3.6) limί F[L%T,z\J%[x]iφ)
W-»ooJCw

x
W

expj—ίΫb\t)K\t)x\t)dt\m{dx) .

Now | | | a j | | |>J5 implies | | |Lnaj| | | > JB for sufficiently large n. For such
n \\\Tnx\\\ ^ max i = 1 n \(Tnx)(i/n)\ = | | |LnΓnα?|| | > M by Lemma 5. Thus
for HI a? HI > B we have ||| Γa?||| ^ M and consequently F[Tx] = 0. Therefore
in the integrand on the right side of (3.6) we may drop the factor
X[o,B](ll|β|||) without disturbing the equality of the two sides. Now (3.1),
(3.3) and (3.6) give (1.5).

The proof of Theorem 2 is omitted since it is the same as the proof
of Theorem 1 given in [1].
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