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1. The purpose of this paper is to improve on the wm-dimensional
extension of the big Picard’s theorem given by H. Wu in his paper [7].
We shall prove the following Theorems A and B.

THEOREM A. Let M be a complex manifold, S a regular thin analytic
subset of M and f a holomorphic map of M — S into the N-dimensional
complex projective space Py(C). If f is of rank r somewhere and if f(M —S)
omits 2N — r + 2 hyperplanes in general position, then f can be extended
to a holomorphic map of M into Py(C), where the rank of f at a point
xe M — S means the rank of the Jacobian matriz of f at x.

This is a generalization of Theorem 5.1 in [3]. Indeed, putting r =1
in Theorem A, we see that every non-constant holomorphic map of M — S
into Py(C) excluding 2N + 1 hyperplanes in general position can be holo-
morphically extended to M.

THEOREM B. Let f be a holomorphic map of the m-dimensional com-
plex euclidean space C" imto Py(C) ewcluding h hyperplanes in general
position (h = N + 1). Then f(C") is included in a linear subvariety of
dimension [N/(h — N)] in Py(C), where [N/(h — N)] denotes the largest
integer which does not exceed N/(h — N).

Consider the special case h = 2N + 1. If f(C*) omits 2N + 1 hyper-
planes in general position; then f reduces to a constant (c.f., [2], Theorem
IV). This is an improvement of the result of H. Wu in [7]. Moreover,
Theorem B implies that the image of any non-degenerate holomorphic map f
of C¥ into Py(C) cannot omit N + 2 hyperplanes in general position, because
f(C®) includes a non-empty open subset of P,(C) which is of dimension
N(> N/((N + 2) — N) = N/2). This gives an affirmative answer to the
conjecture of H. Wu in [7].

2. The proofs of Theorems A and B are based on the following

THEOREM 1. Let fy(2), fi(R), *++, fxvs.(2) be N + 2 mowhere zero holo-
morphic functions on {r, < |z| < «} in C', where r, is a non-negative real
number. If V5 fi(2) =0, them there is a partition of indices I =
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0,1, -, N+ 1}=LU:-- UL, (I,NI,= @, + m) with the property that
Jor each L(L =1 = k) (i) Dics, fi(2) =0 and (ii) any fif7'(,j€l,) can be
meromorphically extended to {r, < |z2| £ }.

It was firstly stated by H. Cartan in [1] that Theorem 1 is shown by
the same argument as in the proof of the classical theorem of E. Borel
(c.f., for example, Proposition 5.15 in [8]) given by R. Nevanlinna in [5].
But, the H. Cartan’s statements seem to be incomplete, so we describe
here the outline of the proof. E. Borel’s theorem asserts that for any
nowhere zero holomorphic functions fi(z) 0 <¢< N+ 1) on C' with

X' fi(2) = 0 there is a (non-trivial) linear relation over C among any
N + 1 of them, where N = 1. To prove this, R. Nevanlinna showed that,
if there is no linear relation among the functions f,f7? ++-, fx+:fs" then

(1) h’_mT("',fifo—l) < oo
—=  logr

for any ¢+ 1 <¢< N+ 1), where T(r, f.f:") denotes the Nevanlinna’s
characteristic function of f;f;'. According to this fact, he concluded that
any f.fo' A1 <4< N+ 1) reduces to a constant, which contradicts the
assumption. The arguments used there can be also applied to nowhere
zero holomorphic functions f;(2) 0 <7:< N+ 1) on {r, < |2| < o} with

Y1 fi() = 0 and we can conclude the inequality (I) under the assump-
tion that f,fi* 1 <7 < N + 1) are linearly independent. Thus, it is not
difficult to show that each f,f;* has a meromorphic extension to {r, <
[2] < oo}

To complete the proof of Theorem 1, it suffices to take the partition
I=1I,U +-- UI, such that for each I, (i) f.f7'(¢, 7€ I,) can be meromor-
phically extended to a neighborhood of <« and (ii) f.f;7'(¢te I, j€ I,, I + m)
has an essential singularity at cc. We may assume that I, = {0, 1, ««-, 4,},
L={t,+ 1,4+ 2, eee, 0}, oo, [, ={tpy + 1, %, + 2, »++, %}, Where ¢, =
N + 1. Then we have >\, 9,(2)f;,(2) = 0 with the functions g, = 3ic;,fif7
Since each g, has no essential singularity at o, each @,(2) = 9,(2)f;,(2) is
an identically vanishing or nowhere zero holomorphic functions on {r; <
|z| < o} for a suitable 7, (r, < 7, < o). Assume that @, = 0 for some .
Changing indices, we may assume that @, %0 if 1<I<F%k and 9,=0
if ¥ +1<1=<k. Obviously, each 9,0;' 1 <1< m =< k') has an essential
singularity at «. By the above argument, there is a linear relation
among any ¥ — 1 of &, 1 =1 < k'). Applying this repeatedly to obtained
linear relations, we obtain an absurd conclusion @, = 0. Thus we have
Theorem 1.
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3. Now, we generalize Theorem 1 to the case of holomorphic funec-
tions of several variables.

THEOREM 2. Let fy(2), fi(), *++, fy1:(?) be mowhere zero holomorphic
Sfunctions on the domain D, obtained from the unit polydisc D = {|z;| < 1,
1 <1i < n} by deleting the set S=1{2=0ND in C* and suppose that

Yt fi(z) =0 in D,. Then, there is a partition of indices I =1, J -+ U
I (NI, = @,l+m) with the property that for each I (i) X, fi(z) =0
and (i) fif;;'(ie I,) has a holomorphic extension to D with a suitable i, ¢ I,.

ProoF. In virtue of Theorem 1, we may assume n = 2. The set I
of indices is divided into subclasses I,(1 <! < k) such that in D, X};.,, fi(z) =0
and .., fi(z) = 0 for any proper subset I’ of I,, Without loss of gen-
erality, we may assume that &t =1, i.e., D>, fi() =0 for any I'< I.
For each I' < I, we consider the set

Vi ={#eD; i fiz,7) =0 as a function of 2},

where D' = {2 = (2, *+++, 2,); 12| < 1,2 =<7 =< n}. By the assumption, each
V; and so the union V of all V, (I’ < I) are thin analytic subsets of D’.
Take an arbitrary z’e D’ — V. As a function of z, >, fi(z, ?') = 0 for
any I'< I. By Theorem 1, each holomorphic function

gii(zl, Z,) = fi(zly z')f.i(zly zl)—l (7’) -7 € I)

can be meromorphically extended to the unit disc {|z,| < 1} as a function
of z,. As is easily seen by the theorem of Rouché, the order m,; of zero
of each meromorphic function g;;(z, 2) at 2z, = 0 is a constant which is
independent of each 2’€ D’ — V. This means that hi;(z, 2') = z7™ig, (2, ?')
is a nowhere zero holomorphic function of z, on {|z,| < 1} for each fixed
2eD — V. It is easily shown by the Cauchy integral formula that #&,;
is holomorphic on (D — S) N{|z,| < 1,72 €D’ — V}. Moreover, since codim
({z, = 0} x V) = 2 in D, each h;; has a nowhere zero holomorphic extension
to D by Riemann’s theorem on removable singularities. If m,;, = min (m,,
My, ++, My,), €ach fifi (i€ I) is obviously holomorphically extended to D.

COROLLARY 3. Let fy(2), fi(R), «**, fx+.(2) be nowhere zero holomorphic
Sfunctions on C" such that >X5 fi(z) = 0. Then there is a partition of
indices I=IU---UL(INIL,= @,1l+m) such that for each 1 (i)
Sierfi(2) = 0 and (i) any fif7'(t, 5 I) reduces to a constant.

ProoF. We may assume that >};.;fi(?) # 0 for any I’ I. Applying
Theorem 2 to the holomorphic functions g;(z,, 2') = fi(1/z, 2’) on {0 < |2,| <
o} X C*, gig;;' is bounded holomorphic on C' for a suitable ¢, € I and for
any fixed 2’ in C*'. Therefore, each f.f;' is a constant function of z.
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The similar assertions are valid for the other coordinates. Thus we have
Corollary 3.

4. Consider the unit polydisc D and the subset S = {z, = 0} N D of
D. For non-zero holomorphic functions f,(2), fi(z), «++, fx(2) on D — S, we
have the uniquely determined partition of indices J ={0,1, -+, N} =
J, U+« UJ, with the following property:

(*) Each f.f,* has a meromorphic extension to D if 4,jeJ, 1 = q = p)
and has essential singularities on S if 1e€J,j5¢€J,.(q # ¢').

LEMMA 4. In the above situation, if f;(z) 0 0=i=<N) and if
¥ [:() # 0 everywhere on D — S, then Zi”q fi=0foranyq L=q=p)
except exactly ome index .

Proor. Put fy,, = —(fo + f.+ +++ + f»), which vanishes nowhere
on D — S. Applying Theorem 2 to the identity >.’%'f:.(2) = 0, we have
a partition of indices {0, 1, -+, N+ 1}=1I, U + -+ U I, such that >,;.; f:(2) =0
and f;f7' is meromorphic on D for each ¢, je (1 <1l <k). It may be
assumed that N + 1€ I,. Then, by the property of J,, we have I,C/J,
whenever I; NJ, # @and 1 <1 <k — 1. Moreover, we can take the index
g with I, — {N + 1} J,. Asis easily seen, ZieJqfi(z) = 0 for any q # q,
and Slie, £i(2) % 0.

Let fy(2), fi(2), +++, fx(2) be non-zero holomorphic functions on C*. In
this case, we consider the partition of indices J =J, U --+ UJ, with the
following property:

(**) Each f;f7' is a constant function if 4, j€J, and does not reduce
to a constant if 1€ J, jeJ, (9 # q).

By the similar argument to that of the proof of Lemma 4, and by
using Corollary 3 instead of Theorem 2, we have the following lemma.

LEMMA 5. In the above situation, if fi(z) #0 (0=7=<N) and
¥ fi() = 0 everywhere on C*, then ;. 74 fi(2) = 0 for any q except exactly
one index q,.

5. Now, we start to prove Theorem A. The argument we use is
essentially the same as in the proof of Theorem IV and Theorem V in
[2]. Since our problem is of local character, it may be assumed that
M=D={z|<lL1l1<i<n}and S={2 =0}ND in C*. We can choose
a system of homogeneous coordinates w,: w,: +++: wy in Py(C) such that
the omitted hyperplanes H, H,, «++, H,_, (h = 2N — r + 2) can be written
as follows:
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H:w;, =0, 0t N),
Hy, 0w, + aw, + +++ + adwy =0, 1sst=h—-—N-1)

where any minor of degree < min(t, N + 1) of the matrix (&) 1 <s=<¢,
0 <7< N) does not vanish. Then, the well-defined holomorphic functions
fi = (w;o f)(wyo f)™ (0 =<4 = N) vanish nowhere and

Afo+atf,+ oo +alfy#0 LZs<d

everywhere on D — S. Consider the partition of indices J ={0,1, «-+, N} =
J, U+ UJ, with the property (*) in §4 for the holomorphic functions
fi(0 £ ¢ < N). It suffices to show that »p = 1. Indeed, in this case, each
fifi'(ieJ) is holomorphic on D for a suitable ¢,€.J. This shows that f
has a holomorphic extension to D.

Assume that p = 2. Since af #« 0 for any s and ¢, each partition of
indices with the property (*) in §4 for the functions a&’f,, a'f,, -+, @’ fy
is given by the above partition J =J, U -+ UJ,. By Lemma 4, for each
s(1 < s < t), there is the uniquely determined ¢(s)(1 < ¢(s) £ p) such that
Dlicryy @S i(2) 0. We put m, = #{s; ¢(s) = ¢, 1 < s < t}, where #A denotes
the number of elements in a set A. Obviously, t =m, + m, + «++ + m,
and K, = {s; 3iics, @if: = 0,1 < s < t} consists of ¢ — m, elements. The
image of the map (fi)i.,, of D — S into C"«(N, = %J,) is included in a
linear variety L = {3};. aniwi = 0, se K,} in C"« which is of dimension N, —
(t — m,), because the rank of (ai)(s€ K,, 1€ J,) is equal to min(N,, t — m,),
where L # (0). So we see t — m, = N, — 1. Therefore, by the assump-
tion p = 2 the image of the map (f,, f, *+*, fy) of D — S into C"*' is
included in a linear subvariety of dimension

SP N, —(¢t—m)=N+1-pt+t=N+1-(p—1t<N+1—¢.

Thus, f(D — S) is included in a subvariety of dimension < (N + 1 —¢) —
1=N—-t=N—-—(N—-—7r+1)=2—11in Py(C). On the other hand, since
f is of rank » somewhere, f(D — S) includes an r-dimensional set in Py(C).
This is a contradiction. The proof of Theorem A is complete.

6. In Theorem A, we cannot omit the assumption of the regularity
of a thin analytic set Sin M (c.f., [3], §4). For an arbitrary thin analytic
set S, we can prove

THEOREM 6. Under the same condition as in Theorem A, if the as-
sumption on the regularity of S is omitted, then f can be extended to a
meromorphic map of M into Py(C), i.e., the closure of the graph G, =
{(2, f(2)):ze M — S} of f is an analytic subset of M X Py(C).
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ProoF. Take a system of homogeneous coordinates w,: w,: «<+: wy
such that f(M — S) N {w, =0} = @ and put f; = (w;o f) « (wyo /)L =7 =< N).
By Theorem A, each f; can be meromorphically extended to a neighborhood
of the set S., of all regularities of S. On the other hand, since S — S,
is an analytic subset of codimension = 2 in M, each f; has a meromorphic
extension to the whole space M. This leads to Theorem 6.

COROLLARY 7. Let M be a complex manifold, S a thin analytic subset
of M and f a holomorphic map of M — S into Py(C) which ts of rank r
somewhere. If there are hyperplanes H,, «++, H,(h = 2N — r + 2) in general
position such that each f~'(H;) is a thin analytic subset of M, then f has
a meromorphic extension to M.

Proor. Put S'=SU (UL, f(H;)). Then f'= f|M — S has the
image in Py(C) — UL, H;, so has a meromorphic extension to M by Theorem
6. This gives Corollary 7.

7. It remains to prove Theorem B. We shall show this by some simple
modifications of the proof of Theorem A (c.f., [2]). We use the same
notations as in §5. Choosing a suitable system of homogeneous coordinates
W Wyt +++: wy in Py(C), we have nowhere zero holomorphic functions
[i(®) = (wio f)*(weo )™ (0 <1 < N) on C* such that 3%, &' f(2) = 0 every-
where for any s(1 < s < t), where any minor of the matrix (ai) does not
vanish. Consider the partition J =1{0,1, -+, N} =J, U +++ UJ, with the
property (**) in §4. Using Lemma 5, for each s (1 < s < t) we have just
only one g(s) (1 =q(s) < p) such that 3., aif; #0. Then, putting m, =
#{s;q(s) = ¢} and N, = $J,(1 < ¢ < p), we have ¢ = 3,;m, and ¢ — m, =
N, — 1. It follows that

Zq(t'—mq):pt_t§2q(Nq—l):N+1—p7

so p < (N+ t+ 1)/(t + 1). On the other hand, since f.f7'(t,j€J,) is a
constant function, the image of the map (f:).;, of C"into C"¢is included
in a subvariety of dimension one. Therefore, f(C")(C Py(C)) is a subset
of a linear subvariety of dimension

N+t+1 N
N+t +L g .
P=i=—717 h— N

Thus we have Theorem B.

8. Finally, we note that, in the conclusion of Theorem B, we cannot
replace the number 7, = [N/(h — N)] by smaller ones. Indeed, for an
arbitrarily given 4 hyperplanes H,, H,, «++, H,_, (N+1<h < 2N) in general
position in P,(C), we can construct a holomorphic map f of C™ into Py(C) —
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=4 H; such that f is of rank =, everywhere. As in §5, for a suitable
system of homogeneous coordinates w,: +++ : wy we have

Hi:wi=0 (OéiéN)
HN_(.,:ang"_aiwl"‘”’+awa=0 (1§S§t=h_N_1),

where we may assume al =1 (1 =< s < t). Consider #, systems of ¢ linear
equations in t + 1(=u) unknowns:

Seaw, + e +atw, =0,1<s=1),
Sty w, o+ atw, =0,1=s=1),

Eno: a.gno_l)u+lw(n3—l)u+1 + oo + arcuwn\»u =0 ’ (1 é S é t) .

Obviously, each system >, (1= v =<n,) has a non-zero vector (@ _,uri ***5 &)
as a solution. Then, any a; 1 <7 < nu) is not equal to zero because
any minor of degree ¢ of the matrix (&) 1 <s=t,1=<1= N) does not
vanish. If nu <N, we take furthermore non-zero real numbers @, u+1, ***, Gy
such that

;" e + o+ aday +1#0
for any s (1 =s=1t). Now, we put fi(z, +-,2,) =1,
aer, 115w
ae?, u+1=1=<2u

fi(zu ) zn;) =

aery, M —Du+1Z1=Z5 nu

and fi(z, *++, 2,) =, neu + 1 =7 =< N, if nu < N. Then the map f =
for fur eeei fy of C™ into Py(C) has the image in Py(C) — U} H; and is
of rank m, everywhere.

In particular, considering the case % = 2N, we see that there is a
non-constant holomorphic map of C into P,(C) excluding 2N arbitrarily
pre-assigned hyperplanes in general position. This gives another proof of
Theorem 6 in [4] (c.f., W. Stoll, [6]).

ADDENDUM. After submitting the manuscript to the editor, the author
received from Dr. M. L. Green the preprint entitled “Holomorphic maps
into the complex projective space omitting hyperplanes” to appear in Trans.
Amer. Math. Soc.. One of his results is the same as our Theorem B and
he informed us in his letter that a result quite similar to our Theorem
A has also been obtained.
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