Tôhoku Math. Journ. 24 (1972), 401-408.

GENERATORS OF FINITE *W**-ALGEBRAS

HORST BEHNCKE*

(Received Aug. 17, 1971)

In recent years a great deal has been learned about generators in properly infinite W^* -algebras [1, 2, 3, 7]. The main tool in the study of generating properties have always been matrix techniques. Unfortunately, however, one cannot extend methods using infinite matrices to finite W^* algebras. In this note we introduce the class of W^* -algebras of type II₁ with property A, to which such matrix techniques can be applied in some sense. For example, a factor \mathfrak{A} of type II₁ has property A, if it can be written as a tensor product $\mathfrak{B} \otimes \mathfrak{C}$ of two factors of type II₁. W^* algebras with property A are singly generated. Moreover most of the results [1, 2, 3] on special generators in properly infinite W^* -algebras carry over to W^* -algebras with property A.

Throughout all Hilbert spaces are separable and all W^* -algebras are assumed to act on separable Hilbert spaces. For a W^* -algebra \mathfrak{A} we denote by $M_k(\mathfrak{A}) = \mathfrak{A} \otimes M_k$ the algebra of all k by k matrices with entries from \mathfrak{A} . In this notation M_{∞} stands for the algebra of all bounded linear operators on a separable infinite dimensional Hilbert space. For $A_1, A_2, \ldots \in B(H)$, the algebra of all bounded linear operators on the Hilbert space $H, \mathfrak{R}(A_1, A_2, \ldots)$ denotes the W^* -algebra generated by A_1, A_2, \ldots The operator $T \in B(H)$ will be called *n*-nilpotent if $T^{n-1} \neq 0$ and $T^n = 0$.

Let \mathfrak{A} be a continuous W^* -algebra and let e be a projection in \mathfrak{A} , then e can be decomposed into two orthogonal equivalent projections fand g with sum e. This decomposition we denote by e = dec f, g. Now define $1 = \text{dec } e_1$, f_1 and inductively $e_n = \text{dec } e_{n+1}$, f_{n+1} . Let $v_n^* v_n = e_n$ and $v_n v_n^* = f_n$ then

(1)
$$v_n v_m = 0$$
 for all $m \leq n$ and $f_n v_m = \delta_{n,m} v_m$

DEFINITION. A factor \mathfrak{A} of type II_1 has property A if there exist two factors \mathfrak{B} and \mathfrak{C} of type II_1 such that \mathfrak{A} is isomorphic to $\mathfrak{B} \otimes \mathfrak{C}$. A W^* -algebra \mathfrak{A} of type II_1 with central decomposition $\mathfrak{A} = \int \mathfrak{A}(\zeta) d\zeta$ has

^{*} Research supported by a grant of the Ford Foundation to Tulane University.

property A if $d\zeta$ almost all factors $\mathfrak{A}(\zeta)$ have property A.

The hyperfinite factor has property A, but it is not known whether every factor of type II₁ has this property. Let \mathscr{A} denote the class of all W^* -algebra of type II₁ on a separable Hilbert space with property A. Then we can show:

LEMMA 1. a) $\mathfrak{A} \in \mathscr{A}$ then $M_n(\mathfrak{A}) \in \mathscr{A}$ for all finite $n \geq 2$.

b) $\mathfrak{A} \in \mathscr{A}$ then for any finite $n \geq 2$ there exists a $D \in \mathscr{A}$ such that $\mathfrak{A} = M_n(D)$.

PROOF. a) Assume \mathfrak{A} is a factor and $\mathfrak{A} \cong \mathfrak{B} \otimes \mathfrak{C}$, where \mathfrak{B} and \mathfrak{C} are factors of type II₁. Then $M_n(\mathfrak{A}) = \mathfrak{A} \otimes M_n \cong \mathfrak{B} \otimes (\mathfrak{C} \otimes M_n)$. If \mathfrak{A} is an arbitrary W^* -algebra with property A and $\mathfrak{A} = \int \mathfrak{A}(\zeta) d\zeta$ is its central decomposition, then $\mathfrak{A} \otimes M_n = \int \mathfrak{A}(\zeta) \otimes M_n d\zeta$ [4; ch. II, § 3.4]. Since $d\zeta$ almost all $\mathfrak{A}(\zeta) \otimes M_n$ have property A, the algebra $\mathfrak{A} \otimes M_n$ has property A also.

b) Again let \mathfrak{B} and \mathfrak{C} be factors of type II_1 and let $\mathfrak{A} = \mathfrak{B} \otimes \mathfrak{C}$. Let p be a nonzero projection in \mathfrak{A} and let q be a nonzero projection in \mathfrak{C} with dim $p = \dim 1 \otimes q$. Then $p\mathfrak{A}p \cong (1 \otimes q) \mathfrak{A} (1 \otimes q) = \mathfrak{B} \otimes q\mathfrak{C}q$ and $p\mathfrak{A}p$ has property A also. Now let $\mathfrak{A} \in \mathscr{N}$ be a W^* -algebra with central decomposition $\mathfrak{A} = \int \mathfrak{A}(\zeta) d\zeta$, then there exists a projection p in \mathfrak{A} such that $p^{\mathfrak{g}} = 1/n \mathbf{1}$, where \mathfrak{g} is the canonical centervalued trace [4; ch. III § 4.4]. Clearly $p\mathfrak{A}p = \int p(\zeta)\mathfrak{A}(\zeta)p(\zeta)d\zeta$ has property A, because $d\zeta$ almost all $p(\zeta)\mathfrak{A}(\zeta)p(\zeta)$ have property A also. Since $\mathfrak{A} \cong M_n(p\mathfrak{A}p)$ the algebra $p\mathfrak{A}p = \mathbf{D}$ has the required properties.

The following lemma is a slight improvement of some of Wogen's results [7].

LEMMA 2. Let \mathfrak{A} be a W*-algebra, which is generated by n selfadjoint operators a_1, \ldots, a_n . Then $\mathfrak{A} \otimes M_k$ is generated by $m \geq 2$ selfadjoint operators A_1, \ldots, A_m if $(m-1)k^2 + 1 \geq n$.

PROOF. a) We may assume the a_i to be positive and invertible contractions. Then define $A_1 = \text{diag}(a_1, a_2 + 2, \dots, a_k + k)$ and

$$A_2 = egin{bmatrix} a_{k+1} & a_{2k+1} & & \ a_{2k+1} & a_{k+2} & \cdot & \ & \ddots & \ddots & \ & \ddots & \ddots & \ & \ddots & \ddots & \ & & \ddots & a_{2k-1} & a_{3k-1} \ & & & a_{3k-1} & a_{2k} \end{bmatrix}$$

By $+\!\!\!\!$ we mean that the remaining matrix elements of A_2 are only restricted by the symmetry requirement, $(A_2)_{i,j} = (A_2)_{j,i}^*$ for $i \ge 2$. If n < 3k - 1 we set $a_{n+1} = \ldots = a_{3k-1} = 1$. Thus we can place k + (k-1) + (k-1)(k-2) of the a_i in the matrix A_2 . The matrices A_3, \ldots, A_m are only restricted by the symmetry requirement $(A_i^*)_{i,j} = (A_i)_{j,i}^*$ with $3 \le l \le m$. Hence each of these matrices can accomodate k^2 of the a_i , and all A_i can accomodate $(m-1)k^2 + 1$ of the a_i .

b) Let $C = C^* = (c_{i,j})_{i,j=1}^k \in \Re(A_1, \ldots, A_m)' = \Re'$. Then $CA_1 = A_1C$ and [2, Lemma 1(a)] show that C is diagonal, $C = \text{diag}(c_1, \ldots, c_k)$. The relation $CA_2 = A_2C$ and [2, Lemma 1(b)] imply $c_1 = \ldots = c_k$. Hence $C = c_1 \otimes 1$ and because of $A_lC = CA_l$, with $1 \leq l \leq m$, $c_1 \in \Re(a_1, \ldots, a_n)' = \mathfrak{A}'$. Thus $\Re(A_1, \ldots, A_m)' = \mathfrak{A}' \otimes 1$ or $M_k(\mathfrak{A}) = \Re(A_1, \ldots, A_m)$.

THEOREM 1. Let \mathfrak{A} be a factor of type II_1 with property A on the separable Hilbert space H, then is singly generated.

PROOF. a) We can write $\mathfrak{A} = \mathfrak{B} \otimes \mathfrak{C}$. As above construct for \mathfrak{B} a system of partial isometries and projections $\{v_n, e_n, f_n\}$ and let $\{c_n\}$ be a countable family of positive invertible contractive generators of \mathfrak{C} . Then consider the operators

$$A = \sum_{n=1}^{\infty} (v_n \otimes c_n) \ 2^{-n}$$
 and $B = \sum_{n=1}^{\infty} (v_n \otimes 1) \ 2^{-n}$.

Since the e_n and f_m commute, they lie in some maximal abelian *-subalgebra D of \mathfrak{B} . Let D be a self-adjoint generator of this subalgebra, and let $C = D \otimes 1$. Then $D \otimes 1 \subset \mathfrak{R}(A, B, C) = \mathfrak{R}$ and

$$(f_m \otimes 1) A = \sum f_m v_n \otimes c_n 2^{-n} = v_m \otimes c_m \cdot 2^{-m} \in \Re$$
 .

Also $(f_m \otimes 1) B = v_m \otimes 1 \cdot 2^{-m} \in \Re$. Thus \Re contains $v_m \otimes c_m$ and $v_m \otimes 1$ for all m. Hence $(v_m \otimes c_m) (v_m \otimes 1)^* + (v_m \otimes c_m)^* (v_m \otimes 1) = e_{m-1} \otimes c_m \in \Re$. Therefore also $(v_{m-1} \otimes 1) (e_{m-1} \otimes c_m) = v_{m-1} \otimes c_m \in \Re$. Repeating the same procedure as before we see $v_{m-2} \otimes c_m \in \Re$ and finally $1 \otimes c_m \in \Re$. Hence $1 \otimes \mathbb{G} \subset \Re$.

b) Interchanging the role of \mathfrak{B} and \mathfrak{C} we find by the same method as above a triple A', B' and C' with $\mathfrak{R}(A', B', C') \supset \mathfrak{B} \otimes 1$. Actually we only need A', the analogue of A, because C', $B' \in \mathfrak{R}(A, B, C)$. Thus $\mathfrak{A} = \mathfrak{B} \otimes \mathfrak{C}$ is generated by seven self adjoint operators.

c) Now write $\mathfrak{A} = M_{\mathfrak{z}}(C)$. Since C has property A also, C is generated by seven selfadjoint operators. Hence by Lemma 2 \mathfrak{A} is singly generated.

It is obvious that the above proof works also for all W^* -algebras \mathfrak{A} , which can be written as $\mathfrak{A} = \mathfrak{B} \otimes \mathbb{C}$, where \mathfrak{B} and \mathbb{C} are continuous W^* -

H. BEHNCKE

algebras or W^* -algebras of type I_{∞} . In particular this would give a new proof of Wogen's result [7, Theorem 2].

Now we want to extend Theorem 1 to arbitrary W^* -algebras \mathfrak{A} with property A. To do so we need a result of P. Willing (private communication).

THEOREM 2 (P. Willing). Let \mathfrak{A} be a W*-algebra on the separable Hilbert space H and let $\mathfrak{A} = \int_{\mathbb{Z}} \mathfrak{A}(\zeta) d\zeta$ be its central decomposition. Then \mathfrak{A} is singly generated if $d\zeta$ almost all $\mathfrak{A}(\zeta)$ are singly generated.

PROOF. Since any properly infinite W^* -algebra and any finite W^* algebra of type I is singly generated, we may assume \mathfrak{A} to be of type II₁. Then $H = \int_{\mathbb{Z}} H_{\infty} d\zeta$, where H_{∞} is a fixed infinite dimensional Hilbert space and where Z is a separable metric space. For details we refer to [5].

Since H_{∞} is separable, the unit sphere S of $B(H_{\infty})$ is weakly compact. Moreover the weak topology is a metric topology on bounded sets defined by the metric ρ [5, 1.4.8]. Let now $\{A_i\}_{i=1}^{\infty}$, with $A_i = \int A_i(\zeta)d\zeta$, be a countable sequence of hermitean generators of \mathfrak{A} such that $|A_i| \leq 1$ and such that the conditions a, b and c of [5, I.5.4] are satisfied. We assume further that the $\{A_i(\zeta)\}$ are dense in the set $\{x \in \mathfrak{A}(\zeta) \mid x = x^*, |x| \leq 1\}$ for $d\zeta$ almost all ζ . Let \mathfrak{B}_0 be the free algebra of the two noncommuting variables z an z^* over the rational complex numbers. \mathfrak{B}_0 is countable. For any $f \in \mathfrak{B}_0$ the expression $f(A, A^*)$ shall denote operator which one obtains by replacing in f the variables z and z^* by A and A^* . For any $f \in \mathfrak{B}_0$ and any pair n, m of natural numbers define the subset E(f, n, m)of $Z \times S$ by:

E(f, n, m) consists of all pairs (ζ, A) with

- i) $A \in \mathfrak{A}(\zeta) \cap S$
- ii) $f(A, A^*) \in \mathfrak{A}(\zeta) \cap S$
- iii) $\rho(f(A, A^*) A_n(\zeta)) \leq 1/m$

E(f, n, m) is an analytic subset of $Z \times S$. Therefore

$$G = \bigcap_{m=1}^{\infty} \bigcap_{n=1}^{\infty} \bigcup_{f \in \mathfrak{B}_0} E(f, n, m)$$

is analytic. We have $(\zeta, A) \in G$ exactly when A is a generator of $\mathfrak{A}(\zeta)$. By assumption each $\mathfrak{A}(\zeta)$ is singly generated, thus the projection $\pi(G)$ of $G \subset Z \times S$ onto the first coordinate is all of Z. Then the principle of measurable choice [5, I.4.7] gives us an operator $A \in \mathfrak{A}$ with

$$A=\int_{Z}A(\zeta)d\zeta$$

where $A(\zeta)$ is a generator of $\mathfrak{A}(\zeta) d\zeta$ a.e..

b) Write A = B + iC, $B = B^*$ and $C = C^*$. B lies in some maximal abelian *-subalgebra D of \mathfrak{A} . D is singly generated by an operator $D = D^*$. Then E = D + iC is a generator of \mathfrak{A} .

An immediate consequence of Theorem 1 and Theorem 2 is the following generalization of Theorem 1.

THEOREM 3. Any W^* -algebra \mathfrak{A} of type II_1 with property A on a separable Hilbert space is singly generated.

Lemma 1 and Theorem 3 allow us to extend most results of [1, 2, 3] to W^* -algebras with property A. In fact most of these results are valid for any class of W^* -algebras \mathcal{B} , which satisfies the following two conditions:

i) $\mathfrak{A} \in \mathscr{B}$, then \mathfrak{A} is singly generated and \mathfrak{A} has a faithful normal representation on a separable Hilbert space.

ii) $\mathfrak{A} \in \mathscr{B}$, then for any finite *n* there exists a $\mathfrak{B} \in \mathscr{B}$ with $\mathfrak{A} \cong M_n(\mathfrak{B})$.

We shall always assume that \mathscr{B} contains all properly infinite W^* algebras on a separable Hilbert space and every W^* -algebra of type II₁ with property A. If every factor of type II₁ on a separable Hilbert space is singly generated, \mathscr{B} may be chosen to be the class of all W^* -algebras on a separable Hilbert space with no summand of type I-finite.

THEOREM 4. Let $\mathfrak{A} \in \mathscr{B}$ and let p be a complex polynomial of degree at least three, then there exists a generator T of \mathfrak{A} with p(T) = 0.

PROOF. Use the proof of Corollary 1 of Theorem 1 in [1].

COROLLARY 1. For any $n \ge 3$ there exists a generator of \mathfrak{A} with $T^n = 0$ $(T^n = 1)$.

COROLLARY 2. There exists a generator T of \mathfrak{A} , which is similar to a unitary (selfadjoint) operator.

PROOF. Let T be a generator of \mathfrak{A} with $T^3 = 1$. Then T is similar to a unitary operator U with $U^3 = 1$, $T = QUQ^{-1}$. We can write $U = e^{iA}$, then QAQ^{-1} is a generator of \mathfrak{A} , which is similar to the selfadjoint operator A.

COROLLARY 3. A is generated by two commuting idempotents E_1 and E_2 with $E_1 \cdot E_2 = 0$.

PROOF. Let *T*, *Q* and *U* be as in the proof of Corollary 2 and let $U = P_0 + P_1 e^{2\pi i/3} + P_2 e^{-2\pi i/3}$ be the spectral resolution of *U*. Then $E_1 = QP_1Q^{-1}$ and $E_2 = QP_2Q^{-1}$ have the required properties.

H. BEHNCKE

Theorem 3 of [1] and the corollary are also valid for any $\mathfrak{A} \in \mathscr{B}$. Thus any $\mathfrak{A} \in \mathscr{B}$ arises from a unitary representation of $Z_2 * Z_3$. The results of [2] can be generalized similarly.

THEOREM 5. Let $\mathfrak{A} \in \mathscr{B}$ then \mathfrak{A} has a dense set of generators and any $T \in \mathfrak{A}$ can be written as the sum of two generators of \mathfrak{A} .

In order to extend the results of [3] we need the following lemmas.

LEMMA 3. Any continuous or properly infinite W^* -algebra \mathfrak{A} has a transcendental quasinilpotent element.

PROOF. For \mathfrak{A} construct a system of projections and partial isometries $\{e_n, f_n, v_n\}$ as above. Then let $A_k = \sum_{n \ge k} v_n 2^{-n}$. Because of (1) we have $A_1^k = A_1 \cdot A_2, \dots A_k$ and thus $|A_1^k| \le 2^{-k(k-1)/2}$. Hence A_1 is quasinilpotent. A simple computation shows that A_1 is not nilpotent.

After the author had completed this proof, he learned that a similar construction had been given by Topping [6].

LEMMA 4. Let \mathfrak{A} be a W*-algebra of type II_1 on the separable Hilbert space H and let K be a nonempty compact subset of the complex plane, then there exists a normal operator $N \in \mathfrak{A}$ with $\operatorname{Sp} N = K$.

PROOF. By considering maximal abelian subalgebras of \mathfrak{A} it suffices to show the lemma for the W^* -algebra $\mathscr{L}^{\infty}([0, 1])$. This however is trivial.

THEOREM 6. Let $\mathfrak{A} \in \mathscr{B}$ and let K be an arbitrary nonempty compact set in the unit disc and let $\varepsilon > 0$ be arbitrary. Then there exists a generator T of \mathfrak{A} with $|T| \leq 1 + \varepsilon$ and $\operatorname{Sp} T = K$. If $K = \{0\}$ the generator T may be chosen to be a transcendental quasinilpotent (n-nilpotent) partial isometry, with $n \geq 4$ arbitrary.

PROOF. a) For $K \neq \{0\}$ use Lemma 3 and the proof of Theorem 4 in [3]. Thus we may assume $K = \{0\}$. Write $\mathfrak{A} = \mathfrak{B} \otimes M_2$ and let $T = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$, where a is a transcendental quasinilpotent ((n-1) - nilpotent)generator of \mathfrak{B} with |a| < 1 and where $b = (1 - a^*a)^{1/2}$. Then T is a transcendental quasinilpotent (n-nilpotent) generator of \mathfrak{A} .

b) Thus it remains to show that any $\mathfrak{B} \in \mathscr{B}$ has a transcendental quasinilpotent generator a. To do this write $\mathfrak{B} = \mathfrak{C} \otimes M_3$ and let

$$a = \begin{bmatrix} h & e & 0 \\ 0 & f \\ & 0 \end{bmatrix}$$

where e and f are positive invertible with $\Re(e, f) = \mathbb{C}$. h is a transcendental quasinilpotent element in \mathbb{C} . That a has all the required properties is shown by simple matrix computation.

The extension of Theorem 2 in [3] we present in a slightly strengthened version.

THEOREM 7. Let $\mathfrak{A} \in \mathscr{B}$ and let K be a compact set containing 0 inside the disc of radius $1 - \varepsilon$, with $1 > \varepsilon > 0$ arbitrary; then there exists a partial isometry T such that TT^* and T^*T commute with $\operatorname{Sp} T = K$ and $\mathfrak{R}(T) = \mathfrak{A}$. If $K = \{0\}$ T may be chosen nilpotent for any finite $n \geq 5$.

PROOF. a) Write $\mathfrak{A} = \mathfrak{B} \otimes M_3$ and set

$$T = egin{bmatrix} 0 & a & c \ & b & d \ & & 0 \end{bmatrix}$$

where $\Re(b) = \mathfrak{B}$, $\operatorname{Sp} b \cup \{0\} = K$, $|b| \leq 1 - \varepsilon/2$ and $b = (bb^*)^{1/2}u$, with uunitary. The operators a, c and d are defined as $a = u^*(1 - bb^*)^{1/2}u$, $c = u^*(bb^*)^{1/2}u$ and $d = (1 - bb^*)^{1/2}u$. Then $TT^* = \operatorname{diag}(1, 1, 0)$, $T^*T = \operatorname{diag}(0, 1, 1)$ and $\operatorname{Sp} T = \operatorname{Sp} b \cup \{0\} = K$. $\Re(T) = \mathfrak{A}$ is shown as in [3].

b) Thus it remains to show that we can find such a $b \in \mathfrak{B}$. To see this write $\mathfrak{B} = \mathfrak{C} \otimes M_3$ and set

$$b = egin{bmatrix} h & e & 0 \ 0 & f \ 0 & 0 \end{bmatrix}$$

with h normal and Sp h = K if $K \neq \{0\}$. e and f are positive invertible operators with $\Re(e, f) = \mathbb{C}$ and $|e|, |f| < \varepsilon/4$. We may further assume that e and h commute. Then b has all the required properties.

c) If $K = \{0\}$ we need a *b* with |b| < 1, $\Re(b) = \mathfrak{B}$, $b^{n-2} = 0$ and $b = (bb^*)^{1/2}u$, where *u* is a unitary operator. Write $\mathfrak{B} = \mathfrak{C} \otimes M_{n-2}$ and set

$$b = rac{1}{2} egin{bmatrix} 0 & e & & & \ 0 & f & & \ & 0 & 1 & & \ & & & 1 & \ & & & 0 & \end{bmatrix}$$

H. BEHNCKE

with e and f positive invertible such that $\Re(e, f) = \mathbb{C}$ and |e|, |f| < 1. Then b has all required properties.

By a slightly more complicated construction one can even show that the b in (c) may be chosen transcendental quasinilpotent.

The author acknowledges the stimulating discussions with Professor T. Saito.

References

- [1] H. BEHNCKE, Generators of W*-algebras I, Tôhoku Math. Journ. 22 (1970), 541-546.
- [2] H. BEHNCKE, Generators of W*-algebras II, Tôhoku Math. Journ. 24 (1972), 371-381.
- [3] H. BEHNCKE, Generators of W*-algebras III, Tôhoku Math. Journ. 24 (1972), 383-388.
- [4] J. DIXMIER, Les algebres d'operateurs dans l'espace Hilbertien, Gauthier-Villars, Paris 1969.
- [5] J. T. SCHWARTZ, W*-algebras, Gordon and Breach, New York, 1967.
- [6] D. M. TOPPING, Transcendental Quasi-nilpotents in Operator Algebras, Journ. of Funct. An. 2 (1968) 342-351.
- [7] W. WOGEN, On Generators of von Neumann Algebras, Bull. Am. Math. Soc. 75 (1969), 95-99.

Institut für Angewandte Mathematik Universität Heidelberg Heidelberg, Deutschland