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GENERATORS OF FINITE W*ALGEBRAS

HoRST BEHNCKE*
(Received Aug. 17, 1971)

In recent years a great deal has been learned about generators in
properly infinite W*-algebras [1, 2, 3, 7]. The main tool in the study of
generating properties have always been matrix techniques. Unfortunately,
however, one cannot extend methods using infinite matrices to finite W*-
algebras. In this note we introduce the class of W*-algebras of type II,
with property A, to which such matrix techniques can be applied in some
sense. For example, a factor 2 of type II, has property A, if it can be
written as a tensor product B® C of two factors of type II,. W*-
algebras with property A are singly generated. Moreover most of the
results [1, 2, 3] on special generators in properly infinite W*-algebras
carry over to W *-algebras with property A.

Throughout all Hilbert spaces are separable and all W*-algebras are
assumed to act on separable Hilbert spaces. For a W*-algebra U we
denote by M,(2) = AR M, the algebra of all & by k matrices with entries
from 9. In this notation M. stands for the algebra of all bounded
linear operators on a separable infinite dimensional Hilbert space. For
A, A, ...c B(H), the algebra of all bounded linear operators on the
Hilbert space H, R (A, A, ...) denotes the W *-algebra generated by

A, A, .... The operator Te€ B(H) will be called n-nilpotent if 7" = 0
and T" = 0.

Let A be a continuous W*-algebra and let ¢ be a projection in 2,
then ¢ can be decomposed into two orthogonal equivalent projections f
and g with sum e. This decomposition we denote by e¢ = dec f, g. Now
define 1 = dece, f, and inductively e, = dece,,,, fns:. Let viv, = ¢, and
v, = f, then

(1) V0, =0 forall m<n and f,0 = 0, nVn

DEFINITION. A factor U of type II, has property A if there exist
two factors B and € of type II, such that 9 is isomorphic to BR E. A

W*-algebra W of type II, with central decomposition U = S%l(C)dC has
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property A if d{ almost all factors () have property A.

The hyperfinite factor has property A, but it is not known whether
every factor of type II, has this property. Let .o~ denote the class of all
W*-algebra of type II, on a separable Hilbert space with property A.
Then we can show:

LEMMA 1. a) Ue . then M, e .o for all finite n = 2.

b) e .7 then for any finite n = 2 there exists a De .7 such that
A = M, (D).

Proor. a) Assume U is a factor and A = B R €, where B and €
are factors of type II,. Then M,Q) =ARXM,=BR C R M,). If NAis
an arbitrary W *-algebra with property A and U = S‘)l(()dC is its central
decomposition, then AR M, = S%I(C) & M, dC [4; ch. II, § 3.4]. Since d{
almost all () ¥ M, have property A, the algebra A& M, has property
A also.

b) Again let B and € be factors of type II, and let 2 =B KR C.
Let » be a nonzero projection in 9 and let ¢ be a nonzero projection in
€ with dimp =dim1®gq. Then PAP = (1R PA AR q) = BRqe€q and
pAp has property A also. Now let Ue .7 be a W*-algebra with central
decomposition A = S?l(C)dC, then there exists a projection p in 2 such
that p%* = 1/n1, where b is the canonical centervalued trace [4; ch. III
§ 4.4]. Clearly pp = Sp(C)%I(C)p(C)dC has property A, because d almost
all pQAQ)p() have property A also. Since U = M,(p2p) the algebra
pAp = D has the required properties.

The following lemma is a slight improvement of some of Wogen’s
results [7].

LEMMA 2. Let N be a W*-algebra, which is generated by m selfad-
Jjoint operators a,, ..., a,. Then N R M, is generated by m = 2 selfadjoint
operators A, <o, Ap if (m — D+ 1= n.

Proor. a) We may assume the a; to be positive and invertible con-
tractions. Then define A, = diag (a,, @, + 2, +++, a, + k) and

Apyy Copty

_H.

Qop+1 Dpt2

A, = :

+ . Qop—1 A3p—1
M3p—1 Qop,
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By H we mean that the remaining matrix elements of A, are only re-
stricted by the symmetry requirement, (4,);; = (4,)}; for ¢ = 2. If
n<3k—1weseta,.,=...=ay_,=1. Thus we can place k + (k — 1) +
(k — 1)(k — 2) of the a; in the matrix A,. The matrices A4, ..., A, are
only restricted by the symmetry requirement (A});, = (4)}; with 3 <
{ <m. Hence each of these matrices can accomodate %* of the a;, and
all A, can accomodate (m — 1)k* + 1 of the a,.

b) Let C=C*=(¢;;)f;-.eR4, ..., A,) =R. Then CA, = AC
and [2, Lemma 1(a)] show that C is diagonal, C = diag (¢, ...,, ¢;). The
relation CA, = A,C and [2, Lemma 1(b)] imply ¢, = ... =¢,. Hence C =
¢, ®1 and because of 4,C = C4,, with 1 =1 m, ¢, eR(a, ...,a,) =.
Thus R4, ..., 4,) =W X1 or M,Q) = R4, ..., 4,).

THEOREM 1. Let U be a factor of type II, with property A on the
separable Hilbert space H, then is singly generated.

ProoF. a) We can write 9 = B R €. As above construct for B a
system of partial isometries and projections {v,,e,, f.} and let {c,} be a
countable family of positive invertible contractive generators of €. Then
consider the operators

A:i‘,(vn®cn)2“” and B:S(vn®1)2—".

Since the ¢, and f,, commute, they lie in some maximal abelian *-sub-
algebra D of B. Let D be a self-adjoint generator of this subalgebra,
and let C=D®1. Then DRYL1CR(4, B,C) =R and

(faQ@DA=3futn®C2"=v,QCpn2"eR.

Also (f,®1)B=9,®1:2"cR. Thus R contains v, ® e, and v, ®1
for all m. Hence (V,Q¢,) Vn @1)* + (Vp R Cn)* ¥V @ 1) = €,_, R R
Therefore also (v,,—, ® 1) (€pn-, ® Cn) = Vo ® ¢ € R. Repeating the same
procedure as before we see v,_,®c,€R and finally 1 ®c,eR. Hence
1R ECCR.

b) Interchanging the role of B and € we find by the same method
as above a triple A’, B’ and C’ with R(4’, B’,C') DB R 1. Actually we
only need A’, the analogue of A, because C’, B'e R(A4, B,C). Thus
A =BRCE is generated by seven self adjoint operators.

¢) Now write 9 = M,(C). Since C has property A also, C is gen-
erated by seven selfadjoint operators. Hence by Lemma 2 U is singly
generated.

It is obvious that the above proof works also for all W*-algebras 2,
which can be written as % = BR CE, where B and € are continuous W*-
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algebras or W*-algebras of type I.. In particular this would give a new
proof of Wogen's result [7, Theorem 2].

Now we want to extend Theorem 1 to arbitrary W *-algebras 2. with
property A. To do so we need a result of P. Willing (private communi-
cation).

THEOREM 2 (P. Willing). Let U be a W*-algebra on the separable
Hilbert space H and let R =\ AQL)dL be its central decomposition.
Z
Then A 1s singly generated if dC almost all Q) are singly gemerated.

PROOF. Since any properly infinite W*-algebra and any finite W*-
algebra of type I is singly generated, we may assume 2 to be of type IL.

Then H = S H_d{, where H_ is a fixed infinite dimensional Hilbert space

z
and where Z is a separable metric space. For details we refer to [5].
Since H., is separable, the unit sphere S of B(H,) is weakly compact.
Moreover the weak topology is a metric topology on bounded sets defined

by the metric p[5,1.4.8]. Let now {A4;2,, with A4; = SA,-(C)dC, be a

countable sequence of hermitean generators of 2 such that |A4;] <1 and
such that the conditions a, b and ¢ of [5, 1.5.4] are satisfied. We assume
further that the {4;()} are dense in the set {xeAQ) |2 = a* |x| < 1}
for d{ almost all {. Let %B, be the free algebra of the two noncommut-
ing variables z an z* over the rational complex numbers. 9B, is countable.
For any fe®B, the expression f(A4, A*) shall denote operator which one
obtains by replacing in f the variables z and z* by A and A*. For any
f€®B, and any pair n, m of natural numbers define the subset E(f, n, m)
of Z x S by:
E(f, m, m) consists of all pairs ({, A) with

i) Aeq®)nS

ii) f(A4, AHeAC) NS

iii) o(f(4, A*) — A,(0) = 1/m
E(f, », m) is an analytic subset of Z x S. Therefore

G=N

m=1

D

Y B, mm)

is analytic. We have ({, A) e G exactly when A is a generator of A(().
By assumption each () is singly generated, thus the projection 7#(G) of
GCZxS onto the first coordinate is all of Z. Then the principle of
measurable choice [5, 1.4.7] gives us an operator Ae U with

4= Ao
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where A({) is a generator of () d¢ a.e..

b) Write A = B+ iC, B= B*and C = C*. B lies in some maximal
abelian *-subalgebra D of 2. D is singly generated by an operator D =
D*. Then E = D + iC is a generator of .

An immediate consequence of Theorem 1 and Theorem 2 is the follow-
ing generalization of Theorem 1.

THEOREM 3. Any W*-algebra U of type II, with property A on a
separable Hilbert space is singly generated.

Lemma 1 and Theorem 3 allow us to extend most results of [1, 2, 3]
to W*-algebras with property A. In fact most of these results are valid
for any class of W *-algebras <&, which satisfies the following two condi-
tions:

i) e .=z, then A is singly generated and A has a faithful normal
representation on a separable Hilbert space.

ii) e , then for any finite n there exists a Be & with A =
M,(B).

We shall always assume that <# contains all properly infinite W*-
algebras on a separable Hilbert space and every W *-algebra of type II,
with property A. If every factor of type II, on a separable Hilbert space
is singly generated, <Z may be chosen to be the class of all W*-algebras
on a separable Hilbert space with no summand of type I-finite.

THEOREM 4. Let Ne <& and let p be a complex polynomial of degree
at least three, then there exists a gemerator T of N with p(T) = 0.

Proor. Use the proof of Corollary 1 of Theorem 1 in [1].

COROLLARY 1. For any m = 3 there exists a generator of A with
T =0 (T =1).

COROLLARY 2. There exists a gemerator T of A, which is similar to
a unitary (selfadjoint) operator.

ProorF. Let T be a generator of 2 with T° = 1. Then T is similar
to a unitary operator U with U° =1, T = QUQ™'. We can write U = ¢4,
then QAQ™' is a generator of %A, which is similar to the selfadjoint
operator A.

COROLLARY 3. U is generated by two commuting idempotents E, and
Ez ’W’ith -El . Ez = 0-

ProoF. Let T, @ and U be as in the proof of Corollary 2 and let
U = P, + Pe** + Pe > be the spectral resolution of U. Then E, =
QP.Q™' and E, = QP,Q ' have the required properties.



406 H. BEHNCKE

Theorem 3 of [1] and the corollary are also valid for any e .Z.
Thus any e & arises from a unitary representation of Z,xZ,. The
results of [2] can be generalized similarly.

THEOREM 5. Let e & then A has a dense set of gemerators and
any TeU can be written as the sum of two gemerators of .

In order to extend the results of [3] we need the following lemmas.

LEMMA 3. Any continuous or properly infinite W *-algebra U has a
transcendental quasinilpotent element.

Proor. For U construct a system of projections and partial isometries
{en, fu, v} as above. Then let A, = 3.,-,v.27". Because of (1) we have
A = A,-A, ---A, and thus | AF| < 27*%V2, Hence A, is quasinilpotent.
A simple computation shows that A, is not nilpotent.

After the author had completed this proof, he learned that a similar
construction had been given by Topping [6].

LEMMA 4. Let U be a W*-algebra of type II, on the separable Hilbert
space H and let K be a nonempty compact subset of the complex plane,
then there exists a mormal operator Ne U with Sp N = K.

PrROOF. By considering maximal abelian subalgebras of 2 it suffices
to show the lemma for the W*-algebra <~=([0,1]). This however is
trivial.

THEOREM 6. Let e & and let K be an arbitrary nonempty compact
set im the umnit disc and let € >0 be arbitrary. Then there ewxists a
generator T of N with |T| <1+ ¢ and SpT = K. If K = {0} the gener-
ator T may be chosen to be a transcemdental quasinilpotent (n-nilpotent)
partial isometry, with n = 4 arbitrary.

ProoF. a) For K + {0} use Lemma 3 and the proof of Theorem 4
in [3]. Thus we may assume K = {0}. Write A =BQ M, and let T =
(g 8), where a is a transcendental quasinilpotent ((n» — 1) — nilpotent)
generator of B with |a| <1 and where b = (1 — a*a)’®>. Then T is a
transcendental quasinilpotent (n-nilpotent) generator of 2L

b) Thus it remains to show that any Be <& has a transcendental
quasinilpotent generator a. To do this write B = € ® M, and let

h e 0
a = 0 f
0
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where ¢ and f are positive invertible with R(e, f) = €. & is a transcen-
dental quasinilpotent element in €. That o has all the required pro-
perties is shown by simple matrix computation.

The extension of Theorem 2 in [3] we present in a slightly strength-
ened version.

THEOREM 7. Let Ve FZ and let K be a compact set containing 0
inside the disc of radius 1 —e, with 1 > ¢ > 0 arbitrary; then there exists
a partial isometry T such that TT* and T*T commute with Sp T = K
and R(T) =AN. If K={0} T may be chosen nilpotent for any finite
n = b.

PrOOF. a) Write A =B Q M, and set

0 a ¢
T = b d—l
0]

where R®) =B, SpbU{0} =K, |[b| =<1 —¢/2 and b = (bb*)"*u, with u
unitary. The operators a, ¢ and d are defined as a = u*(1 — bb*)"*u,
¢ =u*bb*)"*u and d = (1 — bb*)"?u. Then TT* = diag(@1,1,0), T*T =
diag (0,1,1) and Sp T =SpdbU {0} = K. R(T) = A is shown as in [3].

b) Thus it remains to show that we can find such a be®B. To see
this write B = € ® M, and set

h e 0
b= 0 f
0

with 2 normal and Sph = K if K = {0}. e and f are positive invertible
operators with R (e, f) =€ and |e|, | f|<e/d. We may further assume
that ¢ and 2 commute. Then b has all the required properties.

c) If K={0} we need a b with |b| <1, R®) =9, b2 =0 and
b = (bb*)"*u, where w is a unitary operator. Write B =€ ® M,_, and
set

0 e -
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with ¢ and f positive invertible such that R(e, /) = € and |e|, [f]| < 1.
Then b has all required properties.

By a slightly more complicated construction one can even show that
the b in (¢) may be chosen transcendental quasinilpotent.

The author acknowledges the stimulating discussions with Professor
T. Saito.
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